Multi-Label Nonlinear Matrix Completion With Transductive Multi-Task Feature Selection for Joint MGMT and IDH1 Status Prediction of Patient With High-Grade Gliomas

The O 6 -methylguanine-DNA methyltransferase (MGMT) promoter methylation and isocitrate dehydrogenase 1 (IDH1) mutation in high-grade gliomas (HGG) have proven to be the two important molecular indicators associated with better prognosis. Traditionally, the statuses of MGMT and IDH1 are obtained via...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on medical imaging Vol. 37; no. 8; pp. 1775 - 1787
Main Authors: Chen, Lei, Zhang, Han, Lu, Junfeng, Thung, Kimhan, Aibaidula, Abudumijiti, Liu, Luyan, Chen, Songcan, Jin, Lei, Wu, Jinsong, Wang, Qian, Zhou, Liangfu, Shen, Dinggang
Format: Journal Article
Language:English
Published: United States IEEE 01.08.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0278-0062, 1558-254X, 1558-254X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The O 6 -methylguanine-DNA methyltransferase (MGMT) promoter methylation and isocitrate dehydrogenase 1 (IDH1) mutation in high-grade gliomas (HGG) have proven to be the two important molecular indicators associated with better prognosis. Traditionally, the statuses of MGMT and IDH1 are obtained via surgical biopsy, which has limited their wider clinical implementation. Accurate presurgical prediction of their statuses based on preoperative multimodal neuroimaging is of great clinical value for a better treatment plan. Currently, the available data set associated with this study has several challenges, such as small sample size and complex, nonlinear (image) feature-to-(molecular) label relationship. To address these issues, we propose a novel multi-label nonlinear matrix completion (MNMC) model to jointly predict both MGMT and IDH1 statuses in a multi-task framework. Specifically, we first employ a nonlinear random Fourier feature mapping to improve the linear separability of the data, and then use transductive multi-task feature selection (performed in a nonlinearly transformed feature space) to refine the imputed soft labels, thus alleviating the overfitting problem caused by small sample size. We further design an optimization algorithm with a guaranteed convergence ability based on a block prox-linear method to solve the proposed MNMC model. Finally, by using a single-center, multimodal brain imaging and molecular pathology data set of HGG, we derive brain functional and structural connectomics features to jointly predict MGMT and IDH1 statuses. Results demonstrate that our proposed method outperforms the previously widely used single- and multi-task machine learning methods. This paper also shows the promise of utilizing brain connectomics for HGG prognosis in a non-invasive manner.
AbstractList The O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation and isocitrate dehydrogenase 1 (IDH1) mutation in high-grade gliomas (HGG) have proven to be the two important molecular indicators associated with better prognosis. Traditionally, the statuses of MGMT and IDH1 are obtained via surgical biopsy, which has limited their wider clinical implementation. Accurate presurgical prediction of their statuses based on preoperative multimodal neuroimaging is of great clinical value for a better treatment plan. Currently, the available data set associated with this study has several challenges, such as small sample size and complex, nonlinear (image) feature-to-(molecular) label relationship. To address these issues, we propose a novel multi-label nonlinear matrix completion (MNMC) model to jointly predict both MGMT and IDH1 statuses in a multi-task framework. Specifically, we first employ a nonlinear random Fourier feature mapping to improve the linear separability of the data, and then use transductive multi-task feature selection (performed in a nonlinearly transformed feature space) to refine the imputed soft labels, thus alleviating the overfitting problem caused by small sample size. We further design an optimization algorithm with a guaranteed convergence ability based on a block prox-linear method to solve the proposed MNMC model. Finally, by using a single-center, multimodal brain imaging and molecular pathology data set of HGG, we derive brain functional and structural connectomics features to jointly predict MGMT and IDH1 statuses. Results demonstrate that our proposed method outperforms the previously widely used single- and multi-task machine learning methods. This paper also shows the promise of utilizing brain connectomics for HGG prognosis in a non-invasive manner.The O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation and isocitrate dehydrogenase 1 (IDH1) mutation in high-grade gliomas (HGG) have proven to be the two important molecular indicators associated with better prognosis. Traditionally, the statuses of MGMT and IDH1 are obtained via surgical biopsy, which has limited their wider clinical implementation. Accurate presurgical prediction of their statuses based on preoperative multimodal neuroimaging is of great clinical value for a better treatment plan. Currently, the available data set associated with this study has several challenges, such as small sample size and complex, nonlinear (image) feature-to-(molecular) label relationship. To address these issues, we propose a novel multi-label nonlinear matrix completion (MNMC) model to jointly predict both MGMT and IDH1 statuses in a multi-task framework. Specifically, we first employ a nonlinear random Fourier feature mapping to improve the linear separability of the data, and then use transductive multi-task feature selection (performed in a nonlinearly transformed feature space) to refine the imputed soft labels, thus alleviating the overfitting problem caused by small sample size. We further design an optimization algorithm with a guaranteed convergence ability based on a block prox-linear method to solve the proposed MNMC model. Finally, by using a single-center, multimodal brain imaging and molecular pathology data set of HGG, we derive brain functional and structural connectomics features to jointly predict MGMT and IDH1 statuses. Results demonstrate that our proposed method outperforms the previously widely used single- and multi-task machine learning methods. This paper also shows the promise of utilizing brain connectomics for HGG prognosis in a non-invasive manner.
