Sparse solution of underdetermined linear equations via adaptively iterative thresholding

Finding the sparset solution of an underdetermined system of linear equations y=Ax has attracted considerable attention in recent years. Among a large number of algorithms, iterative thresholding algorithms are recognized as one of the most efficient and important classes of algorithms. This is main...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Signal processing Ročník 97; s. 152 - 161
Hlavní autoři: Zeng, Jinshan, Lin, Shaobo, Xu, Zongben
Médium: Journal Article
Jazyk:angličtina
Vydáno: Amsterdam Elsevier B.V 01.04.2014
Elsevier
Témata:
ISSN:0165-1684, 1872-7557
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Finding the sparset solution of an underdetermined system of linear equations y=Ax has attracted considerable attention in recent years. Among a large number of algorithms, iterative thresholding algorithms are recognized as one of the most efficient and important classes of algorithms. This is mainly due to their low computational complexities, especially for large scale applications. The aim of this paper is to provide guarantees on the global convergence of a wide class of iterative thresholding algorithms. Since the thresholds of the considered algorithms are set adaptively at each iteration, we call them adaptively iterative thresholding (AIT) algorithms. As the main result, we show that as long as A satisfies a certain coherence property, AIT algorithms can find the correct support set within finite iterations, and then converge to the original sparse solution exponentially fast once the correct support set has been identified. Meanwhile, we also demonstrate that AIT algorithms are robust to the algorithmic parameters. In addition, it should be pointed out that most of the existing iterative thresholding algorithms such as hard, soft, half and smoothly clipped absolute deviation (SCAD) algorithms are included in the class of AIT algorithms studied in this paper. •We provide the convergence analysis of a class of adaptively iterative thresholding (AIT) algorithms for sparse solution of underdetermined linear equations y=Ax.•AIT algorithm converges to the unique sparsest solution with a linearly asymptotic convergence rate under the assumption that A satisfies a certain coherence property.•AIT algorithm finds the correct support set within finite iterations.•Most of the commonly used iterative thresholding algorithms are included in the class of AIT algorithms studied in this paper.
AbstractList Finding the sparset solution of an underdetermined system of linear equations y=Ax has attracted considerable attention in recent years. Among a large number of algorithms, iterative thresholding algorithms are recognized as one of the most efficient and important classes of algorithms. This is mainly due to their low computational complexities, especially for large scale applications. The aim of this paper is to provide guarantees on the global convergence of a wide class of iterative thresholding algorithms. Since the thresholds of the considered algorithms are set adaptively at each iteration, we call them adaptively iterative thresholding (AIT) algorithms. As the main result, we show that as long as A satisfies a certain coherence property, AIT algorithms can find the correct support set within finite iterations, and then converge to the original sparse solution exponentially fast once the correct support set has been identified. Meanwhile, we also demonstrate that AIT algorithms are robust to the algorithmic parameters. In addition, it should be pointed out that most of the existing iterative thresholding algorithms such as hard, soft, half and smoothly clipped absolute deviation (SCAD) algorithms are included in the class of AIT algorithms studied in this paper.
Finding the sparset solution of an underdetermined system of linear equations y=Ax has attracted considerable attention in recent years. Among a large number of algorithms, iterative thresholding algorithms are recognized as one of the most efficient and important classes of algorithms. This is mainly due to their low computational complexities, especially for large scale applications. The aim of this paper is to provide guarantees on the global convergence of a wide class of iterative thresholding algorithms. Since the thresholds of the considered algorithms are set adaptively at each iteration, we call them adaptively iterative thresholding (AIT) algorithms. As the main result, we show that as long as A satisfies a certain coherence property, AIT algorithms can find the correct support set within finite iterations, and then converge to the original sparse solution exponentially fast once the correct support set has been identified. Meanwhile, we also demonstrate that AIT algorithms are robust to the algorithmic parameters. In addition, it should be pointed out that most of the existing iterative thresholding algorithms such as hard, soft, half and smoothly clipped absolute deviation (SCAD) algorithms are included in the class of AIT algorithms studied in this paper. •We provide the convergence analysis of a class of adaptively iterative thresholding (AIT) algorithms for sparse solution of underdetermined linear equations y=Ax.•AIT algorithm converges to the unique sparsest solution with a linearly asymptotic convergence rate under the assumption that A satisfies a certain coherence property.•AIT algorithm finds the correct support set within finite iterations.•Most of the commonly used iterative thresholding algorithms are included in the class of AIT algorithms studied in this paper.
