Generalized convergence conditions of the parameter adaptation algorithm in discrete-time recursive identification and adaptive control

In this paper, we extend convergence conditions for the parameter adaptation algorithm, used in discrete-time recursive identification schemes, or in adaptive control. Whereas the classical stability analysis of this algorithm consists in checking the strictly real positiveness of an associated tran...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Automatica (Oxford) Ročník 92; s. 109 - 114
Hlavní autoři: Vau, Bernard, Bourlès, Henri
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.06.2018
Elsevier
Témata:
ISSN:0005-1098, 1873-2836
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, we extend convergence conditions for the parameter adaptation algorithm, used in discrete-time recursive identification schemes, or in adaptive control. Whereas the classical stability analysis of this algorithm consists in checking the strictly real positiveness of an associated transfer function, we demonstrate that convergence can be obtained even when this condition is not fulfilled, under some assumptions on the algorithm forgetting factors. These results regarding both deterministic and stochastic contexts are obtained by analyzing convergence with a prescribed degree of stability.
ISSN:0005-1098
1873-2836
DOI:10.1016/j.automatica.2018.02.016