The O 6 -methylguanine-DNA methyltransferase (MGMT) promoter methylation and isocitrate dehydrogenase 1 (IDH1) mutation in high-grade gliomas (HGG) have proven to be the two important molecular indicators associated with better prognosis. Traditionally, the statuses of MGMT and IDH1 are obtained via surgical biopsy, which has limited their wider clinical implementation. Accurate presurgical prediction of their statuses based on preoperative multimodal neuroimaging is of great clinical value for a better treatment plan. Currently, the available data set associated with this study has several challenges, such as small sample size and complex, nonlinear (image) feature-to-(molecular) label relationship. To address these issues, we propose a novel multi-label nonlinear matrix completion (MNMC) model to jointly predict both MGMT and IDH1 statuses in a multi-task framework. Specifically, we first employ a nonlinear random Fourier feature mapping to improve the linear separability of the data, and then use transductive multi-task feature selection (performed in a nonlinearly transformed feature space) to refine the imputed soft labels, thus alleviating the overfitting problem caused by small sample size. We further design an optimization algorithm with a guaranteed convergence ability based on a block prox-linear method to solve the proposed MNMC model. Finally, by using a single-center, multimodal brain imaging and molecular pathology data set of HGG, we derive brain functional and structural connectomics features to jointly predict MGMT and IDH1 statuses. Results demonstrate that our proposed method outperforms the previously widely used single- and multi-task machine learning methods. This paper also shows the promise of utilizing brain connectomics for HGG prognosis in a non-invasive manner.
The O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation and isocitrate dehydrogenase 1 (IDH1) mutation in high-grade gliomas (HGG) have proven to be the two important molecular indicators associated with better prognosis. Traditionally, the statuses of MGMT and IDH1 are obtained via surgical biopsy, which has limited their wider clinical implementation. Accurate presurgical prediction of their statuses based on preoperative multimodal neuroimaging is of great clinical value for a better treatment plan. Currently, the available data set associated with this study has several challenges, such as small sample size and complex, nonlinear (image) feature-to-(molecular) label relationship. To address these issues, we propose a novel multi-label nonlinear matrix completion (MNMC) model to jointly predict both MGMT and IDH1 statuses in a multi-task framework. Specifically, we first employ a nonlinear random Fourier feature mapping to improve the linear separability of the data, and then use transductive multi-task feature selection (performed in a nonlinearly transformed feature space) to refine the imputed soft labels, thus alleviating the overfitting problem caused by small sample size. We further design an optimization algorithm with a guaranteed convergence ability based on a block prox-linear method to solve the proposed MNMC model. Finally, by using a single-center, multimodal brain imaging and molecular pathology data set of HGG, we derive brain functional and structural connectomics features to jointly predict MGMT and IDH1 statuses. Results demonstrate that our proposed method outperforms the previously widely used single- and multi-task machine learning methods. This paper also shows the promise of utilizing brain connectomics for HGG prognosis in a non-invasive manner.