Author Lin, Shaobo
Xu, Zongben
Zeng, Jinshan
Author_xml – sequence: 1
  givenname: Jinshan
  surname: Zeng
  fullname: Zeng, Jinshan
  email: jsh.zeng@gmail.com
  organization: School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an 710049, China
– sequence: 2
  givenname: Shaobo
  surname: Lin
  fullname: Lin, Shaobo
  email: sblin1983@gmail.com
  organization: School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an 710049, China
– sequence: 3
  givenname: Zongben
  surname: Xu
  fullname: Xu, Zongben
  email: zbxu@mail.xjtu.edu.cn
  organization: School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an 710049, China
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28301690$$DView record in Pascal Francis
BookMark eNqFkU9vVCEUxYmpidPqN3DBxsTNGy-8Ad64MDFN_ZM0caEuXBEKl5YJA1PgTdJvL8-pGxd2A-TyO-cm55yTs5QTEvKawZoBk-926xpuDyWvObCxj9YwsmdkxSbFByWEOiOrjomByWnzgpzXugPopIQV-fX9YEpFWnOcW8iJZk_n5LA4bFj2IaGjsZ-mULyfzYJUegyGGmcOLRwxPtDQSbO8absrWO9ydCHdviTPvYkVXz3eF-Tnp6sfl1-G62-fv15-vB7sBngbhB0ZKgZO3jiPwo0CQAgPTo2K8Rs-IZe8L2MT9n_wXkicJLe2S7j1arwgb0--PYD7GWvT-1AtxmgS5rlqJhUTMG1gfBoVI2y3Uk2yo28eUVOtib6YZEPVhxL2pjxoPo090S107v2JsyXXWtBrG9qfmFoxIWoGeqlI7_SpIr1UtEx7RV28-Uf81_8J2YeTDHusx4BFVxswWXShoG3a5fB_g9-f4rET
CODEN SPRODR
CitedBy_id crossref_primary_10_1049_iet_spr_2018_5037
crossref_primary_10_1016_j_aml_2024_109053
crossref_primary_10_1109_TSP_2015_2412915
crossref_primary_10_1109_TII_2020_3012993
crossref_primary_10_1080_00387010_2025_2525369
crossref_primary_10_1016_j_sigpro_2024_109736
crossref_primary_10_1016_j_jsv_2018_08_030
crossref_primary_10_1007_s10462_024_10746_x
crossref_primary_10_1016_j_sigpro_2020_107628
crossref_primary_10_1016_j_sigpro_2018_02_027
crossref_primary_10_3390_en10111929
Cites_doi 10.1109/TIT.2009.2016006
10.1016/j.jvcir.2012.10.006
10.1109/JSTSP.2010.2042412
10.1007/978-1-4614-0772-0_5
10.1137/S1064827596304010
10.1214/09-AOS729
10.1109/TGRS.2011.2144605
10.1016/j.sigpro.2012.12.017
10.1002/cpa.20303
10.1002/cpa.20042
10.1109/TIT.2007.909108
10.1016/j.acha.2008.07.002
10.1109/TIT.2006.871582
10.1073/pnas.0437847100
10.1198/016214501753382273
10.1109/TIT.2005.862083
10.1109/ALLERTON.2009.5394802
10.1109/78.558475
10.1109/TIT.2003.820031
10.1109/JPROC.2010.2044010
10.1109/78.258082
10.1007/s11432-012-4632-5
10.1109/ACSSC.1993.342465
10.1109/TIT.1974.1055219
10.1109/LSP.2007.898300
10.1007/s11432-010-0090-0
10.1109/JSTSP.2009.2039176
10.1007/s00041-008-9045-x
10.1088/0266-5611/24/3/035020
10.1109/TIT.2009.2021377
10.1214/08-AOS653
10.1016/j.acha.2009.04.002
10.1109/TIT.2011.2173241
10.1007/s00041-008-9035-z
ContentType Journal Article
Copyright 2013
2015 INIST-CNRS
Copyright_xml – notice: 2013
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.sigpro.2013.10.031
DatabaseName CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EISSN 1872-7557
EndPage 161
ExternalDocumentID 28301690
10_1016_j_sigpro_2013_10_031
S0165168413004222
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TAE
TN5
