Sparse solution of underdetermined linear equations via adaptively iterative thresholding
Finding the sparset solution of an underdetermined system of linear equations y=Ax has attracted considerable attention in recent years. Among a large number of algorithms, iterative thresholding algorithms are recognized as one of the most efficient and important classes of algorithms. This is main...
Uloženo v:
| Vydáno v: | Signal processing Ročník 97; s. 152 - 161 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Amsterdam
Elsevier B.V
01.04.2014
Elsevier |
| Témata: | |
| ISSN: | 0165-1684, 1872-7557 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Finding the sparset solution of an underdetermined system of linear equations y=Ax has attracted considerable attention in recent years. Among a large number of algorithms, iterative thresholding algorithms are recognized as one of the most efficient and important classes of algorithms. This is mainly due to their low computational complexities, especially for large scale applications. The aim of this paper is to provide guarantees on the global convergence of a wide class of iterative thresholding algorithms. Since the thresholds of the considered algorithms are set adaptively at each iteration, we call them adaptively iterative thresholding (AIT) algorithms. As the main result, we show that as long as A satisfies a certain coherence property, AIT algorithms can find the correct support set within finite iterations, and then converge to the original sparse solution exponentially fast once the correct support set has been identified. Meanwhile, we also demonstrate that AIT algorithms are robust to the algorithmic parameters. In addition, it should be pointed out that most of the existing iterative thresholding algorithms such as hard, soft, half and smoothly clipped absolute deviation (SCAD) algorithms are included in the class of AIT algorithms studied in this paper.
•We provide the convergence analysis of a class of adaptively iterative thresholding (AIT) algorithms for sparse solution of underdetermined linear equations y=Ax.•AIT algorithm converges to the unique sparsest solution with a linearly asymptotic convergence rate under the assumption that A satisfies a certain coherence property.•AIT algorithm finds the correct support set within finite iterations.•Most of the commonly used iterative thresholding algorithms are included in the class of AIT algorithms studied in this paper. |
|---|---|
| AbstractList | Finding the sparset solution of an underdetermined system of linear equations y=Ax has attracted considerable attention in recent years. Among a large number of algorithms, iterative thresholding algorithms are recognized as one of the most efficient and important classes of algorithms. This is mainly due to their low computational complexities, especially for large scale applications. The aim of this paper is to provide guarantees on the global convergence of a wide class of iterative thresholding algorithms. Since the thresholds of the considered algorithms are set adaptively at each iteration, we call them adaptively iterative thresholding (AIT) algorithms. As the main result, we show that as long as A satisfies a certain coherence property, AIT algorithms can find the correct support set within finite iterations, and then converge to the original sparse solution exponentially fast once the correct support set has been identified. Meanwhile, we also demonstrate that AIT algorithms are robust to the algorithmic parameters. In addition, it should be pointed out that most of the existing iterative thresholding algorithms such as hard, soft, half and smoothly clipped absolute deviation (SCAD) algorithms are included in the class of AIT algorithms studied in this paper. Finding the sparset solution of an underdetermined system of