The O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation and isocitrate dehydrogenase 1 (IDH1) mutation in high-grade gliomas (HGG) have proven to be the two important molecular indicators associated with better prognosis. Traditionally, the statuses of MGMT and IDH1 are obtained via surgical biopsy, which has limited their wider clinical implementation. Accurate presurgical prediction of their statuses based on preoperative multimodal neuroimaging is of great clinical value for a better treatment plan. Currently, the available data set associated with this study has several challenges, such as small sample size and complex, nonlinear (image) feature-to-(molecular) label relationship. To address these issues, we propose a novel multi-label non linear matrix completion (MNMC) model to jointly predict both MGMT and IDH1 statuses in a multi-task framework. Specifically, we first employ a nonlinear random Fourier feature mapping to improve the linear separability of the data, and then use transductive multi-task feature selection (performed in a nonlinearly transformed feature space) to refine the imputed soft labels, thus alleviating the overfitting problem caused by small sample size. We further design an optimization algorithm with a guaranteed convergence ability based on a block prox-linear method to solve the proposed MNMC model. Finally, by using a single-center, multimodal brain imaging and molecular pathology data set of HGG, we derive brain functional and structural connectomics features to jointly predict MGMT and IDH1 statuses. Results demonstrate that our proposed method outperforms the previously widely used single- and multi-task machine learning methods. This paper also shows the promise of utilizing brain connectomics for HGG prognosis in a non-invasive manner.
Author Wu, Jinsong
Thung, Kimhan
Chen, Lei
Zhang, Han
Aibaidula, Abudumijiti
Wang, Qian
Shen, Dinggang
Liu, Luyan
Jin, Lei
Zhou, Liangfu
Chen, Songcan
Lu, Junfeng
Author_xml – sequence: 1
  givenname: Lei
  orcidid: 0000-0002-6071-8888
  surname: Chen
  fullname: Chen, Lei
  email: chenlei@njupt.edu.cn
  organization: Jiangsu Key Laboratory of Big Data Security and Intelligent Processing, Nanjing University of Posts and Telecommunications, Nanjing, China
– sequence: 2
  givenname: Han
  orcidid: 0000-0002-6645-8810
  surname: Zhang
  fullname: Zhang, Han
  email: hanzhang@med.unc.edu
  organization: Department of Radiology and BRIC, University of North Carolina, Chapel Hill, NC, USA
– sequence: 3
  givenname: Junfeng
  surname: Lu
  fullname: Lu, Junfeng
  email: hlujf@126.com
  organization: Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
– sequence: 4
  givenname: Kimhan
  orcidid: 0000-0003-1379-2185
  surname: Thung
  fullname: Thung, Kimhan
  email: henrythung@gmail.com
  organization: Department of Radiology and BRIC, University of North Carolina, Chapel Hill, NC, USA
– sequence: 5
  givenname: Abudumijiti
  surname: Aibaidula
  fullname: Aibaidula, Abudumijiti
  email: mickeyug@163.com
  organization: Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
– sequence: 6
  givenname: Luyan
  surname: Liu
  fullname: Liu, Luyan
  email: lly2111101@gmail.com
  organization: Department of Radiology and BRIC, University of North Carolina, Chapel Hill, NC, USA
– sequence: 7
  givenname: Songcan
