A physiologically based biopharmaceutics modeling (PBBM) framework for characterizing formulation-dependent food effects: Paving the road towards fed state virtual BE studies for itraconazole amorphous solid dispersions
This study leverages physiologically based biopharmaceutics modeling (PBBM) to predict the clinical performance of two itraconazole (ITRA) amorphous solid dispersions (ASDs), Sempera® and Tolsura®, under fasted and fed state conditions, exploring the potential of PBBM in predicting formulation-speci...
Uloženo v:
| Vydáno v: | European journal of pharmaceutical sciences Ročník 209; s. 107047 |
|---|---|
| Hlavní autoři: | , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Netherlands
Elsevier B.V
01.06.2025
|
| Témata: | |
| ISSN: | 0928-0987, 1879-0720, 1879-0720 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | This study leverages physiologically based biopharmaceutics modeling (PBBM) to predict the clinical performance of two itraconazole (ITRA) amorphous solid dispersions (ASDs), Sempera® and Tolsura®, under fasted and fed state conditions, exploring the potential of PBBM in predicting formulation-specific food interactions. The ITRA formulations were subjected to extensive in vitro biopharmaceutical testing, including solubility studies and dissolution tests under fasted and fed state conditions, revealing significant differences in dissolution behaviors between Sempera® and Tolsura®. The impact of food and hypochlorhydria on drug absorption was evaluated using a stepwise mechanistic deconvolution-reconvolution PBBM approach, integrating fundamental parameters based on the in vitro data into the final model. Our model not only successfully predicted the effects of acid reducing agents (ARA) and food on the oral absorption of ITRA, but also captured the between-subject variability, demonstrating the utility of this approach in understanding the complex interplay between drug, formulation, and gastrointestinal environment. Most importantly, the PBBM was able to accurately predict the positive impact of food on the absorption of Sempera® and the negative food effect of Tolsura®. The findings highlight the importance of considering formulation characteristics and gastrointestinal physiology, underscoring the potential of PBBM in bioequivalence (BE) assessment of generic formulations under varying physiological conditions, including in the fed state and in hypochlorhydric patients. The successful application of this stepwise and mechanistic PBBM approach suggests a potential pathway for streamlining drug development and may contribute to more informed decision-making for BE assessment.
[Display omitted] |
|---|---|
| AbstractList | This study leverages physiologically based biopharmaceutics modeling (PBBM) to predict the clinical performance of two itraconazole (ITRA) amorphous solid dispersions (ASDs), Sempera® and Tolsura®, under fasted and fed state conditions, exploring the potential of PBBM in predicting formulation-specific food interactions. The ITRA formulations were subjected to extensive in vitro biopharmaceutical testing, including solubility studies and dissolution tests under fasted and fed state conditions, revealing significant differences in dissolution behaviors between Sempera® and Tolsura®. The impact of food and hypochlorhydria on drug absorption was evaluated using a stepwise mechanistic deconvolution-reconvolution PBBM approach, integrating fundamental parameters based on the in vitro data into the final model. Our model not only successfully predicted the effects of acid reducing agents (ARA) and food on the oral absorption of ITRA, but also captured the between-subject variability, demonstrating the utility of this approach in understanding the complex interplay between drug, formulation, and gastrointestinal environment. Most importantly, the PBBM was able to accurately predict the positive impact of food on the absorption of Sempera® and the negative food effect of Tolsura®. The findings highlight the importance of considering formulation characteristics and gastrointestinal physiology, underscoring the potential of PBBM in bioequivalence (BE) assessment of generic formulations under varying physiological conditions, including in the fed state and in hypochlorhydric patients. The successful application of this stepwise and mechanistic PBBM approach suggests a potential pathway for streamlining drug development and may contribute to more informed decision-making for BE assessment. This study leverages physiologically based biopharmaceutics modeling (PBBM) to predict the clinical performance of two itraconazole (ITRA) amorphous solid dispersions (ASDs), Sempera® and Tolsura®, under fasted and fed state conditions, exploring the potential of PBBM in predicting formulation-specific food interactions. The ITRA formulations were subjected to extensive in vitro biopharmaceutical testing, including solubility studies and dissolution tests under fasted and fed state conditions, revealing significant differences in dissolution behaviors between Sempera® and Tolsura®. The impact of food and hypochlorhydria on drug absorption was evaluated using a stepwise mechanistic deconvolution-reconvolution PBBM approach, integrating fundamental parameters based on the in vitro data into the final model. Our model not only successfully predicted the effects of acid reducing agents (ARA) and food on the oral absorption of ITRA, but also captured the between-subject variability, demonstrating the utility of this approach in understanding the complex interplay between drug, formulation, and gastrointestinal environment. Most importantly, the PBBM was able to accurately predict the positive impact of food on the absorption of Sempera® and the negative food effect of Tolsura®. The findings highlight the importance of considering formulation characteristics and gastrointestinal physiology, underscoring the potential of PBBM in bioequivalence (BE) assessment of generic formulations under varying physiological conditions, including in the fed state and in hypochlorhydric patients. The successful application of this stepwise and mechanistic PBBM approach suggests a potential pathway for streamlining drug development and may contribute to more informed decision-making for BE assessment. [Display omitted] This study leverages physiologically based biopharmaceutics modeling (PBBM) to predict the clinical performance of two itraconazole (ITRA) amorphous solid dispersions (ASDs), Sempera® and Tolsura®, under fasted and fed state conditions, exploring the potential of PBBM in predicting formulation-specific food interactions. The ITRA formulations were subjected to extensive in vitro biopharmaceutical testing, including solubility studies and dissolution tests under fasted and fed state conditions, revealing significant differences in dissolution behaviors between Sempera® and Tolsura®. The impact of food and hypochlorhydria on drug absorption was evaluated using a stepwise mechanistic deconvolution-reconvolution PBBM approach, integrating fundamental parameters based on the in vitro data into the final model. Our model not only successfully predicted the effects of acid reducing agents (ARA) and food on the oral absorption of ITRA, but also captured the between-subject variability, demonstrating the utility of this approach in understanding the complex interplay between