linear equations y=Ax has attracted considerable attention in recent years. Among a large number of algorithms, iterative thresholding algorithms are recognized as one of the most efficient and important classes of algorithms. This is mainly due to their low computational complexities, especially for large scale applications. The aim of this paper is to provide guarantees on the global convergence of a wide class of iterative thresholding algorithms. Since the thresholds of the considered algorithms are set adaptively at each iteration, we call them adaptively iterative thresholding (AIT) algorithms. As the main result, we show that as long as A satisfies a certain coherence property, AIT algorithms can find the correct support set within finite iterations, and then converge to the original sparse solution exponentially fast once the correct support set has been identified. Meanwhile, we also demonstrate that AIT algorithms are robust to the algorithmic parameters. In addition, it should be pointed out that most of the existing iterative thresholding algorithms such as hard, soft, half and smoothly clipped absolute deviation (SCAD) algorithms are included in the class of AIT algorithms studied in this paper. •We provide the convergence analysis of a class of adaptively iterative thresholding (AIT) algorithms for sparse solution of underdetermined linear equations y=Ax.•AIT algorithm converges to the unique sparsest solution with a linearly asymptotic convergence rate under the assumption that A satisfies a certain coherence property.•AIT algorithm finds the correct support set within finite iterations.•Most of the commonly used iterative thresholding algorithms are included in the class of AIT algorithms studied in this paper. |
| Author | Lin, Shaobo Xu, Zongben Zeng, Jinshan |
| Author_xml | – sequence: 1 givenname: Jinshan surname: Zeng fullname: Zeng, Jinshan email: jsh.zeng@gmail.com organization: School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an 710049, China – sequence: 2 givenname: Shaobo surname: Lin fullname: Lin, Shaobo email: sblin1983@gmail.com organization: School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an 710049, China – sequence: 3 givenname: Zongben surname: Xu fullname: Xu, Zongben email: zbxu@mail.xjtu.edu.cn organization: School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an 710049, China |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28301690$$DView record in Pascal Francis |
| BookMark | eNqFkU9vVCEUxYmpidPqN3DBxsTNGy-8Ad64MDFN_ZM0caEuXBEKl5YJA1PgTdJvL8-pGxd2A-TyO-cm55yTs5QTEvKawZoBk-926xpuDyWvObCxj9YwsmdkxSbFByWEOiOrjomByWnzgpzXugPopIQV-fX9YEpFWnOcW8iJZk_n5LA4bFj2IaGjsZ-mULyfzYJUegyGGmcOLRwxPtDQSbO8absrWO9ydCHdviTPvYkVXz3eF-Tnp6sfl1-G62-fv15-vB7sBngbhB0ZKgZO3jiPwo0CQAgPTo2K8Rs-IZe8L2MT9n_wXkicJLe2S7j1arwgb0--PYD7GWvT-1AtxmgS5rlqJhUTMG1gfBoVI2y3Uk2yo28eUVOtib6YZEPVhxL2pjxoPo090S107v2JsyXXWtBrG9qfmFoxIWoGeqlI7_SpIr1UtEx7RV28-Uf81_8J2YeTDHusx4BFVxswWXShoG3a5fB_g9-f4rET |
| CODEN | SPRODR |
| CitedBy_id | crossref_primary_10_1049_iet_spr_2018_5037 crossref_primary_10_1016_j_aml_2024_109053 crossref_primary_10_1109_TSP_2015_2412915 crossref_primary_10_1109_TII_2020_3012993 crossref_primary_10_1080_00387010_2025_2525369 crossref_primary_10_1016_j_sigpro_2024_109736 crossref_primary_10_1016_j_jsv_2018_08_030 crossref_primary_10_1007_s10462_024_10746_x crossref_primary_10_1016_j_sigpro_2020_107628 crossref_primary_10_1016_j_sigpro_2018_02_027 crossref_primary_10_3390_en10111929 |