WUQ
XPP
ZMT
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
BNPGV
IQODW
SSH
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c402t-5c31e710d6bdfe5d350055f0d73712b28e262ada18edfe0ff56e862cc10d2cf73
ISICitedReferencesCount 12
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000331506000014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0165-1684
IngestDate Thu Oct 02 10:32:45 EDT 2025
Wed Oct 01 13:19:28 EDT 2025
Wed Apr 02 07:17:46 EDT 2025
Sat Nov 29 03:22:46 EST 2025
Tue Nov 18 22:10:30 EST 2025
Fri Feb 23 02:28:09 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Underdetermined linear equations
Iterative thresholding algorithm
Global convergence
Sparse solution
Linear equation
Threshold detection
Coherence
Signal processing
Iterative method
Algorithm
Computational complexity
Adaptive method
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c402t-5c31e710d6bdfe5d350055f0d73712b28e262ada18edfe0ff56e862cc10d2cf73
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PQID 1530996786
PQPubID 23500
PageCount 10
ParticipantIDs proquest_miscellaneous_1671508403
proquest_miscellaneous_1530996786
pascalfrancis_primary_28301690
crossref_citationtrail_10_1016_j_sigpro_2013_10_031
crossref_primary_10_1016_j_sigpro_2013_10_031
elsevier_sciencedirect_doi_10_1016_j_sigpro_2013_10_031
PublicationCentury 2000
PublicationDate 2014-04-01
PublicationDateYYYYMMDD 2014-04-01
PublicationDate_xml – month: 04
  year: 2014
  text: 2014-04-01
  day: 01
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Signal processing
PublicationYear 2014
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Y. Pati, R. Rezaifar, P. Krishnaprasad, Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition, in: Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, 1993.
Chartrand, Staneva (bib13) 2008; 24
Mallat, Zhang (bib3) 1993; 41
Welch (bib32) 1974; 20
Candes, Plan (bib33) 2009; 37
Tropp, Gilbert (bib5) 2007; 53
Chen, Donoho, Saunders (bib11) 1998; 20
Needell, Tropp (bib8) 2008; 26
A. Maleki, Coherence analysis of iterative thresholding algorithms, in: The Forty-Seventh Annual Allerton Conference, Allerton House, UIUC, IL, USA, 2009.
Zhang (bib18) 2010; 38
Gribonval, Nielsen (bib31) 2003; 49
Cai, Xu, Zhang (bib34) 2009; 55
Maleki, Donoho (bib30) 2010; 4
Qian, Jia, Zhou, Robles-Kelly (bib24) 2011; 49
Donoho, Tsaig, Drori, Starck (bib6) 2012; 58
Xu, Chang, Xu, Zhang (bib15) 2012; 23
Donoho (bib1) 2006; 52
S. Foucart, Sparse recovery algorithms: sufficient conditions in terms of restricted isometry constants, in: M. Neantu, L. Schumaker (Eds.), in: Proceedings of the 13th International Conference on Approximation Theory, San Antonio, TX, Springer, 2010.
Candes, Wakin, Boyd (bib16) 2008; 14
Fan, Li (bib17) 2001; 96
Zeng, Fang, Xu (bib25) 2012; 55
Daubechies, Defries, De Mol (bib21) 2004; 57
Gorodnitsky, Rao (bib19) 1997; 45
J.A. Tropp, S. Wright, Computational methods for sparse solution of linear inverse problems, Proc. IEEE 98 (2010) 948–958.