  orcidid: 0000-0002-5164-0070
  surname: Chen
  fullname: Chen, Songcan
  email: s.chen@nuaa.edu.cn
  organization: School of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China
– sequence: 8
  givenname: Lei
  orcidid: 0000-0001-7951-1521
  surname: Jin
  fullname: Jin, Lei
  email: ozlei91@126.com
  organization: Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
– sequence: 9
  givenname: Jinsong
  orcidid: 0000-0001-7854-9798
  surname: Wu
  fullname: Wu, Jinsong
  email: wjsongc@126.com
  organization: Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
– sequence: 10
  givenname: Qian
  orcidid: 0000-0002-3490-3836
  surname: Wang
  fullname: Wang, Qian
  email: wang.qian@sjtu.edu.cn
  organization: School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
– sequence: 11
  givenname: Liangfu
  surname: Zhou
  fullname: Zhou, Liangfu
  email: lfzhouc@126.com
  organization: Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
– sequence: 12
  givenname: Dinggang
  orcidid: 0000-0002-7934-5698
  surname: Shen
  fullname: Shen, Dinggang
  email: dgshen@med.unc.edu
  organization: Department of Radiology and BRIC, University of North Carolina, Chapel Hill, NC, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29994582$$D View this record in MEDLINE/PubMed
BookMark eNp9kk9v0zAYxiM0xLrBHQkJWeLCJcV27MS5IE2FtUUtTFoR3Cw3ebN6OHaxnQk-D18Udy0V7MDJB_-e5_33nGUn1lnIsucEjwnB9ZvVcj6mmIgxFbjiNX6UjQjnIqecfT3JRphWIse4pKfZWQi3GBPGcf0kO6V1XTMu6Cj7tRxM1PlCrcGgj84abUF5tFTR6x9o4vqtgaidRV903KCVVza0QxP1HaC9cqXCN3QJKg4e0DUYaO7xznn0wWkb0XK6XCFlWzR_NyPoOiYyoCsPrd6TrkNXKmpI6H2Nmb7Z5FOvWkBTo12vwtPscadMgGeH9zz7fPl-NZnli0_T-eRikTcM05hXdacE58WaE6g7UN2aUVqpEuN1QRh0XadIVTWEC6FwU3DcMoVJowpaF6zEUJxnb_e-22HdQ9uklrwycut1r_xP6ZSW__5YvZE37k6WjBWUkWTw-mDg3fcBQpS9Dg0Yoyy4IUiKS1EwXJVlQl89QG_d4G0aT1JCKkKS3Y56-XdHx1b-3C8BeA803oXgoTsiBMtdRGSKiNxFRB4ikiTlA0mj01HSKdJM2vxP-GIv1ABwrCNondYsit9QCcm7
CODEN ITMID4
CitedBy_id crossref_primary_10_1007_s00432_023_05566_5
crossref_primary_10_1109_TKDE_2024_3366333
crossref_primary_10_1016_j_jocn_2021_04_043
crossref_primary_10_1016_j_radonc_2023_109789
crossref_primary_10_1007_s10278_019_00290_4
crossref_primary_10_1016_j_asoc_2024_112332
crossref_primary_10_1016_j_bspc_2022_103574
crossref_primary_10_1093_neuros_nyab103
crossref_primary_10_1109_TMI_2020_2964310
crossref_primary_10_1007_s11704_019_8374_z
crossref_primary_10_1227_neu_0000000000003260
crossref_primary_10_1007_s10489_021_02799_0
crossref_primary_10_1016_j_patrec_2019_06_012
crossref_primary_10_1007_s00330_020_06717_9
crossref_primary_10_1007_s00432_023_05603_3
crossref_primary_10_3390_s19081912
crossref_primary_10_1148_ryai_220257
crossref_primary_10_1080_10618600_2024_2319154
crossref_primary_10_1109_TMI_2019_2894692
crossref_primary_10_3390_mi12111282
crossref_primary_10_1016_j_inffus_2023_101948
Cites_doi 10.1016/j.neuroimage.2013.06.009
10.1155/2014/735659
10.1200/JCO.2009.21.9832
10.1111/j.2517-6161.1996.tb02080.x
10.1080/02688697.2016.1208809
10.1109/TPAMI.2014.2343234
10.1016/j.ccr.2010.03.017
10.1002/hbm.23524
10.1002/hbm.23852
10.1016/j.neuroimage.2005.12.057
10.1109/TPAMI.2012.88
10.1056/NEJMoa043331
10.1109/CVPR.2016.566
10.3174/ajnr.A4491
10.3389/fnsys.2010.00013
10.1109/CVPR.2016.263
10.1038/nrneurol.2014.195
10.1007/978-3-319-46723-8_4
10.1118/1.4948668
10.1371/journal.pone.0017156