| Cites_doi | 10.1109/TIT.2009.2016006 10.1016/j.jvcir.2012.10.006 10.1109/JSTSP.2010.2042412 10.1007/978-1-4614-0772-0_5 10.1137/S1064827596304010 10.1214/09-AOS729 10.1109/TGRS.2011.2144605 10.1016/j.sigpro.2012.12.017 10.1002/cpa.20303 10.1002/cpa.20042 10.1109/TIT.2007.909108 10.1016/j.acha.2008.07.002 10.1109/TIT.2006.871582 10.1073/pnas.0437847100 10.1198/016214501753382273 10.1109/TIT.2005.862083 10.1109/ALLERTON.2009.5394802 10.1109/78.558475 10.1109/TIT.2003.820031 10.1109/JPROC.2010.2044010 10.1109/78.258082 10.1007/s11432-012-4632-5 10.1109/ACSSC.1993.342465 10.1109/TIT.1974.1055219 10.1109/LSP.2007.898300 10.1007/s11432-010-0090-0 10.1109/JSTSP.2009.2039176 10.1007/s00041-008-9045-x 10.1088/0266-5611/24/3/035020 10.1109/TIT.2009.2021377 10.1214/08-AOS653 10.1016/j.acha.2009.04.002 10.1109/TIT.2011.2173241 10.1007/s00041-008-9035-z |
| ContentType | Journal Article |
| Copyright | 2013 2015 INIST-CNRS |
| Copyright_xml | – notice: 2013 – notice: 2015 INIST-CNRS |
| DBID | AAYXX CITATION IQODW 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1016/j.sigpro.2013.10.031 |
| DatabaseName | CrossRef Pascal-Francis Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database Technology Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Applied Sciences |
| EISSN | 1872-7557 |
| EndPage | 161 |
| ExternalDocumentID | 28301690 10_1016_j_sigpro_2013_10_031 S0165168413004222 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SEW SPC SPCBC SST SSV SSZ T5K TAE TN5 WUQ XPP ZMT ~02 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABDPE ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD BNPGV IQODW SSH 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c402t-5c31e710d6bdfe5d350055f0d73712b28e262ada18edfe0ff56e862cc10d2cf73 |
| ISICitedReferencesCount | 12 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000331506000014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0165-1684 |
| IngestDate | Thu Oct 02 10:32:45 EDT 2025 Wed Oct 01 13:19:28 EDT 2025 Wed Apr 02 07:17:46 EDT 2025 Sat Nov 29 03:22:46 EST 2025 Tue Nov 18 22:10:30 EST 2025 Fri Feb 23 02:28:09 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Underdetermined linear equations Iterative thresholding algorithm Global convergence Sparse solution Linear equation Threshold detection Coherence Signal processing Iterative method Algorithm Computational complexity Adaptive method |
| Language | English |
| License | CC BY 4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c402t-5c31e710d6bdfe5d350055f0d73712b28e262ada18edfe0ff56e862cc10d2cf73 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
| PQID | 1530996786 |
| PQPubID | 23500 |
| PageCount | 10 |
| ParticipantIDs | proquest_miscellaneous_1671508403 proquest_miscellaneous_1530996786 pascalfrancis_primary_28301690 crossref_citationtrail_10_1016_j_sigpro_2013_10_031 crossref_primary_10_1016_j_sigpro_2013_10_031 elsevier_sciencedirect_doi_10_1016_j_sigpro_2013_10_031 |
| PublicationCentury | 2000 |
| PublicationDate | 2014-04-01 |
| PublicationDateYYYYMMDD | 2014-04-01 |
| PublicationDate_xml | – month: 04 year: 2014 text: 2014-04-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Amsterdam |
| PublicationPlace_xml | – name: Amsterdam |
| PublicationTitle | Signal processing |
| PublicationYear | 2014 |
| Publisher | Elsevier B.V Elsevier |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier |
| References | Y. Pati, R. Rezaifar, P. Krishnaprasad, Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition, in: Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, 1993. Chartrand, Staneva (bib13) 2008; 24 Mallat, Zhang (bib3) 1993; 41 Welch (bib32) 1974; 20 Candes, Plan (bib33) 2009; 37 Tropp, Gilbert (bib5) 2007; 53 Chen, Donoho, Saunders (bib11) 1998; 20 Needell, Tropp (bib8) 2008; 26 A. Maleki, Coherence analysis of iterative thresholding algorithms, in: The Forty-Seventh Annual Allerton Conference, Allerton House, UIUC, IL, USA, 2009. Zhang (bib18) 2010; 38 Gribonval, Nielsen (bib31) 2003; 49 Cai, Xu, Zhang (bib34) 2009; 55 Maleki, Donoho (bib30) 2010; 4 Qian, Jia, Zhou, Robles-Kelly (bib24) 2011; 49 Donoho, Tsaig, Drori, Starck (bib6) 2012; 58 Xu, Chang, Xu, Zhang (bib15) 2012; 23 Donoho (bib1) 