drug, formulation, and gastrointestinal environment. Most importantly, the PBBM was able to accurately predict the positive impact of food on the absorption of Sempera® and the negative food effect of Tolsura®. The findings highlight the importance of considering formulation characteristics and gastrointestinal physiology, underscoring the potential of PBBM in bioequivalence (BE) assessment of generic formulations under varying physiological conditions, including in the fed state and in hypochlorhydric patients. The successful application of this stepwise and mechanistic PBBM approach suggests a potential pathway for streamlining drug development and may contribute to more informed decision-making for BE assessment.This study leverages physiologically based biopharmaceutics modeling (PBBM) to predict the clinical performance of two itraconazole (ITRA) amorphous solid dispersions (ASDs), Sempera® and Tolsura®, under fasted and fed state conditions, exploring the potential of PBBM in predicting formulation-specific food interactions. The ITRA formulations were subjected to extensive in vitro biopharmaceutical testing, including solubility studies and dissolution tests under fasted and fed state conditions, revealing significant differences in dissolution behaviors between Sempera® and Tolsura®. The impact of food and hypochlorhydria on drug absorption was evaluated using a stepwise mechanistic deconvolution-reconvolution PBBM approach, integrating fundamental parameters based on the in vitro data into the final model. Our model not only successfully predicted the effects of acid reducing agents (ARA) and food on the oral absorption of ITRA, but also captured the between-subject variability, demonstrating the utility of this approach in understanding the complex interplay between drug, formulation, and gastrointestinal environment. Most importantly, the PBBM was able to accurately predict the positive impact of food on the absorption of Sempera® and the negative food effect of Tolsura®. The findings highlight the importance of considering formulation characteristics and gastrointestinal physiology, underscoring the potential of PBBM in bioequivalence (BE) assessment of generic formulations under varying physiological conditions, including in the fed state and in hypochlorhydric patients. The successful application of this stepwise and mechanistic PBBM approach suggests a potential pathway for streamlining drug development and may contribute to more informed decision-making for BE assessment. |
| ArticleNumber | 107047 |
| Author | Charbe, Nitin Shoyaib, Abdullah Al Pal, Arindom Polli, James Zhao, Liang Cristofoletti, Rodrigo Rudolph, Niklas Plano, David Boyce, Heather Dressman, Jennifer Wu, Fang |
| Author_xml | – sequence: 1 givenname: Niklas surname: Rudolph fullname: Rudolph, Niklas organization: Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt am Main, Germany – sequence: 2 givenname: Nitin surname: Charbe fullname: Charbe, Nitin organization: Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, FL, USA – sequence: 3 givenname: David surname: Plano fullname: Plano, David organization: Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt am Main, Germany – sequence: 4 givenname: Abdullah Al surname: Shoyaib fullname: Shoyaib, Abdullah Al organization: Division of Quantitative Methods and Modeling, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA – sequence: 5 givenname: Arindom surname: Pal fullname: Pal, Arindom organization: Division of Quantitative Methods and Modeling, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA – sequence: 6 givenname: Heather surname: Boyce fullname: Boyce, Heather organization: Division of Quantitative Methods and Modeling, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA – sequence: 7 givenname: Liang surname: Zhao fullname: Zhao, Liang organization: Division of Quantitative Methods and Modeling, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA – sequence: 8 givenname: Fang surname: Wu fullname: Wu, Fang organization: Division of Quantitative Methods and Modeling, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA – sequence: 9 givenname: James surname: Polli fullname: Polli, James organization: Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, USA – sequence: 10 givenname: Jennifer surname: Dressman fullname: Dressman, Jennifer email: Jennifer.Dressman@itmp.fraunhofer.de organization: Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt am Main, Germany – sequence: 11 givenname: Rodrigo surname: Cristofoletti fullname: Cristofoletti, Rodrigo email: rcristofoletti@cop.ufl.edu organization: Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, FL, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39983931$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kc1u1DAUhS1URH_gBVggL8sig2Nn4gSx6VTlRyqiC1hbzvVNx4MTB9uZavqqvAyeTmHBoivLR9_xvT7nlByNfkRCXpdsUbKyfrdZ4GaKC874MguSVfIZOSkb2RZMcnZETljLm4K1jTwmpzFuGGN1I9kLcizathGtKE_I7ws6rXfReudvLWjndrTTEQ3trJ_WOgwacE4WIh28QWfHW3p-s1p9fUv7oAe88-En7X2gkFkNCYO93zNZGmank_VjYXDC0eCYsuoNxb5HSPE9vdHbPZrWSIPXhiZ_p4OJtM_TY9IJ6daGNGtHV1dZmI3F-DDLpjzKj_reO6R68GFa-znS6J011Ng4YcgfGuNL8rzXLuKrx_OM_Ph49f3yc3H97dOXy4vrAirGUyEBoKmAAZNYcTS6b1ojhFlWomu7isumhBpgKaDHutZLCULmu-ay471gpTgj54d3p-B_zRiTGmwEdE6PmBdToqzbJZN1yzP65hGduwGNmoIddNipv4VkgB8ACD7GgP0_pGRq37raqH3rat-6OrSeTc1_JrDpIfyclHVPWz8crJgD2loMKoLFEdDYkGtSxtun7H8AVFfOzw |
| CitedBy_id | crossref_primary_10_1007_s11095_025_03866_8 crossref_primary_10_1016_j_ejps_2025_107129 crossref_primary_10_3390_pharmaceutics17040408 crossref_primary_10_3390_scipharm93030030 |
| Cites_doi | 10.1080/00401706.1991.10484804 10.1124/dmd.104.000315 10.1208/s12248-021-00601-0 10.1016/j.xphs.2018.10.033 10.1016/j.ejps.2019.04.013 10.1021/acs.molpharmaceut.7b00406 10.1016/j.xphs.2019.09.012 10.1016/j.xphs.2018.10.044 10.1208/s12248-023-00831-4 10.1016/j.ijpharm.2008.09.003 10.1016/j.crfs.2021.04.004 10.1016/j.ejps.2019.105170 10.1128/AAC.32.9.1310 10.1021/mp3006566 10.1016/j.ejps.2019.04.003 10.1016/j.ejpb.2015.03.009 10.1002/psp4.12907 10.1016/j.ejps.2013.01.012 10.1124/dmd.115.065920 10.1002/jps.20502 10.3390/pharmaceutics14020406 10.1038/clpt.2010.298 10.1128/AAC.37.4.778 10.3390/pharmaceutics12030272 10.1007/s11095-022-03280-4 10.1007/s11095-022-03288-w 10.1007/BF00199879 10.1208/s12248-009-9099-y 10.1007/s11095-006-9210-3 10.1016/j.ejps.2024.106703 10.1208/s12248-020-00508-2 10.1002/j.1552-4604.1997.tb04332.x 10.1007/BF00558308 10.1111/bcp.14326 10.1016/j.xphs.2015.11.034 10.1208/s12248-019-0292-3 10.1023/A:1018970323716 10.1002/cpt.1282 10.1002/cpt.1314 10.1208/s12248-020-00548-8 10.1208/s12248-021-00672-z 10.1016/j.ejps.2004.10.005 10.1128/AAC.00297-07 10.1021/mp300604u 10.1208/s12248-016-0010-3 10.1111/j.1439-0507.1989.tb02296.x 10.1128/AAC.00134-21 10.1021/acs.molpharmaceut.7b00198 10.1016/B978-0-12-802447-8.00007-8 10.1098/rsif.2011.0891 10.1016/j.ddtec.2018.06.001 |
| ContentType | Journal Article |
| Copyright | 2025 The Authors Copyright © 2025 The Authors. Published by Elsevier B.V. All rights reserved. |
| Copyright_xml | – notice: 2025 The Authors – notice: Copyright © 2025 The Authors. Published by Elsevier B.V. All rights reserved. |
| DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1016/j.ejps.2025.107047 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Pharmacy, Therapeutics, & Pharmacology |
| EISSN | 1879-0720 |