10.1016/j.neuroimage.2009.10.003
10.1016/j.neuroimage.2005.02.018
10.2307/2531595
10.1109/TBME.2015.2404809
10.3171/2016.6.JNS1662
10.1186/1471-2105-12-77
10.1016/j.neuroimage.2014.01.033
10.1002/hbm.23575
10.1016/j.neuroimage.2007.07.007
10.5732/cjc.013.10218
10.1038/s41598-017-14248-5
10.1371/journal.pone.0094095
10.1023/A:1010933404324
10.1145/2939672.2939857
10.1007/978-3-319-66185-8_51
10.1093/neuonc/nos206
10.1371/journal.pone.0025031
10.1007/s12021-014-9238-1
10.1056/NEJMoa0808710
10.1007/s00401-010-0781-z
10.1016/j.media.2015.06.002
10.1007/s11060-015-1738-9
10.1109/TBME.2015.2466616
10.1093/neuonc/now121
10.3389/fnhum.2013.00042
10.1007/s00401-007-0243-4
10.1007/s10915-017-0376-0
10.3389/fnins.2017.00439
10.3174/ajnr.A2950
10.1016/j.neuroimage.2009.09.049
10.1006/nimg.2001.0978
10.1007/978-3-319-46723-8_25
10.1093/brain/aww194
10.1016/j.neulet.2013.02.062
10.1371/journal.pone.0050625
10.1007/BF01452844
10.1109/PGEC.1965.264137
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
5PM
DOI 10.1109/TMI.2018.2807590
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE

Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-254X
EndPage 1787
ExternalDocumentID PMC6443241
29994582
10_1109_TMI_2018_2807590
8294228
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61732006; 61672281; 61572263
  funderid: 10.13039/501100001809
– fundername: National Key Technology Research and Development Program of China
  grantid: 2014BAI04B05
– fundername: Postdoctoral Science Foundation of Jiangsu Province
  grantid: 1501023C
  funderid: 10.13039/501100010246
– fundername: China Postdoctoral Science Foundation
  grantid: 2015M581794
  funderid: 10.13039/501100002858
– fundername: National Institutes of Health
  grantid: EB006733; EB008374; MH100217; MH108914; AG041721; AG049371; AG042599; AG053867; EB022880
  funderid: 10.13039/100000002
– fundername: Science and Technology Commission of Shanghai Municipality
  grantid: 16410722400
  funderid: 10.13039/501100003399
– fundername: Natural Science Foundation of Jiangsu Province
  grantid: BK20161516; BK20151511
  funderid: 10.13039/501100004608
– fundername: NIBIB NIH HHS
  grantid: R01 EB006733
– fundername: NIBIB NIH HHS
  grantid: R01 EB022880
– fundername: NIA NIH HHS
  grantid: R01 AG042599
– fundername: NIMH NIH HHS
  grantid: R21 MH108914
– fundername: NIA NIH HHS
  grantid: R01 AG049371
– fundername: NIBIB NIH HHS
  grantid: R01 EB008374
– fundername: NIA NIH HHS
  grantid: R01 AG041721
– fundername: NIMH NIH HHS
  grantid: R01 MH100217
– fundername: NIA NIH HHS
  grantid: RF1 AG053867
GroupedDBID ---
-DZ
-~X
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
RIG
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
5PM
ID FETCH-LOGICAL-c402t-79fa8553b51e9feafb4227a600b314efffa177c1588a0c350d4a01ca3293460e3
IEDL.DBID RIE
ISICitedReferencesCount 27
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000440805800004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0278-0062
1558-254X
IngestDate Tue Sep 30 15:38:57 EDT 2025
Sun Sep 28 07:25:12 EDT 2025
Mon Jun 30 04:48:32 EDT 2025
Mon Jul 21 05:35:59 EDT 2025
Tue Nov 18 21:57:15 EST 2025
Sat Nov 29 05:13:55 EST 2025
Wed Aug 27 02:30:46 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 8