2006; 52 S. Foucart, Sparse recovery algorithms: sufficient conditions in terms of restricted isometry constants, in: M. Neantu, L. Schumaker (Eds.), in: Proceedings of the 13th International Conference on Approximation Theory, San Antonio, TX, Springer, 2010. Candes, Wakin, Boyd (bib16) 2008; 14 Fan, Li (bib17) 2001; 96 Zeng, Fang, Xu (bib25) 2012; 55 Daubechies, Defries, De Mol (bib21) 2004; 57 Gorodnitsky, Rao (bib19) 1997; 45 J.A. Tropp, S. Wright, Computational methods for sparse solution of linear inverse problems, Proc. IEEE 98 (2010) 948–958. Donoho, Elad (bib29) 2003; 100 Xu, Zhang, Wang, Chang, Liang (bib14) 2010; 53 Dai, Milenkovic (bib9) 2009; 55 Chartrand (bib12) 2007; 14 Daubechies, Devore, Fornasier, Gunturk (bib20) 2010; 63 Zeng, Xu, Zhang, Hong, Wu (bib26) 2013; 93 Cao, Sun, Xu (bib22) 2013; 24 Blumensath, Davies (bib27) 2008; 27 Blumensath, Davies (bib23) 2008; 14 Candes, Romberg, Tao (bib2) 2006; 52 Needell, Vershynin (bib7) 2010; 4 Candes (10.1016/j.sigpro.2013.10.031_bib16) 2008; 14 Fan (10.1016/j.sigpro.2013.10.031_bib17) 2001; 96 Candes (10.1016/j.sigpro.2013.10.031_bib33) 2009; 37 Chartrand (10.1016/j.sigpro.2013.10.031_bib13) 2008; 24 Welch (10.1016/j.sigpro.2013.10.031_bib32) 1974; 20 Dai (10.1016/j.sigpro.2013.10.031_bib9) 2009; 55 Gorodnitsky (10.1016/j.sigpro.2013.10.031_bib19) 1997; 45 10.1016/j.sigpro.2013.10.031_bib10 Needell (10.1016/j.sigpro.2013.10.031_bib8) 2008; 26 Donoho (10.1016/j.sigpro.2013.10.031_bib29) 2003; 100 Cao (10.1016/j.sigpro.2013.10.031_bib22) 2013; 24 Donoho (10.1016/j.sigpro.2013.10.031_bib6) 2012; 58 Gribonval (10.1016/j.sigpro.2013.10.031_bib31) 2003; 49 Tropp (10.1016/j.sigpro.2013.10.031_bib5) 2007; 53 10.1016/j.sigpro.2013.10.031_bib35 Xu (10.1016/j.sigpro.2013.10.031_bib15) 2012; 23 Zeng (10.1016/j.sigpro.2013.10.031_bib25) 2012; 55 Candes (10.1016/j.sigpro.2013.10.031_bib2) 2006; 52 Blumensath (10.1016/j.sigpro.2013.10.031_bib23) 2008; 14 Chen (10.1016/j.sigpro.2013.10.031_bib11) 1998; 20 Zeng (10.1016/j.sigpro.2013.10.031_bib26) 2013; 93 Qian (10.1016/j.sigpro.2013.10.031_bib24) 2011; 49 Mallat (10.1016/j.sigpro.2013.10.031_bib3) 1993; 41 Daubechies (10.1016/j.sigpro.2013.10.031_bib21) 2004; 57 Xu (10.1016/j.sigpro.2013.10.031_bib14) 2010; 53 Blumensath (10.1016/j.sigpro.2013.10.031_bib27) 2008; 27 Maleki (10.1016/j.sigpro.2013.10.031_bib30) 2010; 4 Daubechies (10.1016/j.sigpro.2013.10.031_bib20) 2010; 63 10.1016/j.sigpro.2013.10.031_bib4 Cai (10.1016/j.sigpro.2013.10.031_bib34) 2009; 55 Zhang (10.1016/j.sigpro.2013.10.031_bib18) 2010; 38 Needell (10.1016/j.sigpro.2013.10.031_bib7) 2010; 4 10.1016/j.sigpro.2013.10.031_bib28 Chartrand (10.1016/j.sigpro.2013.10.031_bib12) 2007; 14 Donoho (10.1016/j.sigpro.2013.10.031_bib1) 2006; 52 |
| References_xml | – volume: 58 start-page: 1094 year: 2012 end-page: 1121 ident: bib6 article-title: Sparse solution of underdetermined systems of linear equations by stagewise orthogonal matching pursuit publication-title: IEEE Trans. Inf. Theory – volume: 14 start-page: 877 year: 2008 end-page: 905 ident: bib16 article-title: Enhancing sparsity by reweighted publication-title: J. Fourier Anal. Appl. – volume: 20 start-page: 397 year: 1974 end-page: 399 ident: bib32 article-title: Lower bounds on the maximum cross correlation of signals publication-title: IEEE Trans. Inf. Theory – volume: 52 start-page: 489 year: 2006 end-page: 509 ident: bib2 article-title: Robust uncertainty principles publication-title: IEEE Trans. Inf. Theory – volume: 24 start-page: 31 year: 2013 end-page: 41 ident: bib22 article-title: Fast image deconvolution using closed-form thresholding formulas of publication-title: J. Vis. Commun. Image Represent. – volume: 14 start-page: 629 year: 2008 end-page: 654 ident: bib23 article-title: Iterative thresholding for sparse approximation publication-title: J. Fourier Anal. Appl. – volume: 