Donoho, Elad (bib29) 2003; 100
Xu, Zhang, Wang, Chang, Liang (bib14) 2010; 53
Dai, Milenkovic (bib9) 2009; 55
Chartrand (bib12) 2007; 14
Daubechies, Devore, Fornasier, Gunturk (bib20) 2010; 63
Zeng, Xu, Zhang, Hong, Wu (bib26) 2013; 93
Cao, Sun, Xu (bib22) 2013; 24
Blumensath, Davies (bib27) 2008; 27
Blumensath, Davies (bib23) 2008; 14
Candes, Romberg, Tao (bib2) 2006; 52
Needell, Vershynin (bib7) 2010; 4
Candes (10.1016/j.sigpro.2013.10.031_bib16) 2008; 14
Fan (10.1016/j.sigpro.2013.10.031_bib17) 2001; 96
Candes (10.1016/j.sigpro.2013.10.031_bib33) 2009; 37
Chartrand (10.1016/j.sigpro.2013.10.031_bib13) 2008; 24
Welch (10.1016/j.sigpro.2013.10.031_bib32) 1974; 20
Dai (10.1016/j.sigpro.2013.10.031_bib9) 2009; 55
Gorodnitsky (10.1016/j.sigpro.2013.10.031_bib19) 1997; 45
10.1016/j.sigpro.2013.10.031_bib10
Needell (10.1016/j.sigpro.2013.10.031_bib8) 2008; 26
Donoho (10.1016/j.sigpro.2013.10.031_bib29) 2003; 100
Cao (10.1016/j.sigpro.2013.10.031_bib22) 2013; 24
Donoho (10.1016/j.sigpro.2013.10.031_bib6) 2012; 58
Gribonval (10.1016/j.sigpro.2013.10.031_bib31) 2003; 49
Tropp (10.1016/j.sigpro.2013.10.031_bib5) 2007; 53
10.1016/j.sigpro.2013.10.031_bib35
Xu (10.1016/j.sigpro.2013.10.031_bib15) 2012; 23
Zeng (10.1016/j.sigpro.2013.10.031_bib25) 2012; 55
Candes (10.1016/j.sigpro.2013.10.031_bib2) 2006; 52
Blumensath (10.1016/j.sigpro.2013.10.031_bib23) 2008; 14
Chen (10.1016/j.sigpro.2013.10.031_bib11) 1998; 20
Zeng (10.1016/j.sigpro.2013.10.031_bib26) 2013; 93
Qian (10.1016/j.sigpro.2013.10.031_bib24) 2011; 49
Mallat (10.1016/j.sigpro.2013.10.031_bib3) 1993; 41
Daubechies (10.1016/j.sigpro.2013.10.031_bib21) 2004; 57
Xu (10.1016/j.sigpro.2013.10.031_bib14) 2010; 53
Blumensath (10.1016/j.sigpro.2013.10.031_bib27) 2008; 27
Maleki (10.1016/j.sigpro.2013.10.031_bib30) 2010; 4
Daubechies (10.1016/j.sigpro.2013.10.031_bib20) 2010; 63
10.1016/j.sigpro.2013.10.031_bib4
Cai (10.1016/j.sigpro.2013.10.031_bib34) 2009; 55
Zhang (10.1016/j.sigpro.2013.10.031_bib18) 2010; 38
Needell (10.1016/j.sigpro.2013.10.031_bib7) 2010; 4
10.1016/j.sigpro.2013.10.031_bib28
Chartrand (10.1016/j.sigpro.2013.10.031_bib12) 2007; 14
Donoho (10.1016/j.sigpro.2013.10.031_bib1) 2006; 52
References_xml – volume: 58
  start-page: 1094
  year: 2012
  end-page: 1121
  ident: bib6
  article-title: Sparse solution of underdetermined systems of linear equations by stagewise orthogonal matching pursuit
  publication-title: IEEE Trans. Inf. Theory
– volume: 14
  start-page: 877
  year: 2008
  end-page: 905
  ident: bib16
  article-title: Enhancing sparsity by reweighted
  publication-title: J. Fourier Anal. Appl.
– volume: 20
  start-page: 397
  year: 1974
  end-page: 399
  ident: bib32
  article-title: Lower bounds on the maximum cross correlation of signals
  publication-title: IEEE Trans. Inf. Theory
– volume: 52
  start-page: 489
  year: 2006
  end-page: 509
  ident: bib2
  article-title: Robust uncertainty principles
  publication-title: IEEE Trans. Inf. Theory
– volume: 24
  start-page: 31
  year: 2013
  end-page: 41
  ident: bib22
  article-title: Fast image deconvolution using closed-form thresholding formulas of
  publication-title: J. Vis. Commun. Image Represent.
– volume: 14
  start-page: 629
  year: 2008
  end-page: 654
  ident: bib23
  article-title: Iterative thresholding for sparse approximation
  publication-title: J. Fourier Anal. Appl.
– volume: 14
  start-page: 707
  year: 2007
  end-page: 710
  ident: bib12
  article-title: Exact reconstruction of sparse signals via nonconvex minimization
  publication-title: IEEE Signal Process. Lett.
– volume: 55
  start-page: 3388
  year: 2009
  end-page: 3397
  ident: bib34
  article-title: On recovery of sparse signals via
  publication-title: IEEE Trans. Inf. Theory
– volume: 100
  start-page: 2197
  year: 2003
  end-page: 2202
  ident: bib29
  article-title: Optimally sparse representation in general (nonorthogonal) dictionaries via
  publication-title: Proc. Natl. Acad. Sci.