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c402t-79fa8553b51e9feafb4227a600b314efffa177c1588a0c350d4a01ca3293460e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6071-8888
0000-0002-6645-8810
0000-0001-7951-1521
0000-0001-7854-9798
0000-0003-1379-2185
0000-0002-7934-5698
0000-0002-3490-3836
0000-0002-5164-0070
PMID 29994582
PQID 2117114136
PQPubID 85460
PageCount 13
ParticipantIDs pubmed_primary_29994582
ieee_primary_8294228
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6443241
crossref_primary_10_1109_TMI_2018_2807590
proquest_miscellaneous_2068340766
crossref_citationtrail_10_1109_TMI_2018_2807590
proquest_journals_2117114136
PublicationCentury 2000
PublicationDate 2018-08-01
PublicationDateYYYYMMDD 2018-08-01
PublicationDate_xml – month: 08
  year: 2018
  text: 2018-08-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on medical imaging
PublicationTitleAbbrev TMI
PublicationTitleAlternate IEEE Trans Med Imaging
PublicationYear 2018
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
ref56
ref12
ref15
ref14
ref11
ref54
ref10
ref17
ref16
wang (ref31) 2011
ref19
ref18
lopez-paz (ref53) 2014
goldberg (ref23) 2010
parikh (ref55) 2013; 1
tibshirani (ref59) 1996; 58
ref50
joachims (ref58) 1999
ref46
ref45
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
le (ref52) 2013
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref30
ref33
ref32
ref2
ref1
ref39
ref38
wang (ref48) 2015; 9
ref24
ref26
ref25
ref64
ref20
ref63
ref22
ref65
ref21
ref28
ref27
rahimi (ref51) 2007
ref29
ref60
ref62
ref61
References_xml – ident: ref17
  doi: 10.1016/j.neuroimage.2013.06.009
– ident: ref7
  doi: 10.1155/2014/735659
– ident: ref38
  doi: 10.1200/JCO.2009.21.9832
– volume: 58
  start-page: 267
  year: 1996
  ident: ref59
  article-title: Regression shrinkage and selection via the lasso
  publication-title: J Roy Statist Soc Series B (Methodol )
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– volume: 1
  start-page: 123
  year: 2013
  ident: ref55
  article-title: Proximal algorithms
  publication-title: Found Trends Optim
– ident: ref14
  doi: 10.1080/02688697.2016.1208809
– ident: ref24
  doi: 10.1109/TPAMI.2014.2343234
– ident: ref22
  doi: 10.1016/j.ccr.2010.03.017
– ident: ref65
  doi: 10.1002/hbm.23524
– ident: ref46
  doi: 10.1002/hbm.23852
– ident: ref64
  doi: 10.1016/j.neuroimage.2005.12.057
– ident: ref56
  doi: 10.1109/TPAMI.2012.88
– ident: ref5
  doi: 10.1056/NEJMoa043331
– ident: ref32
  doi: 10.1109/CVPR.2016.566
– ident: ref10
  doi: 10.3174/ajnr.A4491
– ident: ref40
  doi: 10.3389/fnsys.2010.00013
– ident: ref25
  doi: 10.1109/CVPR.2016.263
– ident: ref12
  doi: 10.1038/nrneurol.2014.195
– ident: ref21
  doi: 10.1007/978-3-319-46723-8_4
– start-page: 1
  year: 2007
  ident: ref51
  article-title: Random features for large-scale kernel machines
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref9
  doi: 10.1118/1.4948668
– ident: ref3
  doi: 10.1371/journal.pone.0017156
– ident: ref49
  doi: 10.1016/j.neuroimage.2009.10.003
– ident: ref42
  doi: 10.1016/j.neuroimage.2005.02.018
– ident: ref60
  doi: 10.2307/2531595
– ident: ref63
  doi: 10.1109/TBME.2015.2404809
– ident: ref15
  doi: 10.3171/2016.6.JNS1662
– start-page: 557
  year: 2011
  ident: ref31
  article-title: Sparse multi-task regression and feature selection to identify brain imaging predictors for memory performance
  publication-title: Proc ICCV