14 start-page: 707 year: 2007 end-page: 710 ident: bib12 article-title: Exact reconstruction of sparse signals via nonconvex minimization publication-title: IEEE Signal Process. Lett. – volume: 55 start-page: 3388 year: 2009 end-page: 3397 ident: bib34 article-title: On recovery of sparse signals via publication-title: IEEE Trans. Inf. Theory – volume: 100 start-page: 2197 year: 2003 end-page: 2202 ident: bib29 article-title: Optimally sparse representation in general (nonorthogonal) dictionaries via publication-title: Proc. Natl. Acad. Sci. – volume: 20 start-page: 33 year: 1998 end-page: 61 ident: bib11 article-title: Atomic decomposition by basis pursuit publication-title: SIAM J. Sci. Comput. – volume: 23 start-page: 1013 year: 2012 end-page: 1027 ident: bib15 article-title: L publication-title: IEEE Trans. Neural Netw. Learning Syst. – reference: A. Maleki, Coherence analysis of iterative thresholding algorithms, in: The Forty-Seventh Annual Allerton Conference, Allerton House, UIUC, IL, USA, 2009. – volume: 55 start-page: 1755 year: 2012 end-page: 1775 ident: bib25 article-title: Sparse SAR imaging based on publication-title: Sci. China Inf. Sci. – volume: 96 start-page: 1348 year: 2001 end-page: 1360 ident: bib17 article-title: Variable selection via nonconcave penalized likelihood and its oracle properties publication-title: J. Am. Stat. Assoc. – volume: 57 start-page: 1413 year: 2004 end-page: 1457 ident: bib21 article-title: An iterative thresholding algorithm for linear inverse problems with a sparsity constraint publication-title: Commun. Pure Appl. Math. – volume: 26 start-page: 301 year: 2008 end-page: 321 ident: bib8 article-title: CoSaMP publication-title: Appl. Comput. Harmon. Anal. – volume: 37 start-page: 2145 year: 2009 end-page: 2177 ident: bib33 article-title: Near-ideal model selection by publication-title: Ann. Stat. – reference: Y. Pati, R. Rezaifar, P. Krishnaprasad, Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition, in: Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, 1993. – volume: 4 start-page: 310 year: 2010 end-page: 316 ident: bib7 article-title: Signal recovery from incomplete and inaccurate measurements via Regularized Orthogonal Matching Pursuit publication-title: IEEE J. Sel. Top. Signal Process. – reference: S. Foucart, Sparse recovery algorithms: sufficient conditions in terms of restricted isometry constants, in: M. Neantu, L. Schumaker (Eds.), in: Proceedings of the 13th International Conference on Approximation Theory, San Antonio, TX, Springer, 2010. – volume: 49 start-page: 3320 year: 2003 end-page: 3325 ident: bib31 article-title: Sparse representations in unions of bases publication-title: IEEE Trans. Inf. Theory – volume: 63 start-page: 1 year: 2010 end-page: 38 ident: bib20 article-title: Iteratively reweighted least squares minimization for sparse recovery publication-title: Commun. Pure Appl. Math. – volume: 24 start-page: 1 year: 2008 end-page: 14 ident: bib13 article-title: Restricted isometry properties and nonconvex compressive sensing publication-title: Inverse Problems – volume: 38 start-page: 894 year: 2010 end-page: 942 ident: bib18 article-title: Nearly unbiased variable selection under minimax concave penalty publication-title: Ann. Stat. – volume: 93 start-page: 1831 year: 2013 end-page: 1844 ident: bib26 article-title: Accelerated publication-title: Signal Process. – volume: 52 start-page: 1289 year: 2006 end-page: 1306 ident: bib1 article-title: Compressed sensing publication-title: IEEE Trans. Inf. Theory – volume: 45 start-page: 600 year: 1997 end-page: 616 ident: bib19 article-title: Sparse signal reconstruction from limited data using FOCUSS publication-title: IEEE Trans. Signal Process. – volume: 4 start-page: 330 year: 2010 end-page: 341 ident: bib30 article-title: Optimally tuned iterative