– volume: 20
  start-page: 33
  year: 1998
  end-page: 61
  ident: bib11
  article-title: Atomic decomposition by basis pursuit
  publication-title: SIAM J. Sci. Comput.
– volume: 23
  start-page: 1013
  year: 2012
  end-page: 1027
  ident: bib15
  article-title: L
  publication-title: IEEE Trans. Neural Netw. Learning Syst.
– reference: A. Maleki, Coherence analysis of iterative thresholding algorithms, in: The Forty-Seventh Annual Allerton Conference, Allerton House, UIUC, IL, USA, 2009.
– volume: 55
  start-page: 1755
  year: 2012
  end-page: 1775
  ident: bib25
  article-title: Sparse SAR imaging based on
  publication-title: Sci. China Inf. Sci.
– volume: 96
  start-page: 1348
  year: 2001
  end-page: 1360
  ident: bib17
  article-title: Variable selection via nonconcave penalized likelihood and its oracle properties
  publication-title: J. Am. Stat. Assoc.
– volume: 57
  start-page: 1413
  year: 2004
  end-page: 1457
  ident: bib21
  article-title: An iterative thresholding algorithm for linear inverse problems with a sparsity constraint
  publication-title: Commun. Pure Appl. Math.
– volume: 26
  start-page: 301
  year: 2008
  end-page: 321
  ident: bib8
  article-title: CoSaMP
  publication-title: Appl. Comput. Harmon. Anal.
– volume: 37
  start-page: 2145
  year: 2009
  end-page: 2177
  ident: bib33
  article-title: Near-ideal model selection by
  publication-title: Ann. Stat.
– reference: Y. Pati, R. Rezaifar, P. Krishnaprasad, Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition, in: Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, 1993.
– volume: 4
  start-page: 310
  year: 2010
  end-page: 316
  ident: bib7
  article-title: Signal recovery from incomplete and inaccurate measurements via Regularized Orthogonal Matching Pursuit
  publication-title: IEEE J. Sel. Top. Signal Process.
– reference: S. Foucart, Sparse recovery algorithms: sufficient conditions in terms of restricted isometry constants, in: M. Neantu, L. Schumaker (Eds.), in: Proceedings of the 13th International Conference on Approximation Theory, San Antonio, TX, Springer, 2010.
– volume: 49
  start-page: 3320
  year: 2003
  end-page: 3325
  ident: bib31
  article-title: Sparse representations in unions of bases
  publication-title: IEEE Trans. Inf. Theory
– volume: 63
  start-page: 1
  year: 2010
  end-page: 38
  ident: bib20
  article-title: Iteratively reweighted least squares minimization for sparse recovery
  publication-title: Commun. Pure Appl. Math.
– volume: 24
  start-page: 1
  year: 2008
  end-page: 14
  ident: bib13
  article-title: Restricted isometry properties and nonconvex compressive sensing
  publication-title: Inverse Problems
– volume: 38
  start-page: 894
  year: 2010
  end-page: 942
  ident: bib18
  article-title: Nearly unbiased variable selection under minimax concave penalty
  publication-title: Ann. Stat.
– volume: 93
  start-page: 1831
  year: 2013
  end-page: 1844
  ident: bib26
  article-title: Accelerated
  publication-title: Signal Process.
– volume: 52
  start-page: 1289
  year: 2006
  end-page: 1306
  ident: bib1
  article-title: Compressed sensing
  publication-title: IEEE Trans. Inf. Theory
– volume: 45
  start-page: 600
  year: 1997
  end-page: 616
  ident: bib19
  article-title: Sparse signal reconstruction from limited data using FOCUSS
  publication-title: IEEE Trans. Signal Process.
– volume: 4
  start-page: 330
  year: 2010
  end-page: 341
  ident: bib30
  article-title: Optimally tuned iterative reconstruction algorithms for compressed sensing
  publication-title: IEEE J. Sel. Top. Signal Process.
– volume: 41
  start-page: 3397
  year: 1993
  end-page: 3415
  ident: bib3
  article-title: Matching pursuits with time–frequency dictionaries
  publication-title: IEEE Trans. Signal Process.
– volume: 53
  start-page: 1159
  year: 2010
  end-page: 1169
  ident: bib14
  article-title: regularizater
  publication-title: Sci. China, Ser. F—Inf. Sci.