| ExternalDocumentID | 39983931 10_1016_j_ejps_2025_107047 S0928098725000466 |
| Genre | Journal Article |
| GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 6I. 7-5 71M 8P~ 9JM AABNK AAEDT AAEDW AAFTH AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYWO ABFRF ABJNI ABLJU ABMAC ABZDS ACDAQ ACGFO ACGFS ACIUM ACLOT ACRLP ACVFH ADBBV ADCNI ADEZE ADPDF ADVLN AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALCLG ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP AXJTR BKOJK BLXMC C45 CS3 DU5 EBS EFJIC EFKBS EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GROUPED_DOAJ IHE J1W KOM MO0 N9A O-L O9- OAUVE OGGZJ OK1 OVD OZT P-8 P-9 P2P PC. Q38 ROL RPZ SCC SDF SDG SDP SES SEW SPCBC SSP SSZ T5K TEORI ~G- ~HD 29G 53G 5VS 9DU AAQXK AAYXX ABFNM ABWVN ABXDB ACRPL ADMUD ADNMO AGQPQ ASPBG AVWKF AZFZN CITATION EJD FEDTE FGOYB G-2 HMT HVGLF HZ~ M34 M41 R2- SPT WUQ AGCQF AGRNS BNPGV CGR CUY CVF ECM EIF NPM SSH 7X8 |
| ID | FETCH-LOGICAL-c402t-7ccc84c0c07e42edaf89d33d543b9b42781c6cc53cfe66a57c376cca27b2f3013 |
| ISICitedReferencesCount | 6 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001456523100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0928-0987 1879-0720 |
| IngestDate | Sat Sep 27 17:04:33 EDT 2025 Mon Jul 21 05:50:21 EDT 2025 Sat Nov 29 07:12:18 EST 2025 Tue Nov 18 21:30:46 EST 2025 Sat Nov 08 18:15:17 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | In vitro biopharmaceutics assessment Food effect Hypochlorhydria Regulatory decision making PBBM Sempera Between-subject variability Itraconazole Tolsura Generic drug development |
| Language | English |
| License | This is an open access article under the CC BY license. Copyright © 2025 The Authors. Published by Elsevier B.V. All rights reserved. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c402t-7ccc84c0c07e42edaf89d33d543b9b42781c6cc53cfe66a57c376cca27b2f3013 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | http://dx.doi.org/10.1016/j.ejps.2025.107047 |
| PMID | 39983931 |
| PQID | 3169507692 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_3169507692 pubmed_primary_39983931 crossref_primary_10_1016_j_ejps_2025_107047 crossref_citationtrail_10_1016_j_ejps_2025_107047 elsevier_sciencedirect_doi_10_1016_j_ejps_2025_107047 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-06-01 |
| PublicationDateYYYYMMDD | 2025-06-01 |
| PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Netherlands |
| PublicationPlace_xml | – name: Netherlands |
| PublicationTitle | European journal of pharmaceutical sciences |
| PublicationTitleAlternate | Eur J Pharm Sci |
| PublicationYear | 2025 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | PlotDigitizer — Extract Data from Graph Image Online, 2024. Abdel-Rahman, Jacobs, Massarella, Kauffman, Bradley, Kimko, Kearns, Shalayda, Curtin, Maldonado, Blumer (bib0002) 2007; 51 Rodgers, Rowland (bib0049) 2006; 95 Yuvaneshwari, Kollipara, Ahmed, Chachad (bib0060) 2022; 69 Six, Daems, De Hoon, Van Hecken, Depre, Bouche, Prinsen, Verreck, Peeters, Brewster, Van Den Mooter (bib0054) 2005; 24 Cicali, Long, Kim, Cristofoletti (bib0008) 2020; 86 Van Peer, Woestenborghs, Heykants, Gasparini, Gauwenbergh (bib0056) 1989; 36 Zazo, Colino, Gutiérrez-Millán, Cordero, Bartneck, Lanao (bib0062) 2022; 14 Cristofoletti, Hens, Patel, Esteban, Schmidt, Dressman (bib0009) 2019; 108 Brady, J., Drig, T., Lee, P.I., Li, J.X., 2017. Polymer properties and characterization. Developing solid oral dosage forms: pharmaceutical Theory and Practice: second Edition 181–223. (accessed 2.27.24). Medicine Spending and Affordability in the U.S. - IQVIA [WWW Document], 2020. URL Li, Zou, Tyner, Lee (bib0033) 2017; 19 FDA, 2018. TOLSURA ® (itraconazole) capsules BOXED WARNINGS [WWW Document]. URL (accessed 1.3.24). PubChem, 2005. Itraconazole | C35H38Cl2N8O4 - PubChem [WWW Document]. URL Rosenberger, Butler, Muenster, Dressman (bib0050) 2019; 108 Riedmaier, Dement, Huckle, Bransford, Stillhart, Lloyd, Alluri, Basu, Chen, Dhamankar, Dodd, Kulkarni, Olivares-Morales, Peng, Pepin, Ren, Tran, Tistaert, Heimbach, Kesisoglou, Wagner, Parrott (bib0047) 2020; 22 Isoherranen, Kunze, Allen, Nelson, Thummel (bib0023) 2004; 32 Zhao, Zhang, Grillo, Liu, Bullock, Moon, Song, Brar, Madabushi, Wu, Booth, Rahman, Reynolds, Gil Berglund, Lesko, Huang (bib0064) 2011; 89 Wagner, Kesisoglou, Pepin, Parrott, Riedmaier (bib0058) 2021; 23 O'Dwyer, Imanidis, Box, Reppas (bib0041) 2020; 12 Madabushi, Seo, Zhao, Tegenge, Zhu (bib0035) 2022; 39 Jamei, Turner, Yang, Neuhoff, Polak, Rostami-Hodjegan, Tucker (bib0025) 2009; 11 FDA, 2021. URL Könczöl, Dargó (bib0029) 2018; 27 Bego, Patel, Cristofoletti, Rostami-Hodjegan (bib0005) 2022; 24 Ghazal, Dyas, Ford, Hutcheon (bib0016) 2009; 366 Hardin, Graybill, Fetchick, Woestenborghs, Rinaldi, Kuhn (bib0019) 1988; 32 Morris (bib0040) 1991; 33 Zhenbao, Meiyu, Chang, Shiwei, Wenjuan, Tianyang, Mei, Xiaohong, Yongjun, Yinghua, Jin (bib0065) 2017; 12 . Grimstein, Yang, Zhang, Grillo, Huang, Zineh, Wang (bib0017) 2019; 108 Sensoy (bib0053) 2021 Wu, Mousa, Raines, Bode, Tsang, Cristofoletti, Zhang, Heimbach, Fang, Kesisoglou, Mitra, Polli, Kim, Fan, Zolnik, Sun, Zhang, Zhao (bib0059) 2023; 12 Accessible Meds 2020 Report - Accessible Meds [WWW Document], 2020. URL Holmstock, bevernage, Annaert, Mols, Tack, Augustijns (bib0021) 2013; 49 Kim, Lee, Park, Lee (bib0028) 1991; 21 Russell, Berardi, Barnett, Dermentzoglou, Jarvenpaa, Schmaltz, Dressman (bib0051) 1993; 10 Kesisoglou, Chung, van Asperen, Heimbach (bib0027) 2016; 105 Yeap, Trevaskis, Quach, Tso, Charman, Porter (bib0067) 2013; 10 Heykants, Van Peer, Van de Velde, Van Rooy, Meuldermans, Lavrijsen, Woestenborghs, Van Cutsem, Cauwenbergh (bib0020) 1989; 32 (accessed 2.22.25). Biorelevant, 2024. How biorelevant testing can help oral drug development [WWW Document]. URL Karnati, Murthy, Gundeti, Ahmed (bib0026) 2023; 25 Pathak, Ruff, Kostewicz, Patel, Turner, Jamei (bib0042) 2017; 14 Zakeri-Milani, Valizadeh, Tajerzadeh, Azarmi, Islambolchilar, Barzegar, Barzegar-Jalali (bib0061) 2007; 10 Vertzoni, Augustijns, Grimm, Koziolek, Lemmens, Parrott, Pentafragka, Reppas, Rubbens, Van Den Αbeele, Vanuytsel, Weitschies, Wilson (bib0057) 2019; 134 Pepin, Huckle, Alluri, Basu, Dodd, Parrott (bib0043) 2021; 23 Markopoulos, Andreas, Vertzoni, Dressman, Reppas (bib0038) 2015; 93 Barone, Koh, Bierman, Colaizzi, Swanson, Gaffar, Moskovitz, Mechlinski, Van de Velde (bib0004) 1993; 37 (accessed 1.23.24). Rodgers, Rowland (bib0048) 2007; 24 (accessed 1.3.24). Koziolek, Garbacz, Neumann, Weitschies (bib0031) 2013; 10 FDA, 2022a. SPORANOX ® (itraconazole) Oral Solution BOXED WARNINGS [WWW Document]. URL Gupta, Shah, Ross (bib0018) 2019; 105 Zimmermann, Yeates, Laufen, Pfaff, Wildfeuer (bib0066) 1994; 46 Rauseo, Mazi, Lewis, Burnett, Mudge, Spec (bib0046) 2021; 65 Stillhart, Pepin, Tistaert, Good, Van Den Bergh, Parrott, Kesisoglou (bib0055) 2019; 21 Mann, Dressman, Rosenblatt, Ashworth, Muenster, Frank, Hutchins, Williams, Klumpp, Wielockx, Berben, Augustijns, Holm, Hofmann, Patel, Beato, Ojala, Tomaszewska, Bruel, Butler (bib0036) 2017; 14 Holzem, Schaffland, Brandl, Bauer-Brandl, Stillhart (bib0022) 2024; 194 Sumner, Shephard, Bogle (bib71) 2012; 9 Lange, Pavao, Wu, Klausner (bib0032) 1997; 37 FDA, 2022b. Assessing Effects of Food on Drugs: INDs and NDAs — Clinical Pharmacology Considerations [WWW Document]. URL Koziolek, Alcaro, Augustijns, Basit, Grimm, Hens, Hoad, Jedamzik, Madla, Maliepaard, Marciani, Maruca, Parrott, Pávek, Porter, Reppas, van