reconstruction algorithms for compressed sensing publication-title: IEEE J. Sel. Top. Signal Process. – volume: 41 start-page: 3397 year: 1993 end-page: 3415 ident: bib3 article-title: Matching pursuits with time–frequency dictionaries publication-title: IEEE Trans. Signal Process. – volume: 53 start-page: 1159 year: 2010 end-page: 1169 ident: bib14 article-title: regularizater publication-title: Sci. China, Ser. F—Inf. Sci. – volume: 27 start-page: 265 year: 2008 end-page: 274 ident: bib27 article-title: Iterative hard thresholding for compressed sensing publication-title: Appl. Comput. Harmon. Anal. – volume: 49 start-page: 4282 year: 2011 end-page: 4297 ident: bib24 article-title: Hyperspectral unmixing via publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 53 start-page: 4655 year: 2007 end-page: 4666 ident: bib5 article-title: Signal recovery from random measurements via orthogonal matching pursuit publication-title: IEEE Trans. Inf. Theory – reference: J.A. Tropp, S. Wright, Computational methods for sparse solution of linear inverse problems, Proc. IEEE 98 (2010) 948–958. – volume: 55 start-page: 2230 year: 2009 end-page: 2249 ident: bib9 article-title: Subspace pursuit for compressive sensing signal reconstruction publication-title: IEEE Trans. Inf. Theory – volume: 55 start-page: 2230 issue: 5 year: 2009 ident: 10.1016/j.sigpro.2013.10.031_bib9 article-title: Subspace pursuit for compressive sensing signal reconstruction publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2009.2016006 – volume: 24 start-page: 31 year: 2013 ident: 10.1016/j.sigpro.2013.10.031_bib22 article-title: Fast image deconvolution using closed-form thresholding formulas of Lq (q=1/2,2/3) regularization publication-title: J. Vis. Commun. Image Represent. doi: 10.1016/j.jvcir.2012.10.006 – volume: 4 start-page: 310 year: 2010 ident: 10.1016/j.sigpro.2013.10.031_bib7 article-title: Signal recovery from incomplete and inaccurate measurements via Regularized Orthogonal Matching Pursuit publication-title: IEEE J. Sel. Top. Signal Process. doi: 10.1109/JSTSP.2010.2042412 – ident: 10.1016/j.sigpro.2013.10.031_bib35 doi: 10.1007/978-1-4614-0772-0_5 – volume: 20 start-page: 33 year: 1998 ident: 10.1016/j.sigpro.2013.10.031_bib11 article-title: Atomic decomposition by basis pursuit publication-title: SIAM J. Sci. Comput. doi: 10.1137/S1064827596304010 – volume: 38 start-page: 894 issue: 2 year: 2010 ident: 10.1016/j.sigpro.2013.10.031_bib18 article-title: Nearly unbiased variable selection under minimax concave penalty publication-title: Ann. Stat. doi: 10.1214/09-AOS729 – volume: 49 start-page: 4282 issue: 11 year: 2011 ident: 10.1016/j.sigpro.2013.10.031_bib24 article-title: Hyperspectral unmixing via L1/2 sparsity-constrained nonnegative matrix factorization publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2011.2144605 – volume: 93 start-page: 1831 year: 2013 ident: 10.1016/j.sigpro.2013.10.031_bib26 article-title: Accelerated L1/2 regularization based SAR imaging via BCR and reduced Newton skills publication-title: Signal Process. doi: 10.1016/j.sigpro.2012.12.017 – volume: 63 start-page: 1 year: 2010 ident: 10.1016/j.sigpro.2013.10.031_bib20 article-title: Iteratively reweighted least squares minimization for sparse recovery publication-title: Commun. Pure Appl. Math. doi: 10.1002/cpa.20303 – volume: 57 start-page: 1413 year: 2004 ident: 10.1016/j.sigpro.2013.10.031_bib21 article-title: An iterative thresholding algorithm for linear inverse problems with a sparsity constraint publication-title: Commun. Pure Appl. Math. doi: 10.1002/cpa.20042 – volume: 53 start-page: 4655 year: 2007 ident: 10.1016/j.sigpro.2013.10.031_bib5 article-title: Signal recovery from random measurements via orthogonal matching pursuit publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2007.909108 – volume: 26 