– volume: 27
  start-page: 265
  year: 2008
  end-page: 274
  ident: bib27
  article-title: Iterative hard thresholding for compressed sensing
  publication-title: Appl. Comput. Harmon. Anal.
– volume: 49
  start-page: 4282
  year: 2011
  end-page: 4297
  ident: bib24
  article-title: Hyperspectral unmixing via
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 53
  start-page: 4655
  year: 2007
  end-page: 4666
  ident: bib5
  article-title: Signal recovery from random measurements via orthogonal matching pursuit
  publication-title: IEEE Trans. Inf. Theory
– reference: J.A. Tropp, S. Wright, Computational methods for sparse solution of linear inverse problems, Proc. IEEE 98 (2010) 948–958.
– volume: 55
  start-page: 2230
  year: 2009
  end-page: 2249
  ident: bib9
  article-title: Subspace pursuit for compressive sensing signal reconstruction
  publication-title: IEEE Trans. Inf. Theory
– volume: 55
  start-page: 2230
  issue: 5
  year: 2009
  ident: 10.1016/j.sigpro.2013.10.031_bib9
  article-title: Subspace pursuit for compressive sensing signal reconstruction
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2009.2016006
– volume: 24
  start-page: 31
  year: 2013
  ident: 10.1016/j.sigpro.2013.10.031_bib22
  article-title: Fast image deconvolution using closed-form thresholding formulas of Lq (q=1/2,2/3) regularization
  publication-title: J. Vis. Commun. Image Represent.
  doi: 10.1016/j.jvcir.2012.10.006
– volume: 4
  start-page: 310
  year: 2010
  ident: 10.1016/j.sigpro.2013.10.031_bib7
  article-title: Signal recovery from incomplete and inaccurate measurements via Regularized Orthogonal Matching Pursuit
  publication-title: IEEE J. Sel. Top. Signal Process.
  doi: 10.1109/JSTSP.2010.2042412
– ident: 10.1016/j.sigpro.2013.10.031_bib35
  doi: 10.1007/978-1-4614-0772-0_5
– volume: 20
  start-page: 33
  year: 1998
  ident: 10.1016/j.sigpro.2013.10.031_bib11
  article-title: Atomic decomposition by basis pursuit
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/S1064827596304010
– volume: 38
  start-page: 894
  issue: 2
  year: 2010
  ident: 10.1016/j.sigpro.2013.10.031_bib18
  article-title: Nearly unbiased variable selection under minimax concave penalty
  publication-title: Ann. Stat.
  doi: 10.1214/09-AOS729
– volume: 49
  start-page: 4282
  issue: 11
  year: 2011
  ident: 10.1016/j.sigpro.2013.10.031_bib24
  article-title: Hyperspectral unmixing via L1/2 sparsity-constrained nonnegative matrix factorization
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2011.2144605
– volume: 93
  start-page: 1831
  year: 2013
  ident: 10.1016/j.sigpro.2013.10.031_bib26
  article-title: Accelerated L1/2 regularization based SAR imaging via BCR and reduced Newton skills
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2012.12.017
– volume: 63
  start-page: 1
  year: 2010
  ident: 10.1016/j.sigpro.2013.10.031_bib20
  article-title: Iteratively reweighted least squares minimization for sparse recovery
  publication-title: Commun. Pure Appl. Math.
  doi: 10.1002/cpa.20303
– volume: 57
  start-page: 1413
  year: 2004
  ident: 10.1016/j.sigpro.2013.10.031_bib21
  article-title: An iterative thresholding algorithm for linear inverse problems with a sparsity constraint
  publication-title: Commun. Pure Appl. Math.
  doi: 10.1002/cpa.20042
– volume: 53
  start-page: 4655
  year: 2007
  ident: 10.1016/j.sigpro.2013.10.031_bib5
  article-title: Signal recovery from random measurements via orthogonal matching pursuit
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2007.909108
– volume: 26
  start-page: 301
  issue: 3
  year: 2008
  ident: 10.1016/j.sigpro.2013.10.031_bib8
  article-title: CoSaMP
  publication-title: Appl. Comput. Harmon. Anal.