– ident: ref62
  doi: 10.1186/1471-2105-12-77
– ident: ref34
  doi: 10.1016/j.neuroimage.2014.01.033
– ident: ref29
  doi: 10.1002/hbm.23575
– ident: ref43
  doi: 10.1016/j.neuroimage.2007.07.007
– ident: ref2
  doi: 10.5732/cjc.013.10218
– ident: ref20
  doi: 10.1038/s41598-017-14248-5
– ident: ref19
  doi: 10.1371/journal.pone.0094095
– ident: ref57
  doi: 10.1023/A:1010933404324
– start-page: 1
  year: 2010
  ident: ref23
  article-title: Transduction with matrix completion: Three birds with one stone
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref33
  doi: 10.1145/2939672.2939857
– ident: ref27
  doi: 10.1007/978-3-319-66185-8_51
– ident: ref36
  doi: 10.1093/neuonc/nos206
– ident: ref41
  doi: 10.1371/journal.pone.0025031
– volume: 9
  year: 2015
  ident: ref48
  article-title: GRETNA: A graph theoretical network analysis toolbox for imaging connectomics
  publication-title: Frontiers Hum Neurosci
– ident: ref61
  doi: 10.1007/s12021-014-9238-1
– ident: ref37
  doi: 10.1056/NEJMoa0808710
– ident: ref6
  doi: 10.1007/s00401-010-0781-z
– ident: ref26
  doi: 10.1016/j.media.2015.06.002
– ident: ref35
  doi: 10.1007/s11060-015-1738-9
– start-page: 1
  year: 2014
  ident: ref53
  article-title: Randomized nonlinear component analysis
  publication-title: Proc ICML
– ident: ref30
  doi: 10.1109/TBME.2015.2466616
– ident: ref11
  doi: 10.1093/neuonc/now121
– ident: ref45
  doi: 10.3389/fnhum.2013.00042
– ident: ref1
  doi: 10.1007/s00401-007-0243-4
– ident: ref28
  doi: 10.1007/s10915-017-0376-0
– ident: ref39
  doi: 10.3389/fnins.2017.00439
– ident: ref4
  doi: 10.3174/ajnr.A2950
– ident: ref8
  doi: 10.1016/j.neuroimage.2009.09.049
– ident: ref47
  doi: 10.1006/nimg.2001.0978
– ident: ref44
  doi: 10.1007/978-3-319-46723-8_25
– ident: ref16
  doi: 10.1093/brain/aww194
– ident: ref18
  doi: 10.1016/j.neulet.2013.02.062
– ident: ref13
  doi: 10.1371/journal.pone.0050625
– start-page: 1
  year: 1999
  ident: ref58
  article-title: Transductive inference for text classification using support vector machines
  publication-title: Proc ICML
– ident: ref54
  doi: 10.1007/BF01452844
– start-page: 1
  year: 2013
  ident: ref52
  article-title: Fastfood-approximating kernel expansions in loglinear time
  publication-title: Proc ICML
– ident: ref50
  doi: 10.1109/PGEC.1965.264137
SSID ssj0014509
Score 2.4245825
Snippet The O 6 -methylguanine-DNA methyltransferase (MGMT) promoter methylation and isocitrate dehydrogenase 1 (IDH1) mutation in high-grade gliomas (HGG) have proven...
The O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation and isocitrate dehydrogenase 1 (IDH1) mutation in high-grade gliomas (HGG) have proven...
SourceID pubmedcentral
proquest
pubmed
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1775
SubjectTerms Adult
Aged
Algorithms
Biopsy
Brain
Brain cancer
Brain mapping
Brain Neoplasms - diagnostic imaging
Brain Neoplasms - epidemiology
Brain Neoplasms - pathology
Brain tumor
Connectome - methods
connectomics
Databases, Factual
Deoxyribonucleic acid
Design optimization
Diagnosis, Computer-Assisted - methods
DNA
DNA methylation
DNA methyltransferase
DNA Modification Methylases - genetics
DNA Repair Enzymes - genetics
Electronic mail
Feature extraction
Female
functional connectivity
Glioma
Glioma - diagnostic imaging
Glioma - epidemiology