Riet-Nales, Rubbens, Statelova, Trevaskis, Valentová, Vertzoni, Čepo, Corsetti (bib0030) 2019; 134 FDA, 2022c. SPORANOX ® (itraconazole) capsules BOXED WARNINGS [WWW Document]. URL (accessed 1.23.24). FDA, 2002. Guidance for industry food-effect bioavailability and Fed bioequivalence studies [WWW Document]. URL (accessed 1.3.24). Sager, Yu, Ragueneau-Majlessi, Isoherranen (bib0052) 2015; 43 Anand, Pepin, Kolhatkar, Seo (bib0003) 2022; 39 Isoherranen, Kunze, Allen, Nelson, Thummel (bib0024) 2004; 32 Loisios-Konstantinidis, Cristofoletti, Fotaki, Turner, Dressman (bib0034) 2020; 143 Zhao, Kim, Zhang, Lionberger (bib0063) 2019; 105 Grimstein (10.1016/j.ejps.2025.107047_bib0017) 2019; 108 Zakeri-Milani (10.1016/j.ejps.2025.107047_bib0061) 2007; 10 Barone (10.1016/j.ejps.2025.107047_bib0004) 1993; 37 Heykants (10.1016/j.ejps.2025.107047_bib0020) 1989; 32 Kim (10.1016/j.ejps.2025.107047_bib0028) 1991; 21 Li (10.1016/j.ejps.2025.107047_bib0033) 2017; 19 Karnati (10.1016/j.ejps.2025.107047_bib0026) 2023; 25 Rauseo (10.1016/j.ejps.2025.107047_bib0046) 2021; 65 Sager (10.1016/j.ejps.2025.107047_bib0052) 2015; 43 Hardin (10.1016/j.ejps.2025.107047_bib0019) 1988; 32 Zhao (10.1016/j.ejps.2025.107047_bib0063) 2019; 105 Jamei (10.1016/j.ejps.2025.107047_bib0025) 2009; 11 Morris (10.1016/j.ejps.2025.107047_bib0040) 1991; 33 Pepin (10.1016/j.ejps.2025.107047_bib0043) 2021; 23 Gupta (10.1016/j.ejps.2025.107047_bib0018) 2019; 105 Könczöl (10.1016/j.ejps.2025.107047_bib0029) 2018; 27 Riedmaier (10.1016/j.ejps.2025.107047_bib0047) 2020; 22 Markopoulos (10.1016/j.ejps.2025.107047_bib0038) 2015; 93 Wagner (10.1016/j.ejps.2025.107047_bib0058) 2021; 23 Wu (10.1016/j.ejps.2025.107047_bib0059) 2023; 12 Sensoy (10.1016/j.ejps.2025.107047_bib0053) 2021 O'Dwyer (10.1016/j.ejps.2025.107047_bib0041) 2020; 12 Isoherranen (10.1016/j.ejps.2025.107047_bib0023) 2004; 32 Sumner (10.1016/j.ejps.2025.107047_bib71) 2012; 9 Koziolek (10.1016/j.ejps.2025.107047_bib0030) 2019; 134 Koziolek (10.1016/j.ejps.2025.107047_bib0031) 2013; 10 Yuvaneshwari (10.1016/j.ejps.2025.107047_bib0060) 2022; 69 Pathak (10.1016/j.ejps.2025.107047_bib0042) 2017; 14 10.1016/j.ejps.2025.107047_bib0013 10.1016/j.ejps.2025.107047_bib0014 Madabushi (10.1016/j.ejps.2025.107047_bib0035) 2022; 39 10.1016/j.ejps.2025.107047_bib0015 10.1016/j.ejps.2025.107047_bib0010 10.1016/j.ejps.2025.107047_bib0012 Mann (10.1016/j.ejps.2025.107047_bib0036) 2017; 14 Vertzoni (10.1016/j.ejps.2025.107047_bib0057) 2019; 134 Lange (10.1016/j.ejps.2025.107047_bib0032) 1997; 37 Van Peer (10.1016/j.ejps.2025.107047_bib0056) 1989; 36 Holmstock (10.1016/j.ejps.2025.107047_bib0021) 2013; 49 Russell (10.1016/j.ejps.2025.107047_bib0051) 1993; 10 Isoherranen (10.1016/j.ejps.2025.107047_bib0024) 2004; 32 Kesisoglou (10.1016/j.ejps.2025.107047_bib0027) 2016; 105 Zhenbao (10.1016/j.ejps.2025.107047_bib0065) 2017; 12 Stillhart (10.1016/j.ejps.2025.107047_bib0055) 2019; 21 10.1016/j.ejps.2025.107047_bib0006 10.1016/j.ejps.2025.107047_bib0007 Six (10.1016/j.ejps.2025.107047_bib0054) 2005; 24 Zimmermann (10.1016/j.ejps.2025.107047_bib0066) 1994; 46 Abdel-Rahman (10.1016/j.ejps.2025.107047_bib0002) 2007; 51 Cristofoletti (10.1016/j.ejps.2025.107047_bib0009) 2019; 108 Cicali (10.1016/j.ejps.2025.107047_bib0008) 2020; 86 10.1016/j.ejps.2025.107047_bib0044 10.1016/j.ejps.2025.107047_bib0001 Ghazal (10.1016/j.ejps.2025.107047_bib0016) 2009; 366 10.1016/j.ejps.2025.107047_bib0045 10.1016/j.ejps.2025.107047_bib70 Rodgers (10.1016/j.ejps.2025.107047_bib0049) 2006; 95 Loisios-Konstantinidis (10.1016/j.ejps.2025.107047_bib0034) 2020; 143 Anand (10.1016/j.ejps.2025.107047_bib0003) 2022; 39 Rosenberger (10.1016/j.ejps.2025.107047_bib0050) 2019; 108 Bego (10.1016/j.ejps.2025.107047_bib0005) 2022; 24 Zazo (10.1016/j.ejps.2025.107047_bib0062) 2022; 14 Zhao (10.1016/j.ejps.2025.107047_bib0064) 2011; 89 Yeap (10.1016/j.ejps.2025.107047_bib0067) 2013; 10 10.1016/j.ejps.2025.107047_bib0039 Rodgers (10.1016/j.ejps.2025.107047_bib0048) 2007; 24 Holzem (10.1016/j.ejps.2025.107047_bib0022) 2024; 194 |
| References_xml | – volume: 46 start-page: 147 year: 1994 end-page: 150 ident: bib0066 article-title: Influence of concomitant food intake on the oral absorption of two triazole antifungal agents, itraconazole and fluconazole publication-title: Eur. J. Clin. Pharmacol. – reference: Biorelevant, 2024. How biorelevant testing can help oral drug development [WWW Document]. URL – reference: Accessible Meds 2020 Report - Accessible Meds [WWW Document], 2020. URL – volume: 14 start-page: 4305 year: 2017 end-page: 4320 ident: bib0042 article-title: Model-based analysis of biopharmaceutic experiments to improve mechanistic oral absorption modeling: an integrated in vitro in vivo extrapolation perspective using ketoconazole as a Model drug publication-title: Mol. Pharm. – volume: 105 start-page: 329 year: 2019 end-page: 337 ident: bib0018 article-title: Generic drugs in the UNITED STATES: policies to address pricing and competition HHS Public Access author manuscript publication-title: Clin. Pharmacol. Ther. – volume: 134 start-page: 153 year: 2019 end-page: 175 ident: bib0057 article-title: Impact of regional differences along the gastrointestinal tract of healthy adults on oral drug absorption: an UNGAP review publication-title: Eur. J. Pharm. Sci. – volume: 32 start-page: 1121 year: 2004 end-page: 1131 ident: bib0024 article-title: Role of itraconazole metabolites in CYP3A4 inhibition publication-title: Drug Metab. Dispos. – year: 2021 ident: bib0053 article-title: A review on the food digestion in the digestive tract and the used publication-title: Curr. Res. Food Sci. – volume: 51 start-page: 2668 year: 2007 ident: bib0002 article-title: Single-dose pharmacokinetics of intravenous itraconazole and hydroxypropyl-β-cyclodextrin in infants, children, and adolescents publication-title: Antimicrob. Agents Chemother – volume: 24 start-page: 1 year: 2022 end-page: 13 ident: bib0005 article-title: Proof of concept in assignment of within-subject variability during virtual bioequivalence studies: propagation of intra-subject variation in gastrointestinal physiology using physiologically based pharmacokinetic modeling publication-title: AAPS Journal – volume: 27 start-page: 3 year: 2018 end-page: 10 ident: bib0029 article-title: Brief overview of solubility methods: recent trends in equilibrium solubility measurement and predictive models publication-title: Drug Discov. Today Technol. – volume: 43 start-page: 1823 year: 2015 end-page: 1837 ident: bib0052 article-title: Physiologically based pharmacokinetic (PBPK) modeling and simulation approaches: a systematic review of published models, applications, and model verification publication-title: Drug Metabol. Disposit. – volume: 37 start-page: 778 year: 1993 end-page: 784 ident: bib0004 article-title: Food interaction and steady-state pharmacokinetics of itraconazole capsules in healthy male volunteers publication-title: Antimicrob. Agents Chemother – volume: 10 start-page: 187 year: 1993 end-page: 196 ident: bib0051 article-title: Upper gastrointestinal pH in seventy-nine healthy, elderly, North American men and women publication-title: Pharmac. Res. – volume: 21 year: 2019 ident: bib0055 article-title: PBPK absorption modeling: establishing the In vitro–In vivo link—Industry perspective publication-title: AAPS J. – volume: 366 