  doi: 10.1016/j.acha.2008.07.002
– volume: 52
  start-page: 1289
  issue: 4
  year: 2006
  ident: 10.1016/j.sigpro.2013.10.031_bib1
  article-title: Compressed sensing
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2006.871582
– volume: 100
  start-page: 2197
  issue: 5
  year: 2003
  ident: 10.1016/j.sigpro.2013.10.031_bib29
  article-title: Optimally sparse representation in general (nonorthogonal) dictionaries via l1 minimization
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.0437847100
– volume: 96
  start-page: 1348
  year: 2001
  ident: 10.1016/j.sigpro.2013.10.031_bib17
  article-title: Variable selection via nonconcave penalized likelihood and its oracle properties
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1198/016214501753382273
– volume: 52
  start-page: 489
  issue: 2
  year: 2006
  ident: 10.1016/j.sigpro.2013.10.031_bib2
  article-title: Robust uncertainty principles
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2005.862083
– ident: 10.1016/j.sigpro.2013.10.031_bib28
  doi: 10.1109/ALLERTON.2009.5394802
– volume: 45
  start-page: 600
  issue: 3
  year: 1997
  ident: 10.1016/j.sigpro.2013.10.031_bib19
  article-title: Sparse signal reconstruction from limited data using FOCUSS
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/78.558475
– volume: 49
  start-page: 3320
  issue: 12
  year: 2003
  ident: 10.1016/j.sigpro.2013.10.031_bib31
  article-title: Sparse representations in unions of bases
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2003.820031
– ident: 10.1016/j.sigpro.2013.10.031_bib10
  doi: 10.1109/JPROC.2010.2044010
– volume: 41
  start-page: 3397
  issue: 12
  year: 1993
  ident: 10.1016/j.sigpro.2013.10.031_bib3
  article-title: Matching pursuits with time–frequency dictionaries
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/78.258082
– volume: 55
  start-page: 1755
  year: 2012
  ident: 10.1016/j.sigpro.2013.10.031_bib25
  article-title: Sparse SAR imaging based on L1/2 regularization
  publication-title: Sci. China Inf. Sci.
  doi: 10.1007/s11432-012-4632-5
– ident: 10.1016/j.sigpro.2013.10.031_bib4
  doi: 10.1109/ACSSC.1993.342465
– volume: 20
  start-page: 397
  issue: 3
  year: 1974
  ident: 10.1016/j.sigpro.2013.10.031_bib32
  article-title: Lower bounds on the maximum cross correlation of signals
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.1974.1055219
– volume: 14
  start-page: 707
  issue: 10
  year: 2007
  ident: 10.1016/j.sigpro.2013.10.031_bib12
  article-title: Exact reconstruction of sparse signals via nonconvex minimization
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2007.898300
– volume: 53
  start-page: 1159
  year: 2010
  ident: 10.1016/j.sigpro.2013.10.031_bib14
  article-title: L1/2 regularizater
  publication-title: Sci. China, Ser. F—Inf. Sci.
  doi: 10.1007/s11432-010-0090-0
– volume: 4
  start-page: 330
  issue: 2
  year: 2010
  ident: 10.1016/j.sigpro.2013.10.031_bib30
  article-title: Optimally tuned iterative reconstruction algorithms for compressed sensing
  publication-title: IEEE J. Sel. Top. Signal Process.
  doi: 10.1109/JSTSP.2009.2039176
– volume: 14
  start-page: 877
  issue: 5
  year: 2008
  ident: 10.1016/j.sigpro.2013.10.031_bib16
  article-title: Enhancing sparsity by reweighted l1 minimization
  publication-title: J. Fourier Anal. Appl.
  doi: 10.1007/s00041-008-9045-x
– volume: 24
  start-page: 1
  year: 2008
  ident: 10.1016/j.sigpro.2013.10.031_bib13
  article-title: Restricted isometry properties and nonconvex compressive sensing
  publication-title: Inverse Problems
  doi: 10.1088/0266-5611/24/3/035020
– volume: 55
  start-page: 3388
  issue: 7
  year: 2009
  ident: 10.1016/j.sigpro.2013.10.031_bib34
  article-title: On recovery of sparse signals via l1 minimization
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2009.2021377
– volume: 37
  start-page: 2145
  year: 2009
  ident: 10.1016/j.sigpro.2013.10.031_bib33
  article-title: Near-ideal model selection by l1 minimization
  publication-title: Ann. Stat.
  doi: 10.1214/08-AOS653
– volume: 27
  start-page: 265
  year: 2008
  ident: 10.1016/j.sigpro.2013.10.031_bib27
  article-title: Iterative hard thresholding for compressed sensing
  publication-title: Appl. Comput. Harmon. Anal.
  doi: 10.1016/j.acha.2009.04.002
– volume: 23
  start-page: 1013
  year: 2012
  ident: 10.1016/j.sigpro.2013.10.031_bib15
  article-title: L1/2 regularization
  publication-title: IEEE Trans. Neural Netw. Learning Syst.