Glioma - pathology
high-grade glioma
Humans
Imaging
Isocitrate dehydrogenase
Isocitrate Dehydrogenase - genetics
Learning algorithms
Machine learning
Magnetic Resonance Imaging - methods
Male
Mathematical models
matrix completion
Medical imaging
Medical prognosis
Methylguanine
Middle Aged
molecular biomarker
Neuroimaging
Neurology
Nonlinear Dynamics
O6-methylguanine-DNA methyltransferase
Pathology
Prognosis
structural connectivity
Structure-function relationships
Surgery
Testing
Tumor Suppressor Proteins - genetics
Tumors
Young Adult
Title Multi-Label Nonlinear Matrix Completion With Transductive Multi-Task Feature Selection for Joint MGMT and IDH1 Status Prediction of Patient With High-Grade Gliomas
URI https://ieeexplore.ieee.org/document/8294228
https://www.ncbi.nlm.nih.gov/pubmed/29994582
https://www.proquest.com/docview/2117114136
https://www.proquest.com/docview/2068340766
https://pubmed.ncbi.nlm.nih.gov/PMC6443241
Volume 37
WOSCitedRecordID wos000440805800004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-254X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014509
  issn: 0278-0062
  databaseCode: RIE
  dateStart: 19820101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwELa2CSF44MfGWGBMRuIFiax2k9jJIwLWDZGqEkX0LXIcW4uoEpQmE_8P_yh3ThqtaELiLVIujVt_Z3_XO39HyJtA5QocKfeZZtoPteHoUsqPkqIIcxZE0oau2YScz-PVKlnskXfjWRhjjCs-M-d46XL5Ra07_KtsEk8TVKzaJ_tSiv6s1pgxCKO-nGOKirFMTLcpSZZMlukV1nDF56j8EiXY_A0W4QQzRju7kWuvchfT_Ltg8tYOdPH4_8b-hDwamCZ930PjKdkz1SF5eEt_8JDcT4fM-hH57U7i-l9UbtZ03utnqIamqOD_i-KqgSrddUW_l-01dTscKsXCWkn7J5dq84MioewaQ7-67jpoDpyYfq7LqqXpLF1SVRX06uMlp0hyuw1dNDgCZ1lbuuhFXvt3YAWKP2tUYehsXWIZ0zPy7eLT8sOlPzRw8DWEpa0vE6viCJAQcZNYo2wOP4FUwLHygIfGWqu4lJpHcayYDiJWhIpxrQLgIKFgJjgmB1VdmRNCOZcayM00Z0IBqZC5ZTIXApVMAy2Y9chkO5GZHtTNscnGOnNRDksyQEGGKMgGFHjk7fjEz17Z4x-2Rzijo90wmR453WIlG1x_k0FELSHI5IHwyOvxNjgtZmJUZeoObJiIAwilBdg876E1fvYWmh6RO6AbDVAQfPdOVV47YXDgtsCP-Yu7R_uSPMDv1FcvnpKDtunMK3JP37TlpjkDn1rFZ86n_gB0VByw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3bjtMwEB0tC-LywGWXS2ABI_GCRLZ2bk4eEbBtoakqUcS-RY7jaCOqBKUJ4n_4UTx2Gm3RCom3SJk0bn3GPtMZnwF47YtcaEfKXSqpdAOpGLqUcMOkKIKc-iEvA9Nsgi-X8fl5sjqAt-NZGKWUKT5Tp3hpcvlFI3v8q2wSewkqVl2D62EQeNSe1hpzBkFoCzo81IylkbdLStJksk7nWMUVn6L2S5hg-ze9DCeYM9rbj0yDlau45t8lk5f2oLN7_zf6-3B34JrknQXHAzhQ9RHcuaRAeAQ30yG3fgy_zVlcdyFytSFLq6AhWpKihv8vgusG6nQ3NflWdRfE7HGoFatXS2KfXIvtd4KUsm8V-WL666C5ZsXkU1PVHUmn6ZqIuiDzDzNGkOb2W7JqcQTGsinJysq82ndgDYo7bUWhyHRTYSHTQ_h69nH9fuYOLRxcqQPTzuVJKeJQYyFkKimVKHP9E3ChWVbus0CVZSkY55KFcSyo9ENaBIIyKXzNQoKIKv8RHNZNrZ4AYYxLTW-8nEZC0wqel5TnUYRapr6MaOnAZDeRmRz0zbHNxiYzcQ5NMo2CDFGQDShw4M34xA-r7fEP22Oc0dFumEwHTnZYyQbn32Y6puY6zGR-5MCr8bZ2W8zFiFo1vbahUezrYDrSNo8ttMbP3kHTAb4HutEAJcH379TVhZEG1-xWM2T29OrRvoRbs3W6yBbz5edncBu_n61lPIHDru3Vc7ghf3bVtn1hPOsPpt0fDw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Label+Nonlinear+Matrix+Completion+With+Transductive+Multi-Task+Feature+Selection+for+Joint+MGMT+and+IDH1+Status+Prediction+of+Patient+With+High-Grade+Gliomas&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Chen%2C+Lei&rft.au=Zhang%2C+Han&rft.au=Lu%2C+Junfeng&rft.au=Thung%2C+Kimhan&rft.date=2018-08-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0278-0062&rft.eissn=1558-254X&rft.volume=37&rft.issue=8&rft.spage=1775&rft_id=info:doi/10.1109%2FTMI.2018.2807590&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon