Attribute-Based Classification for Zero-Shot Visual Object Categorization

We study the problem of object recognition for categories for which we have no training examples, a task also called zero--data or zero-shot learning. This situation has hardly been studied in computer vision research, even though it occurs frequently; the world contains tens of thousands of differe...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on pattern analysis and machine intelligence Ročník 36; číslo 3; s. 453 - 465
Hlavní autoři: Lampert, Christoph H., Nickisch, Hannes, Harmeling, Stefan
Médium: Journal Article
Jazyk:angličtina
Vydáno: Los Alamitos, CA IEEE 01.03.2014
IEEE Computer Society
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0162-8828, 1939-3539, 2160-9292, 1939-3539
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract We study the problem of object recognition for categories for which we have no training examples, a task also called zero--data or zero-shot learning. This situation has hardly been studied in computer vision research, even though it occurs frequently; the world contains tens of thousands of different object classes, and image collections have been formed and suitably annotated for only a few of them. To tackle the problem, we introduce attribute-based classification: Objects are identified based on a high-level description that is phrased in terms of semantic attributes, such as the object's color or shape. Because the identification of each such property transcends the specific learning task at hand, the attribute classifiers can be prelearned independently, for example, from existing image data sets unrelated to the current task. Afterward, new classes can be detected based on their attribute representation, without the need for a new training phase. In this paper, we also introduce a new data set, Animals with Attributes, of over 30,000 images of 50 animal classes, annotated with 85 semantic attributes. Extensive experiments on this and two more data sets show that attribute-based classification indeed is able to categorize images without access to any training images of the target classes.
AbstractList We study the problem of object recognition for categories for which we have no training examples, a task also called zero--data or zero-shot learning. This situation has hardly been studied in computer vision research, even though it occurs frequently; the world contains tens of thousands of different object classes, and image collections have been formed and suitably annotated for only a few of them. To tackle the problem, we introduce attribute-based classification: Objects are identified based on a high-level description that is phrased in terms of semantic attributes, such as the object's color or shape. Because the identification of each such property transcends the specific learning task at hand, the attribute classifiers can be prelearned independently, for example, from existing image data sets unrelated to the current task. Afterward, new classes can be detected based on their attribute representation, without the need for a new training phase. In this paper, we also introduce a new data set, Animals with Attributes, of over 30,000 images of 50 animal classes, annotated with 85 semantic attributes. Extensive experiments on this and two more data sets show that attribute-based classification indeed is able to categorize images without access to any training images of the target classes.
We study the problem of object recognition for categories for which we have no training examples, a task also called zero--data or zero-shot learning. This situation has hardly been studied in computer vision research, even though it occurs frequently; the world contains tens of thousands of different object classes, and image collections have been formed and suitably annotated for only a few of them. To tackle the problem, we introduce attribute-based classification: Objects are identified based on a high-level description that is phrased in terms of semantic attributes, such as the object's color or shape. Because the identification of each such property transcends the specific learning task at hand, the attribute classifiers can be prelearned independently, for example, from existing image data sets unrelated to the current task. Afterward, new classes can be detected based on their attribute representation, without the need for a new training phase. In this paper, we also introduce a new data set, Animals with Attributes, of over 30,000 images of 50 animal classes, annotated with 85 semantic attributes. Extensive experiments on this and two more data sets show that attribute-based classification indeed is able to categorize images without access to any training images of the target classes.We study the problem of object recognition for categories for which we have no training examples, a task also called zero--data or zero-shot learning. This situation has hardly been studied in computer vision research, even though it occurs frequently; the world contains tens of thousands of different object classes, and image collections have been formed and suitably annotated for only a few of them. To tackle the problem, we introduce attribute-based classification: Objects are identified based on a high-level description that is phrased in terms of semantic attributes, such as the object's color or shape. Because the identification of each such property transcends the specific learning task at hand, the attribute classifiers can be prelearned independently, for example, from existing image data sets unrelated to the current task. Afterward, new classes can be detected based on their attribute representation, without the need for a new training phase. In this paper, we also introduce a new data set, Animals with Attributes, of over 30,000 images of 50 animal classes, annotated with 85 semantic attributes. Extensive experiments on this and two more data sets show that attribute-based classification indeed is able to categorize images without access to any training images of the target classes.
Author Nickisch, Hannes
Harmeling, Stefan
Lampert, Christoph H.
Author_xml – sequence: 1
  givenname: Christoph H.
  surname: Lampert
  fullname: Lampert, Christoph H.
  email: chl@ist.ac.at
  organization: Inst. of Sci. & Technol. Austria, Klosterneuburg, Austria
– sequence: 2
  givenname: Hannes
  surname: Nickisch
  fullname: Nickisch, Hannes
  email: hannes@nickisch.org
  organization: Philips Res., Hamburg, Germany
– sequence: 3
  givenname: Stefan
  surname: Harmeling
  fullname: Harmeling, Stefan
  email: stefan.harmeling@tuebingen.mpg.de
  organization: Max Planck Inst. for Intell. Syst., Tubingen, Germany
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28402986$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/24457503$$D View this record in MEDLINE/PubMed
BookMark eNqF0U1r3DAQBmARUpJNmmsvhWAIhV68HcmSLR03Sz8WUlJo2kMuZixLjRavlUjyof31VXa3KQRKT9LheUeamRNyOPrREPKKwpxSUO9uviw-r-YMaDWnHA7IjNEaSsUUOyQzoDUrpWTymJzEuAagXEB1RI4Z56LJ1xlZLVIKrpuSKS8xmr5YDhijs05jcn4srA_FrQm-_HrnU_HdxQmH4rpbG52KJSbzwwf3a0tfkhcWh2jO9ucp-fbh_c3yU3l1_XG1XFyVmgNLpaCccaqx4R0XPQpZ9wy7BjtZMUSQPbW9rIytwPYKuDBcAe36nJKoO4vVKXm7q3sf_MNkYmo3LmozDDgaP8WWCgZKQKPE_ylXrAHBVJPpxTO69lMYcyO5IPC6ylVZVud7NXUb07f3wW0w_Gz_zDODN3uAUeNgA47axb9O5hkoWWc33zkdfIzB2CdCoX1cbLtdbPu42PxNyAH-LKBd2s49BXTDv2OvdzFnjHl6oxYNpaqufgPo86zA
CODEN ITPIDJ
CitedBy_id crossref_primary_10_1109_TCYB_2021_3062830
crossref_primary_10_1109_TNNLS_2017_2727065
crossref_primary_10_1109_TIP_2021_3128325
crossref_primary_10_1109_TPAMI_2015_2408354
crossref_primary_10_1016_j_image_2020_116115
crossref_primary_10_3390_app9224749
crossref_primary_10_1007_s10489_022_04342_1
crossref_primary_10_1016_j_cviu_2019_07_004
crossref_primary_10_1049_tje2_12185
crossref_primary_10_1016_j_neucom_2022_04_114
crossref_primary_10_3390_make4010002
crossref_primary_10_1007_s44295_025_00070_7
crossref_primary_10_1016_j_jvcir_2020_103010
crossref_primary_10_1109_TCSVT_2020_2984666
crossref_primary_10_1109_TIP_2023_3247167
crossref_primary_10_3390_fi16120453
crossref_primary_10_1016_j_knosys_2017_12_022
crossref_primary_10_1109_TPAMI_2022_3183586
crossref_primary_10_3390_app12083760
crossref_primary_10_3390_app13031750
crossref_primary_10_1016_j_patrec_2017_05_012
crossref_primary_10_1016_j_eswa_2023_119642
crossref_primary_10_1080_24725854_2023_2263786
crossref_primary_10_1007_s11263_021_01454_y
crossref_primary_10_1007_s13042_021_01421_6
crossref_primary_10_1109_LSP_2018_2857201
crossref_primary_10_1016_j_neucom_2022_06_071
crossref_primary_10_1109_TCSVT_2024_3359238
crossref_primary_10_1109_TIP_2020_3020383
crossref_primary_10_1109_TNNLS_2022_3201883
crossref_primary_10_1016_j_neucom_2020_09_065
crossref_primary_10_1007_s13735_024_00336_6
crossref_primary_10_1109_TPAMI_2016_2643667
crossref_primary_10_1016_j_neunet_2022_02_018
crossref_primary_10_1016_j_knosys_2020_105847
crossref_primary_10_1016_j_eswa_2023_120875
crossref_primary_10_1109_TNNLS_2022_3145962
crossref_primary_10_3390_app13127071
crossref_primary_10_1016_j_patcog_2023_109937
crossref_primary_10_1109_LSP_2017_2748392
crossref_primary_10_1109_TPAMI_2018_2857768
crossref_primary_10_1109_TKDE_2021_3109131
crossref_primary_10_1016_j_knosys_2018_06_018
crossref_primary_10_1155_2022_2717322
crossref_primary_10_1109_ACCESS_2020_3022805
crossref_primary_10_1109_TMM_2021_3079705
crossref_primary_10_1049_ise2_12088
crossref_primary_10_1007_s11263_019_01193_1
crossref_primary_10_1007_s10044_021_00992_y
crossref_primary_10_1007_s11263_024_02144_1
crossref_primary_10_1109_TMM_2017_2759499
crossref_primary_10_1016_j_ergon_2025_103732
crossref_primary_10_1109_TCYB_2016_2612686
crossref_primary_10_1016_j_knosys_2018_06_034
crossref_primary_10_1109_TNNLS_2024_3379527
crossref_primary_10_1109_ACCESS_2023_3303640
crossref_primary_10_1155_2019_7390327
crossref_primary_10_1109_TMM_2015_2477680
crossref_primary_10_3390_rs14205191
crossref_primary_10_1016_j_imavis_2022_104392
crossref_primary_10_1109_TCSVT_2024_3414275
crossref_primary_10_1016_j_ins_2016_10_025
crossref_primary_10_1109_ACCESS_2019_2925093
crossref_primary_10_1109_TMM_2023_3258624
crossref_primary_10_1145_3510030
crossref_primary_10_1109_TCYB_2022_3164142
crossref_primary_10_1007_s00521_021_06461_1
crossref_primary_10_1109_TIM_2025_3545713
crossref_primary_10_1109_TPAMI_2021_3079511
crossref_primary_10_1109_TMM_2016_2582379
crossref_primary_10_1016_j_neucom_2020_11_061
crossref_primary_10_1016_j_bspc_2025_108035
crossref_primary_10_1109_ACCESS_2020_3015334
crossref_primary_10_1109_TIP_2016_2523340
crossref_primary_10_1016_j_sigpro_2017_03_023
crossref_primary_10_1088_1742_6596_1529_4_042076
crossref_primary_10_1109_TAI_2022_3208860
crossref_primary_10_1109_TIP_2025_3544481
crossref_primary_10_1007_s11263_020_01381_4
crossref_primary_10_1109_JPROC_2023_3279374
crossref_primary_10_1016_j_neucom_2021_04_031
crossref_primary_10_1109_TCYB_2018_2850750
crossref_primary_10_1109_TCYB_2021_3050803
crossref_primary_10_1109_TPAMI_2022_3200091
crossref_primary_10_3390_rs13152901
crossref_primary_10_1016_j_neucom_2020_07_128
crossref_primary_10_1109_TNNLS_2021_3104882
crossref_primary_10_1016_j_ins_2025_122069
crossref_primary_10_1016_j_engappai_2025_112321
crossref_primary_10_1016_j_compeleceng_2022_108068
crossref_primary_10_1016_j_ymssp_2025_112427
crossref_primary_10_1016_j_compag_2016_05_009
crossref_primary_10_1016_j_eswa_2024_125150
crossref_primary_10_1002_ail2_57
crossref_primary_10_1109_TPAMI_2018_2873701
crossref_primary_10_1007_s12652_020_02615_6
crossref_primary_10_1016_j_inffus_2020_08_017
crossref_primary_10_1007_s11390_020_9487_4
crossref_primary_10_1109_TCSVT_2024_3384756
crossref_primary_10_1109_TSMC_2018_2837670
crossref_primary_10_1109_TPAMI_2022_3195549
crossref_primary_10_1109_TII_2020_2988208
crossref_primary_10_1016_j_knosys_2022_109218
crossref_primary_10_1049_iet_cvi_2018_5131
crossref_primary_10_1109_TPAMI_2025_3560033
crossref_primary_10_1109_TCYB_2019_2928180
crossref_primary_10_1109_TMM_2021_3103605
crossref_primary_10_1016_j_compind_2022_103610
crossref_primary_10_3390_rs16111930
crossref_primary_10_1109_TFUZZ_2024_3363708
crossref_primary_10_1016_j_neunet_2019_09_029
crossref_primary_10_1016_j_engappai_2025_110151