start-page: 301 issue: 3 year: 2008 ident: 10.1016/j.sigpro.2013.10.031_bib8 article-title: CoSaMP publication-title: Appl. Comput. Harmon. Anal. doi: 10.1016/j.acha.2008.07.002 – volume: 52 start-page: 1289 issue: 4 year: 2006 ident: 10.1016/j.sigpro.2013.10.031_bib1 article-title: Compressed sensing publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2006.871582 – volume: 100 start-page: 2197 issue: 5 year: 2003 ident: 10.1016/j.sigpro.2013.10.031_bib29 article-title: Optimally sparse representation in general (nonorthogonal) dictionaries via l1 minimization publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.0437847100 – volume: 96 start-page: 1348 year: 2001 ident: 10.1016/j.sigpro.2013.10.031_bib17 article-title: Variable selection via nonconcave penalized likelihood and its oracle properties publication-title: J. Am. Stat. Assoc. doi: 10.1198/016214501753382273 – volume: 52 start-page: 489 issue: 2 year: 2006 ident: 10.1016/j.sigpro.2013.10.031_bib2 article-title: Robust uncertainty principles publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2005.862083 – ident: 10.1016/j.sigpro.2013.10.031_bib28 doi: 10.1109/ALLERTON.2009.5394802 – volume: 45 start-page: 600 issue: 3 year: 1997 ident: 10.1016/j.sigpro.2013.10.031_bib19 article-title: Sparse signal reconstruction from limited data using FOCUSS publication-title: IEEE Trans. Signal Process. doi: 10.1109/78.558475 – volume: 49 start-page: 3320 issue: 12 year: 2003 ident: 10.1016/j.sigpro.2013.10.031_bib31 article-title: Sparse representations in unions of bases publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2003.820031 – ident: 10.1016/j.sigpro.2013.10.031_bib10 doi: 10.1109/JPROC.2010.2044010 – volume: 41 start-page: 3397 issue: 12 year: 1993 ident: 10.1016/j.sigpro.2013.10.031_bib3 article-title: Matching pursuits with time–frequency dictionaries publication-title: IEEE Trans. Signal Process. doi: 10.1109/78.258082 – volume: 55 start-page: 1755 year: 2012 ident: 10.1016/j.sigpro.2013.10.031_bib25 article-title: Sparse SAR imaging based on L1/2 regularization publication-title: Sci. China Inf. Sci. doi: 10.1007/s11432-012-4632-5 – ident: 10.1016/j.sigpro.2013.10.031_bib4 doi: 10.1109/ACSSC.1993.342465 – volume: 20 start-page: 397 issue: 3 year: 1974 ident: 10.1016/j.sigpro.2013.10.031_bib32 article-title: Lower bounds on the maximum cross correlation of signals publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.1974.1055219 – volume: 14 start-page: 707 issue: 10 year: 2007 ident: 10.1016/j.sigpro.2013.10.031_bib12 article-title: Exact reconstruction of sparse signals via nonconvex minimization publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2007.898300 – volume: 53 start-page: 1159 year: 2010 ident: 10.1016/j.sigpro.2013.10.031_bib14 article-title: L1/2 regularizater publication-title: Sci. China, Ser. F—Inf. Sci. doi: 10.1007/s11432-010-0090-0 – volume: 4 start-page: 330 issue: 2 year: 2010 ident: 10.1016/j.sigpro.2013.10.031_bib30 article-title: Optimally tuned iterative reconstruction algorithms for compressed sensing publication-title: IEEE J. Sel. Top. Signal Process. doi: 10.1109/JSTSP.2009.2039176 – volume: 14 start-page: 877 issue: 5 year: 2008 ident: 10.1016/j.sigpro.2013.10.031_bib16 article-title: Enhancing sparsity by reweighted l1 minimization publication-title: J. Fourier Anal. Appl. doi: 10.1007/s00041-008-9045-x – volume: 24 start-page: 1 year: 2008 ident: 10.1016/j.sigpro.2013.10.031_bib13 article-title: Restricted isometry properties and nonconvex compressive sensing publication-title: Inverse Problems doi: 10.1088/0266-5611/24/3/035020 – volume: 55 start-page: 3388 issue: 7 year: 2009 ident: 10.1016/j.sigpro.2013.10.031_bib34 article-title: On recovery of sparse signals via l1 minimization publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2009.2021377 – volume: 37 