Unsupervised Change Detection Using Convolutional-Autoencoder Multiresolution Features
The use of deep learning (DL) methods for change detection (CD) is currently dominated by supervised models that require a large number of labeled samples. However, these samples are difficult to acquire in the multitemporal case. A possible alternative is leveraging methods that exploit transfer le...
Uloženo v:
| Vydáno v: | IEEE transactions on geoscience and remote sensing Ročník 60; s. 1 - 19 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 0196-2892, 1558-0644 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
Buďte první, kdo okomentuje tento záznam!