start-page: 117 year: 2009 end-page: 123 ident: bib0016 article-title: evaluation of the dissolution behaviour of itraconazole in bio-relevant media publication-title: Int. J. Pharm. – volume: 14 start-page: 4192 year: 2017 end-page: 4201 ident: bib0036 article-title: Validation of dissolution testing with biorelevant Media: an OrBiTo study publication-title: Mol. Pharm. – volume: 69 year: 2022 ident: bib0060 article-title: Applications of PBPK/PBBM modeling in generic product development: an industry perspective publication-title: J. Drug Deliv. Sci. Technol. – volume: 25 year: 2023 ident: bib0026 article-title: Modelling based approaches to support generic drug regulatory submissions-practical considerations and case studies publication-title: AAPS. J. – reference: Medicine Spending and Affordability in the U.S. - IQVIA [WWW Document], 2020. URL – volume: 93 start-page: 173 year: 2015 end-page: 182 ident: bib0038 article-title: In-vitro simulation of luminal conditions for evaluation of performance of oral drug products: choosing the appropriate test media publication-title: Europ. J. Pharmac. Biopharmac. – volume: 39 start-page: 1681 year: 2022 end-page: 1700 ident: bib0003 article-title: The use of physiologically based pharmacokinetic analyses-in biopharmaceutics applications -regulatory and industry perspectives publication-title: Pharm. Res. – volume: 134 start-page: 31 year: 2019 end-page: 59 ident: bib0030 article-title: The mechanisms of pharmacokinetic food-drug interactions - A perspective from the UNGAP group publication-title: Eur. J. Pharm. Sci. – volume: 11 start-page: 225 year: 2009 ident: bib0025 article-title: Population-based mechanistic prediction of oral drug absorption publication-title: AAPS. J. – volume: 65 year: 2021 ident: bib0046 article-title: Bioavailability of single-dose SUBA-itraconazole compared to conventional itraconazole under fasted and Fed conditions publication-title: Antimicrob. Agents Chemother – volume: 108 start-page: 3842 year: 2019 end-page: 3847 ident: bib0009 article-title: Integrating drug- and formulation-related properties with gastrointestinal tract variability using a product-specific particle size approach: case example Ibuprofen publication-title: J. Pharm. Sci. – reference: Brady, J., Drig, T., Lee, P.I., Li, J.X., 2017. Polymer properties and characterization. Developing solid oral dosage forms: pharmaceutical Theory and Practice: second Edition 181–223. – volume: 10 start-page: 368 year: 2007 end-page: 379 ident: bib0061 article-title: Predicting human intestinal permeability using single-pass intestinal perfusion to rat publication-title: J. Pharm. Pharmac. Sci. – reference: FDA, 2002. Guidance for industry food-effect bioavailability and Fed bioequivalence studies [WWW Document]. URL (accessed 1.3.24). – volume: 86 start-page: 2247 year: 2020 ident: bib0008 article-title: Assessing the impact of cystic fibrosis on the antipyretic response of ibuprofen in children: physiologically-based modeling as a candle in the dark publication-title: Br. J. Clin. Pharmacol. – volume: 143 year: 2020 ident: bib0034 article-title: Establishing virtual bioequivalence and clinically relevant specifications using publication-title: Europ. J. Pharmac. Sci. – volume: 23 start-page: 85 year: 2021 ident: bib0058 article-title: Use of physiologically based pharmacokinetic modeling for predicting drug-food interactions: recommendations for improving predictive performance of low confidence food effect models publication-title: AAPS. J. – volume: 23 start-page: 12 year: 2021 ident: bib0043 article-title: Understanding mechanisms of food effect and developing reliable PBPK models using a middle-out approach publication-title: AAPS. J. – volume: 95 start-page: 1238 year: 2006 end-page: 1257 ident: bib0049 article-title: Physiologically based pharmacokinetic modelling 2: predicting the tissue distribution of acids, very weak bases, neutrals and zwitterions publication-title: J. Pharm. Sci. – volume: 9 start-page: 2156 year: 2012 end-page: 2166 ident: bib71 article-title: A methodology for global-sensitivity analysis of time-dependent outputs in systems biology modelling publication-title: J. R. Soc. Interface – volume: 24 start-page: 918 year: 2007 end-page: 933 ident: bib0048 article-title: Mechanistic approaches to volume of distribution predictions: understanding the processes publication-title: Pharm. Res. – volume: 14 year: 2022 ident: bib0062 article-title: Physiologically based pharmacokinetic (PBPK) model of gold nanoparticle-based drug delivery system for stavudine biodistribution publication-title: Pharmaceutics. – volume: 12 start-page: 157 year: 2017 end-page: 164 ident: bib0065 article-title: Development of liposome containing sodium deoxycholate to enhance oral bioavailability of itraconazole publication-title: Asian J. Pharm. Sci. – reference: (accessed 1.3.24). – volume: 24 start-page: 179 year: 2005 end-page: 186 ident: bib0054 article-title: Clinical study of solid dispersions of itraconazole prepared by hot-stage extrusion publication-title: Eur. J. Pharm. Sci. – volume: 32 start-page: 1310 year: 1988 end-page: 1313 ident: bib0019 article-title: Pharmacokinetics of itraconazole following oral administration to normal volunteers publication-title: Antimicrob. Agents Chemother – volume: 39 start-page: 1669 year: 2022 ident: bib0035 article-title: Review: role of model-informed drug development approaches in the lifecycle of drug development and regulatory decision-making publication-title: Pharm. Res. – volume: 108 start-page: 1090 year: 2019 end-page: 1100 ident: bib0050 article-title: Application of a refined developability classification system publication-title: J. Pharm. Sci. – volume: 32 start-page: 1121 year: 2004 end-page: 1131 ident: bib0023 article-title: Role of itraconazole metabolites in CYP3A4 inhibition publication-title: Drug Metab. Dispos. – volume: 19 start-page: 26 year: 2017 end-page: 42 ident: bib0033 article-title: Physiologically based pharmacokinetic (PBPK) modeling of pharmaceutical nanoparticles publication-title: AAPS. J. – volume: 194 year: 2024 ident: bib0022 article-title: Using molecularly dissolved drug concentrations in PBBMs improves the prediction of oral absorption from supersaturating formulations publication-title: Eur. J. Pharm. Sci. – volume: 33 start-page: 161 year: 1991 ident: bib0040 article-title: Factorial sampling plans for preliminary computational experiments publication-title: Technometrics. – reference: FDA, 2022b. Assessing Effects of Food on Drugs: INDs and NDAs — Clinical Pharmacology Considerations [WWW Document]. URL – reference: FDA, 2022c. SPORANOX ® (itraconazole) capsules BOXED WARNINGS [WWW Document]. URL (accessed 1.23.24). – volume: 36 start-page: 423 year: 1989 end-page: 426 ident: bib0056 article-title: The effects of food and dose on the oral systemic availability of itraconazole in healthy subjects publication-title: Eur. J. Clin. Pharmacol. – reference: PlotDigitizer — Extract Data from Graph Image Online, 2024. – reference: FDA, 2018. TOLSURA ® (itraconazole) capsules BOXED WARNINGS [WWW Document]. URL (accessed 1.3.24). – volume: 32 start-page: 67 year: 1989 end-page: 87 ident: bib0020 article-title: The clinical pharmacokinetics of itraconazole: an overview publication-title: Mycoses. – reference: (accessed 1.23.24). – reference: PubChem, 2005. Itraconazole | C35H38Cl2N8O4 - PubChem [WWW Document]. URL – volume: 108 start-page: 21 year: 2019 end-page: 25 ident: bib0017 article-title: Physiologically based Pharmacokinetic Modeling in regulatory science: an update from the U.S. Food and Drug Administration's Office of Clinical Pharmacology publication-title: J. Pharm. Sci. – reference: (accessed 2.27.24). – volume: 22 year: 2020 ident: bib0047 article-title: Use of physiologically based pharmacokinetic (PBPK) modeling for predicting drug-food interactions: an industry perspective publication-title: AAPS. J. – volume: 21 start-page: 215 year: 1991 end-page: 222 ident: bib0028 article-title: Absorption of itraconazole from Rat small Intestine publication-title: J. Pharm. Investig. – volume: 105 start-page: 2723 year: 2016 end-page: 2734 ident: bib0027 article-title: Physiologically based absorption modeling to impact biopharmaceutics and formulation strategies in drug development—Industry case studies publication-title: J. Pharm. Sci. – volume: 12 start-page: 585 year: 2023 ident: bib0059 article-title: Regulatory utility of physiologically-based pharmacokinetic modeling to support alternative bioequivalence approaches and risk assessment: a workshop summary report publication-title: CPT. Pharmacometrics. Syst. Pharmacol. – volume: 12 start-page: 272 year: 2020 ident: bib0041 article-title: On the usefulness of two small-scale In vitro setups in the evaluation of luminal precipitation of lipophilic weak bases in early formulation development publication-title: Pharmaceutics. – volume: 10 start-page: 1874 year: 2013 end-page: 1889 ident: bib0067 article-title: Intestinal bile secretion promotes drug absorption from lipid colloidal phases via induction of supersaturation publication-title: Mol. Pharm. – reference: FDA, 2021. URL – reference: . – volume: 105 start-page: 338 year: 2019 end-page: 349 ident: bib0063 article-title: Generating model integrated evidence for generic drug development and assessment publication-title: Clin. Pharmacol. Ther. – volume: 49 start-page: 27 year: 2013 end-page: 32 ident: bib0021 article-title: Exploring food effects on indinavir absorption with human intestinal fluids in the mouse intestine publication-title: Eur. J. Pharm. Sci. – volume: 89 start-page: 259 year: 2011 end-page: 267 ident: bib0064 article-title: Applications of physiologically based pharmacokinetic (PBPK) modeling and simulation during regulatory review publication-title: Clin. Pharmacol. Ther. – reference: (accessed 2.22.25). – reference: FDA, 2022a. SPORANOX ® (itraconazole) Oral Solution BOXED WARNINGS [WWW Document]. URL – volume: 10 start-page: 1610 year: 2013 end-page: 1622 ident: bib0031 article-title: Simulating the postprandial stomach: physiological considerations for dissolution and release testing publication-title: Mol. Pharm. – volume: 37 start-page: 535 year: 1997 end-page: 540 ident: bib0032 article-title: Effect of a cola beverage on the bioavailability of itraconazole in the presence of H2 blockers publication-title: J. Clin. Pharmacol. – volume: 33 start-page: 161 year: 1991 ident: 10.1016/j.ejps.2025.107047_bib0040 article-title: Factorial sampling plans for preliminary computational experiments publication-title: Technometrics. doi: 10.1080/00401706.1991.10484804 – volume: 32 start-page: 1121 year: 2004 ident: 10.1016/j.ejps.2025.107047_bib0023 article-title: Role of itraconazole metabolites in CYP3A4 inhibition publication-title: Drug Metab. Dispos. doi: 10.1124/dmd.104.000315 – volume: 23 start-page: 85 issue: 4 year: 2021 ident: 10.1016/j.ejps.2025.107047_bib0058 article-title: Use of physiologically based pharmacokinetic modeling for predicting drug-food interactions: recommendations for improving predictive performance of low confidence food effect models publication-title: AAPS. J. doi: 10.1208/s12248-021-00601-0 – ident: 10.1016/j.ejps.2025.107047_bib0012 – volume: 108 start-page: 21 year: 2019 ident: 10.1016/j.ejps.2025.107047_bib0017 article-title: Physiologically based Pharmacokinetic Modeling in regulatory science: an update from the U.S. Food and Drug Administration's Office of Clinical Pharmacology publication-title: J. Pharm. Sci. doi: 10.1016/j.xphs.2018.10.033 – volume: 134 start-page: 153 year: 2019 ident: 10.1016/j.ejps.2025.107047_bib0057 article-title: Impact of regional differences along the gastrointestinal tract of healthy adults on oral drug absorption: an UNGAP review publication-title: Eur. J. Pharm. Sci. doi: 10.1016/j.ejps.2019.04.013 – volume: 14 start-page: 4305 year: 2017 ident: 10.1016/j.ejps.2025.107047_bib0042 article-title: Model-based analysis of biopharmaceutic experiments to improve mechanistic oral absorption modeling: an integrated in vitro in vivo extrapolation perspective using ketoconazole as a Model drug publication-title: Mol. Pharm. doi: 10.1021/acs.molpharmaceut.7b00406 – ident: 10.1016/j.ejps.2025.107047_bib0039 – volume: 108 start-page: 3842 year: 2019 ident: 10.1016/j.ejps.2025.107047_bib0009 article-title: Integrating drug- and formulation-related properties with gastrointestinal tract variability using a product-specific particle size approach: case example Ibuprofen publication-title: J. Pharm. Sci. doi: 10.1016/j.xphs.2019.09.012 – volume: 10 start-page: 368 year: 2007 ident: 10.1016/j.ejps.2025.107047_bib0061 article-title: Predicting human intestinal permeability using single-pass intestinal perfusion to rat publication-title: J. Pharm. Pharmac. Sci. – volume: 108 start-page: 1090 year: 2019 ident: 10.1016/j.ejps.2025.107047_bib0050 article-title: Application of a refined developability classification system publication-title: J. Pharm. Sci. doi: 10.1016/j.xphs.2018.10.044 – volume: 25 year: 2023 ident: 10.1016/j.ejps.2025.107047_bib0026 article-title: Modelling based approaches to support generic drug regulatory submissions-practical considerations and case studies publication-title: AAPS. J. doi: 10.1208/s12248-023-00831-4 – volume: 366 start-page: 117 year: 2009 ident: 10.1016/j.ejps.2025.107047_bib0016 article-title: In vitro evaluation of the dissolution behaviour of itraconazole in bio-relevant media publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2008.09.003 – year: 2021 ident: 10.1016/j.ejps.2025.107047_bib0053 article-title: A review on the food digestion in the digestive tract and the used in vitro models publication-title: Curr. Res. Food Sci. doi: 10.1016/j.crfs.2021.04.004 – volume: 143 year: 2020 ident: 10.1016/j.ejps.2025.107047_bib0034 article-title: Establishing virtual bioequivalence and clinically relevant specifications using in vitro biorelevant dissolution testing and physiologically-based population pharmacokinetic modeling. Case example: naproxen publication-title: Europ. J. Pharmac. Sci. doi: 10.1016/j.ejps.2019.105170 – volume: 32 start-page: 1310 year: 1988 ident: 10.1016/j.ejps.2025.107047_bib0019 article-title: Pharmacokinetics of itraconazole following oral administration to normal volunteers publication-title: Antimicrob. Agents Chemother doi: 10.1128/AAC.32.9.1310 – volume: 10 start-page: 1874 year: 2013 ident: 10.1016/j.ejps.2025.107047_bib0067 article-title: Intestinal bile secretion promotes drug absorption from lipid colloidal phases via induction of supersaturation publication-title: Mol. Pharm. doi: 10.1021/mp3006566 – volume: 134 start-page: 31 year: 2019 ident: 10.1016/j.ejps.2025.107047_bib0030 article-title: The mechanisms of pharmacokinetic food-drug interactions - A perspective from the UNGAP group publication-title: Eur. J. Pharm. Sci. doi: 10.1016/j.ejps.2019.04.003 – volume: 93 start-page: 173 year: 2015 ident: 10.1016/j.ejps.2025.107047_bib0038 article-title: In-vitro simulation of luminal conditions for evaluation of performance of oral drug products: choosing the appropriate test media publication-title: Europ. J. Pharmac. Biopharmac. doi: 10.1016/j.ejpb.2015.03.009 – volume: 12 start-page: 585 year: 2023 ident: 10.1016/j.ejps.2025.107047_bib0059 article-title: Regulatory utility of physiologically-based pharmacokinetic modeling to support alternative bioequivalence approaches and risk assessment: a workshop summary report publication-title: CPT. Pharmacometrics. Syst. Pharmacol. doi: 10.1002/psp4.12907 – ident: 10.1016/j.ejps.2025.107047_bib0045 – volume: 69 year: 2022 ident: 10.1016/j.ejps.2025.107047_bib0060 article-title: Applications of PBPK/PBBM modeling in generic product development: an industry perspective publication-title: J. Drug Deliv. Sci. Technol. – volume: 49 start-page: 27 year: 2013 ident: 10.1016/j.ejps.2025.107047_bib0021 article-title: Exploring food effects on indinavir absorption with human intestinal fluids in the mouse intestine publication-title: Eur. J. Pharm. Sci. doi: 10.1016/j.ejps.2013.01.012 – volume: 43 start-page: 1823 year: 2015 ident: 10.1016/j.ejps.2025.107047_bib0052 article-title: Physiologically based pharmacokinetic (PBPK) modeling and simulation approaches: a systematic review of published models, applications, and model verification publication-title: Drug Metabol. Disposit. doi: 10.1124/dmd.115.065920 – ident: 10.1016/j.ejps.2025.107047_bib0015 – volume: 95 start-page: 1238 year: 2006 ident: 10.1016/j.ejps.2025.107047_bib0049 article-title: Physiologically based pharmacokinetic modelling 2: predicting the tissue distribution of acids, very weak bases, neutrals and zwitterions publication-title: J. Pharm. Sci. doi: 10.1002/jps.20502 – volume: 14 year: 2022 ident: 10.1016/j.ejps.2025.107047_bib0062 article-title: Physiologically based pharmacokinetic (PBPK) model of gold nanoparticle-based drug delivery system for stavudine biodistribution publication-title: Pharmaceutics. doi: 10.3390/pharmaceutics14020406 – volume: 89 start-page: 259 year: 2011 ident: 10.1016/j.ejps.2025.107047_bib0064 article-title: Applications of physiologically based pharmacokinetic (PBPK) modeling and simulation during regulatory review publication-title: Clin. Pharmacol. Ther. doi: 10.1038/clpt.2010.298 – volume: 37 start-page: 778 year: 1993 ident: 10.1016/j.ejps.2025.107047_bib0004 article-title: Food interaction and steady-state pharmacokinetics of itraconazole capsules in healthy male volunteers publication-title: Antimicrob. Agents Chemother doi: 10.1128/AAC.37.4.778 – volume: 12 start-page: 272 year: 2020 ident: 10.1016/j.ejps.2025.107047_bib0041 article-title: On the usefulness of two small-scale In vitro setups in the evaluation of luminal precipitation of lipophilic weak bases in early formulation development publication-title: Pharmaceutics. doi: 10.3390/pharmaceutics12030272 – volume: 39 start-page: 1681 year: 2022 ident: 10.1016/j.ejps.2025.107047_bib0003 article-title: The use of physiologically based pharmacokinetic analyses-in biopharmaceutics applications -regulatory and industry perspectives publication-title: Pharm. Res. doi: 10.1007/s11095-022-03280-4 – volume: 39 start-page: 1669 year: 2022 ident: 10.1016/j.ejps.2025.107047_bib0035 article-title: Review: role of model-informed drug development approaches in the lifecycle of drug development and regulatory decision-making publication-title: Pharm. Res. doi: 10.1007/s11095-022-03288-w – volume: 12 start-page: 157 year: 2017 ident: 10.1016/j.ejps.2025.107047_bib0065 article-title: Development of liposome containing sodium deoxycholate to enhance oral bioavailability of itraconazole publication-title: Asian J. Pharm. Sci. – volume: 46 start-page: 147 year: 1994 ident: 10.1016/j.ejps.2025.107047_bib0066 article-title: Influence of concomitant food intake on the oral absorption of two triazole antifungal agents, itraconazole and fluconazole publication-title: Eur. J. Clin. Pharmacol. doi: 10.1007/BF00199879 – volume: 11 start-page: 225 year: 2009 ident: 10.1016/j.ejps.2025.107047_bib0025 article-title: Population-based mechanistic prediction of oral drug absorption publication-title: AAPS. J. doi: 10.1208/s12248-009-9099-y – volume: 24 start-page: 918 year: 2007 ident: 10.1016/j.ejps.2025.107047_bib0048 article-title: Mechanistic approaches to volume of distribution predictions: understanding the processes publication-title: Pharm. Res. doi: 10.1007/s11095-006-9210-3 – volume: 194 year: 2024 ident: 10.1016/j.ejps.2025.107047_bib0022 article-title: Using molecularly dissolved drug concentrations in PBBMs improves the prediction of oral absorption from supersaturating formulations publication-title: Eur. J. Pharm. Sci. doi: 10.1016/j.ejps.2024.106703 – volume: 22 year: 2020 ident: 10.1016/j.ejps.2025.107047_bib0047 article-title: Use of physiologically based pharmacokinetic (PBPK) modeling for predicting drug-food interactions: an industry perspective publication-title: AAPS. J. doi: 10.1208/s12248-020-00508-2 – ident: 10.1016/j.ejps.2025.107047_bib0014 – volume: 37 start-page: 535 year: 1997 ident: 10.1016/j.ejps.2025.107047_bib0032 article-title: Effect of a cola beverage on the bioavailability of itraconazole in the presence of H2 blockers publication-title: J. Clin. Pharmacol. doi: 10.1002/j.1552-4604.1997.tb04332.x – volume: 36 start-page: 423 year: 1989 ident: 10.1016/j.ejps.2025.107047_bib0056 article-title: The effects of food and dose on the oral systemic availability of itraconazole in healthy subjects publication-title: Eur. J. Clin. Pharmacol. doi: 10.1007/BF00558308 – volume: 86 start-page: 2247 year: 2020 ident: 10.1016/j.ejps.2025.107047_bib0008 article-title: Assessing the impact of cystic fibrosis on the antipyretic response of ibuprofen in children: physiologically-based modeling as a candle in the dark publication-title: Br. J. Clin. Pharmacol. doi: 10.1111/bcp.14326 – volume: 105 start-page: 2723 year: 2016 ident: 10.1016/j.ejps.2025.107047_bib0027 article-title: Physiologically based absorption modeling to impact biopharmaceutics and formulation strategies in drug development—Industry case studies publication-title: J. Pharm. Sci. doi: 10.1016/j.xphs.2015.11.034 – volume: 32 start-page: 1121 year: 2004 ident: 10.1016/j.ejps.2025.107047_bib0024 article-title: Role of itraconazole metabolites in CYP3A4 inhibition publication-title: Drug Metab. Dispos. doi: 10.1124/dmd.104.000315 – volume: 21 year: 2019 ident: 10.1016/j.ejps.2025.107047_bib0055 article-title: PBPK absorption modeling: establishing the In vitro–In vivo link—Industry perspective publication-title: AAPS J. doi: 10.1208/s12248-019-0292-3 – ident: 10.1016/j.ejps.2025.107047_bib0001 – ident: 10.1016/j.ejps.2025.107047_bib0010 – volume: 10 start-page: 187 year: 1993 ident: 10.1016/j.ejps.2025.107047_bib0051 article-title: Upper gastrointestinal pH in seventy-nine healthy, elderly, North American men and women publication-title: Pharmac. Res. doi: 10.1023/A:1018970323716 – volume: 105 start-page: 338 year: 2019 ident: 10.1016/j.ejps.2025.107047_bib0063 article-title: Generating model integrated evidence for generic drug development and assessment publication-title: Clin. Pharmacol. Ther. doi: 10.1002/cpt.1282 – ident: 10.1016/j.ejps.2025.107047_bib70 – volume: 105 start-page: 329 year: 2019 ident: 10.1016/j.ejps.2025.107047_bib0018 article-title: Generic drugs in the UNITED STATES: policies to address pricing and competition HHS Public Access author manuscript publication-title: Clin. Pharmacol. Ther. doi: 10.1002/cpt.1314 – volume: 21 start-page: 215 year: 1991 ident: 10.1016/j.ejps.2025.107047_bib0028 article-title: Absorption of itraconazole from Rat small Intestine publication-title: J. Pharm. Investig. – ident: 10.1016/j.ejps.2025.107047_bib0013 – volume: 23 start-page: 12 year: 2021 ident: 10.1016/j.ejps.2025.107047_bib0043 article-title: Understanding mechanisms of food effect and developing reliable PBPK models using a middle-out approach publication-title: AAPS. J. doi: 10.1208/s12248-020-00548-8 – volume: 24 start-page: 1 year: 2022 ident: 10.1016/j.ejps.2025.107047_bib0005 article-title: Proof of concept in assignment of within-subject variability during virtual bioequivalence studies: propagation of intra-subject variation in gastrointestinal physiology using physiologically based pharmacokinetic modeling publication-title: AAPS Journal doi: 10.1208/s12248-021-00672-z – volume: 24 start-page: 179 year: 2005 ident: 10.1016/j.ejps.2025.107047_bib0054 article-title: Clinical study of solid dispersions of itraconazole prepared by hot-stage extrusion publication-title: Eur. J. Pharm. Sci. doi: 10.1016/j.ejps.2004.10.005 – volume: 51 start-page: 2668 year: 2007 ident: 10.1016/j.ejps.2025.107047_bib0002 article-title: Single-dose pharmacokinetics of intravenous itraconazole and hydroxypropyl-β-cyclodextrin in infants, children, and adolescents publication-title: Antimicrob. Agents Chemother doi: 10.1128/AAC.00297-07 – volume: 10 start-page: 1610 year: 2013 ident: 10.1016/j.ejps.2025.107047_bib0031 article-title: Simulating the postprandial stomach: physiological considerations for dissolution and release testing publication-title: Mol. Pharm. doi: 10.1021/mp300604u – volume: 19 start-page: 26 year: 2017 ident: 10.1016/j.ejps.2025.107047_bib0033 article-title: Physiologically based pharmacokinetic (PBPK) modeling of pharmaceutical nanoparticles publication-title: AAPS. J. doi: 10.1208/s12248-016-0010-3 – ident: 10.1016/j.ejps.2025.107047_bib0006 – volume: 32 start-page: 67 issue: Suppl 1 year: 1989 ident: 10.1016/j.ejps.2025.107047_bib0020 article-title: The clinical pharmacokinetics of itraconazole: an overview publication-title: Mycoses. doi: 10.1111/j.1439-0507.1989.tb02296.x – volume: 65 year: 2021 ident: 10.1016/j.ejps.2025.107047_bib0046 article-title: Bioavailability of single-dose SUBA-itraconazole compared to conventional itraconazole under fasted and Fed conditions publication-title: Antimicrob. Agents Chemother doi: 10.1128/AAC.00134-21 – volume: 14 start-page: 4192 year: 2017 ident: 10.1016/j.ejps.2025.107047_bib0036 article-title: Validation of dissolution testing with biorelevant Media: an OrBiTo study publication-title: Mol. Pharm. doi: 10.1021/acs.molpharmaceut.7b00198 – ident: 10.1016/j.ejps.2025.107047_bib0007 doi: 10.1016/B978-0-12-802447-8.00007-8 – volume: 9 start-page: 2156 year: 2012 ident: 10.1016/j.ejps.2025.107047_bib71 article-title: A methodology for global-sensitivity analysis of time-dependent outputs in systems biology modelling publication-title: J. R. Soc. Interface doi: 10.1098/rsif.2011.0891 – ident: 10.1016/j.ejps.2025.107047_bib0044 – volume: 27 start-page: 3 year: 2018 ident: 10.1016/j.ejps.2025.107047_bib0029 article-title: Brief overview of solubility methods: recent trends in equilibrium solubility measurement and predictive models publication-title: Drug Discov. Today Technol. doi: 10.1016/j.ddtec.2018.06.001 |
| SSID | ssj0006870 |
| Score | 2.4858685 |
| Snippet | This study leverages physiologically based biopharmaceutics modeling (PBBM) to predict the clinical performance of two itraconazole (ITRA) amorphous solid... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 107047 |
| SubjectTerms | Administration, Oral Adult Antifungal Agents - administration & dosage Antifungal Agents - chemistry Antifungal Agents - pharmacokinetics Between-subject variability Biopharmaceutics - methods Chemistry, Pharmaceutical Drug Liberation Fasting Food effect Food-Drug Interactions Generic drug development Humans Hypochlorhydria In vitro biopharmaceutics assessment Intestinal Absorption Itraconazole Itraconazole - administration & dosage Itraconazole - chemistry Itraconazole - pharmacokinetics Male Models, Biological PBBM Regulatory decision making Sempera Solubility Tolsura |
| Title | A physiologically based biopharmaceutics modeling (PBBM) framework for characterizing formulation-dependent food effects: Paving the road towards fed state virtual BE studies for itraconazole amorphous solid dispersions |
| URI | https://dx.doi.org/10.1016/j.ejps.2025.107047 https://www.ncbi.nlm.nih.gov/pubmed/39983931 https://www.proquest.com/docview/3169507692 |
| Volume | 209 |
| WOSCitedRecordID | wos001456523100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1879-0720 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006870 issn: 0928-0987 databaseCode: DOA dateStart: 20220101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-0720 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006870 issn: 0928-0987 databaseCode: AIEXJ dateStart: 20220101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-0720 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006870 issn: 0928-0987 databaseCode: AIEXJ dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtZ1Jb9NAFIBHXThwQeyEpXpIqAKlrmyPV24JSgWolBxSKTfLHo_VFDc2SYia_lX-DG82xy1tVQ5crGhiZxy_zzPz3ryFkHcsD-0odjOLOQwVlIA7VpTR3CrsIs7SwqEFS2WxifDoKBqP4-HGZsfEwizLcDqNzs_j-r-KGttQ2CJ09h_E3fwoNuBnFDoeUex4vJPge8paYQa1ctUVMxWuMydVfbI2YOsiONpSMOz3vwkDQWF8taT7IWuyOV9oh8szXe3LMsVzF9ha5cYtRNgXhunShGDNqjTHxa1wzJ13C7wHGb7UXU5mMmqlP5DZbVFXl71NFtgZKgYXwuExPauQAOGfi09rkouNpFqZ9uY3bibohXX7X5qQT8ZbPv15VdYn6jX4UabNF8LzIOOq3SQkF5NGmcry5G33f5HSslqlE7mZ1cty1OPTk26vbNtQXH_t66WH_SgUoVyu2iHi17TpucK149Zoj6qzrfKF_jURKZvI6T4_rUVSeNffX598Oev30ffk4PjwMBkNxqPd-qclCqIJxwFdHWaTbLuhH-OAvd37Mhh_bZYZQSQrITa3qSPClPPi1W5vWnXdpFXJ1dXoIXmg1SLoKZwfkQ0-fUx2h0qSqz0YrcME53uwC8N1xvXVE_K7B1eYB8k8XGUeDPPwXhD_ARreAQmEy7zDtbyD4B007x9B0Q5IOwjaQdMOSDtI2kHTDv0BaNplX23aoaEdJO3Qov0pOT4YjD59tnTVEot5truwQsZY5DGb2SH3XJ6nRRTnlOa-R7M4E5VtHBYw5lNW8CBI_ZDhHI_jqBtmboHTLX1GtqbVlL8gYMdeZHM7xvWU56W2n9GIU0odimoTKh52hzhGqgnTKf1FZZkyMb6bp4kgIREkJIqEDuk219Qqoc2tZ_sGlkS_rmqpnSDot1731pCV4HwlNiHTKcfHmFAniFEHDWK3Q54r5Jr7QGUJ9TXqvLzD1a_I_fWb_JpsLWa_-Btyjy0Xk_lsh2yG42hHvzI70tD2B8rhJWo |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+physiologically+based+biopharmaceutics+modeling+%28PBBM%29+framework+for+characterizing+formulation-dependent+food+effects%3A+Paving+the+road+towards+fed+state+virtual+BE+studies+for+itraconazole+amorphous+solid+dispersions&rft.jtitle=European+journal+of+pharmaceutical+sciences&rft.au=Rudolph%2C+Niklas&rft.au=Charbe%2C+Nitin&rft.au=Plano%2C+David&rft.au=Shoyaib%2C+Abdullah+Al&rft.date=2025-06-01&rft.issn=1879-0720&rft.eissn=1879-0720&rft.volume=209&rft.spage=107047&rft_id=info:doi/10.1016%2Fj.ejps.2025.107047&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0928-0987&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0928-0987&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0928-0987&client=summon |