– volume: 58
  start-page: 1094
  issue: 2
  year: 2012
  ident: 10.1016/j.sigpro.2013.10.031_bib6
  article-title: Sparse solution of underdetermined systems of linear equations by stagewise orthogonal matching pursuit
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2011.2173241
– volume: 14
  start-page: 629
  issue: 5
  year: 2008
  ident: 10.1016/j.sigpro.2013.10.031_bib23
  article-title: Iterative thresholding for sparse approximation
  publication-title: J. Fourier Anal. Appl.
  doi: 10.1007/s00041-008-9035-z
SSID ssj0001360
Score 2.1515946
Snippet Finding the sparset solution of an underdetermined system of linear equations y=Ax has attracted considerable attention in recent years. Among a large number...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 152
SubjectTerms Algorithms
Applied sciences
Coherence
Convergence
Detection, estimation, filtering, equalization, prediction
Deviation
Exact sciences and technology
Global convergence
Information, signal and communications theory
Iterative methods
Iterative thresholding algorithm
Linear equations
Mathematical analysis
Mathematical models
Signal and communications theory
Signal, noise
Sparse solution
Telecommunications and information theory
Underdetermined linear equations
Title Sparse solution of underdetermined linear equations via adaptively iterative thresholding
URI https://dx.doi.org/10.1016/j.sigpro.2013.10.031
https://www.proquest.com/docview/1530996786
https://www.proquest.com/docview/1671508403
Volume 97
WOSCitedRecordID wos000331506000014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-7557
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001360
  issn: 0165-1684
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3di9QwEA-654Mi4ieuH0cE35Yum6Zp0sdDTlTkEPaU9am0abq3x9HW7e5x_vfONEmv56Kngi-lpE2TZiaZXybzQchrBlKrSAQPjNQ8iArFAlWyPJAYCyWJSmU61cWXj_LoSC0WySen0G-7dAKyqtTFRdL8V1JDGRAbXWf_gtz9R6EA7oHocAWyw_WPCD9vYK9qJr4RRIPoKLYunOELIEyEltl6Yr5tnSHcObpmFVmDa9_Z94kNtYw2RRsgdetOqIY4dr5aIoxtrJuBf4gKaONMfFdVezKw97GhCuYnWZ3XvnCx7Y5G6mqZO4c0p35gQ6uVTie24xdj1ZSxCFhsk79NjV1alQQsL2w4ar_2Wttct3gyG8vWyWFmg7TvLPFW23A6bVdL-Ek0zuNTtM9zwuRq8Ow59gQ7gqd2qO26SfZCKRI1InsH7w8XH3qpzXjnUd733LtZdraAu239CsbcbbIWJldps6LsCPgOtRzfJ_fcdoMeWDZ5QG6Y6iG5MwhC-Yh8tQxDPcPQuqQ_MQy1DEN7hqHAMPSSYWjPMHTIMI_J57eHx2_eBS7hRqCjWbgJhObM4OSN86I0ouACQ7SVs0JyycI8VCaMQ_g4Uwaez8pSxAZ2xFpDlVCXkj8ho6quzFNCQyWgJojTCDBqkQEKjnSWcailtIjibEy4H79Uu2j0mBTlLPVmh6epHfUURx1LYdTHJOhrNTYayzXvS0-a1CFKixRT4KZrau5foWTfHAbMw6PlMXnlSZvCiozHbFll6m2bwk_DtgtAYPybd2KJiRiiGX_2z118Tm5fTsgXZLRZb81Lckufb1btet_x9w_kgsMF
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sparse+solution+of+underdetermined+linear+equations+via+adaptively+iterative+thresholding&rft.jtitle=Signal+processing&rft.au=Zeng%2C+Jinshan&rft.au=Lin%2C+Shaobo&rft.au=Xu%2C+Zongben&rft.date=2014-04-01&rft.pub=Elsevier+B.V&rft.issn=0165-1684&rft.eissn=1872-7557&rft.volume=97&rft.spage=152&rft.epage=161&rft_id=info:doi/10.1016%2Fj.sigpro.2013.10.031&rft.externalDocID=S0165168413004222
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-1684&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-1684&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-1684&client=summon