start-page: 2145 year: 2009 ident: 10.1016/j.sigpro.2013.10.031_bib33 article-title: Near-ideal model selection by l1 minimization publication-title: Ann. Stat. doi: 10.1214/08-AOS653 – volume: 27 start-page: 265 year: 2008 ident: 10.1016/j.sigpro.2013.10.031_bib27 article-title: Iterative hard thresholding for compressed sensing publication-title: Appl. Comput. Harmon. Anal. doi: 10.1016/j.acha.2009.04.002 – volume: 23 start-page: 1013 year: 2012 ident: 10.1016/j.sigpro.2013.10.031_bib15 article-title: L1/2 regularization publication-title: IEEE Trans. Neural Netw. Learning Syst. – volume: 58 start-page: 1094 issue: 2 year: 2012 ident: 10.1016/j.sigpro.2013.10.031_bib6 article-title: Sparse solution of underdetermined systems of linear equations by stagewise orthogonal matching pursuit publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2011.2173241 – volume: 14 start-page: 629 issue: 5 year: 2008 ident: 10.1016/j.sigpro.2013.10.031_bib23 article-title: Iterative thresholding for sparse approximation publication-title: J. Fourier Anal. Appl. doi: 10.1007/s00041-008-9035-z |
| SSID | ssj0001360 |
| Score | 2.1515946 |
| Snippet | Finding the sparset solution of an underdetermined system of linear equations y=Ax has attracted considerable attention in recent years. Among a large number... |
| SourceID | proquest pascalfrancis crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 152 |
| SubjectTerms | Algorithms Applied sciences Coherence Convergence Detection, estimation, filtering, equalization, prediction Deviation Exact sciences and technology Global convergence Information, signal and communications theory Iterative methods Iterative thresholding algorithm Linear equations Mathematical analysis Mathematical models Signal and communications theory Signal, noise Sparse solution Telecommunications and information theory Underdetermined linear equations |
| Title | Sparse solution of underdetermined linear equations via adaptively iterative thresholding |
| URI | https://dx.doi.org/10.1016/j.sigpro.2013.10.031 https://www.proquest.com/docview/1530996786 https://www.proquest.com/docview/1671508403 |
| Volume | 97 |
| WOSCitedRecordID | wos000331506000014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-7557 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001360 issn: 0165-1684 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3di9QwEA-654Mi4ieuH0cE35Yum6Zp0sdDTlTkEPaU9am0abq3x9HW7e5x_vfONEmv56Kngi-lpE2TZiaZXybzQchrBlKrSAQPjNQ8iArFAlWyPJAYCyWJSmU61cWXj_LoSC0WySen0G-7dAKyqtTFRdL8V1JDGRAbXWf_gtz9R6EA7oHocAWyw_WPCD9vYK9qJr4RRIPoKLYunOELIEyEltl6Yr5tnSHcObpmFVmDa9_Z94kNtYw2RRsgdetOqIY4dr5aIoxtrJuBf4gKaONMfFdVezKw97GhCuYnWZ3XvnCx7Y5G6mqZO4c0p35gQ6uVTie24xdj1ZSxCFhsk79NjV1alQQsL2w4ar_2Wttct3gyG8vWyWFmg7TvLPFW23A6bVdL-Ek0zuNTtM9zwuRq8Ow59gQ7gqd2qO26SfZCKRI1InsH7w8XH3qpzXjnUd733LtZdraAu239CsbcbbIWJldps6LsCPgOtRzfJ_fcdoMeWDZ5QG6Y6iG5MwhC-Yh8tQxDPcPQuqQ_MQy1DEN7hqHAMPSSYWjPMHTIMI_J57eHx2_eBS7hRqCjWbgJhObM4OSN86I0ouACQ7SVs0JyycI8VCaMQ_g4Uwaez8pSxAZ2xFpDlVCXkj8ho6quzFNCQyWgJojTCDBqkQEKjnSWcailtIjibEy4H79Uu2j0mBTlLPVmh6epHfUURx1LYdTHJOhrNTYayzXvS0-a1CFKixRT4KZrau5foWTfHAbMw6PlMXnlSZvCiozHbFll6m2bwk_DtgtAYPybd2KJiRiiGX_2z118Tm5fTsgXZLRZb81Lckufb1btet_x9w_kgsMF |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sparse+solution+of+underdetermined+linear+equations+via+adaptively+iterative+thresholding&rft.jtitle=Signal+processing&rft.au=Zeng%2C+Jinshan&rft.au=Lin%2C+Shaobo&rft.au=Xu%2C+Zongben&rft.date=2014-04-01&rft.pub=Elsevier+B.V&rft.issn=0165-1684&rft.eissn=1872-7557&rft.volume=97&rft.spage=152&rft.epage=161&rft_id=info:doi/10.1016%2Fj.sigpro.2013.10.031&rft.externalDocID=S0165168413004222 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-1684&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-1684&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-1684&client=summon |