crossref_primary_10_1016_j_ijhm_2025_104397
crossref_primary_10_1016_j_neucom_2020_10_080
crossref_primary_10_1016_j_ins_2021_06_085
crossref_primary_10_1007_s10462_023_10534_z
crossref_primary_10_1162_neco_a_01096
crossref_primary_10_1016_j_image_2021_116614
crossref_primary_10_1016_j_neucom_2017_10_061
crossref_primary_10_1109_TITS_2018_2868168
crossref_primary_10_3934_aci_2022001
crossref_primary_10_1109_TKDE_2022_3150790
crossref_primary_10_1109_TMC_2025_3573168
crossref_primary_10_3390_info13120561
crossref_primary_10_1016_j_jvcir_2018_06_026
crossref_primary_10_3390_app10207234
crossref_primary_10_1007_s10994_018_5710_8
crossref_primary_10_3390_jimaging8060171
crossref_primary_10_1109_TKDE_2019_2942590
crossref_primary_10_1016_j_neunet_2022_09_018
crossref_primary_10_1109_ACCESS_2019_2962298
crossref_primary_10_1109_TPAMI_2018_2867870
crossref_primary_10_1007_s11263_025_02394_7
crossref_primary_10_1109_LSP_2021_3092227
crossref_primary_10_1109_TEVC_2023_3307245
crossref_primary_10_1109_TIM_2024_3378256
crossref_primary_10_1016_j_patcog_2016_10_034
crossref_primary_10_1007_s11042_019_7689_y
crossref_primary_10_1007_s11042_016_3863_7
crossref_primary_10_1016_j_websem_2022_100757
crossref_primary_10_1371_journal_pone_0301692
crossref_primary_10_1109_TPAMI_2023_3257407
crossref_primary_10_1016_j_inffus_2020_08_020
crossref_primary_10_1016_j_knosys_2025_113466
crossref_primary_10_1007_s11263_016_0931_4
crossref_primary_10_1016_j_eswa_2025_126671
crossref_primary_10_1109_TCYB_2022_3165550
crossref_primary_10_1109_TNNLS_2020_3006322
crossref_primary_10_1162_neco_a_01071
crossref_primary_10_1016_j_eswa_2024_125165
crossref_primary_10_1109_TPAMI_2018_2836900
crossref_primary_10_1007_s11042_023_14790_7
crossref_primary_10_1109_TPAMI_2018_2877660
crossref_primary_10_1007_s11263_020_01350_x
crossref_primary_10_1109_JPROC_2020_2989782
crossref_primary_10_1109_TIP_2018_2881926
crossref_primary_10_1016_j_patcog_2025_111989
crossref_primary_10_1049_iet_ipr_2019_0870
crossref_primary_10_1109_ACCESS_2023_3282932
crossref_primary_10_3390_rs12101676
crossref_primary_10_1007_s10032_018_0295_0
crossref_primary_10_1007_s11277_018_5723_4
crossref_primary_10_1016_j_patrec_2017_11_013
crossref_primary_10_1016_j_ins_2018_08_048
crossref_primary_10_1016_j_jprocont_2023_103004
crossref_primary_10_3390_electronics10161879
crossref_primary_10_1088_1742_6596_1914_1_012003
crossref_primary_10_1016_j_neunet_2022_08_034
crossref_primary_10_1007_s11263_024_02021_x
crossref_primary_10_1016_j_patcog_2022_109270
crossref_primary_10_1117_1_JRS_17_032405
crossref_primary_10_1186_s12859_018_2517_3
crossref_primary_10_1109_TRS_2025_3580543
crossref_primary_10_1007_s11042_018_6245_5
crossref_primary_10_1109_TGRS_2017_2689071
crossref_primary_10_1109_TNNLS_2022_3184821
crossref_primary_10_1016_j_ins_2022_07_096
crossref_primary_10_1109_TMM_2019_2959433
crossref_primary_10_1109_TNNLS_2024_3386935
crossref_primary_10_1007_s10489_022_03244_6
crossref_primary_10_1007_s11263_025_02422_6
crossref_primary_10_1109_TNNLS_2022_3142181
crossref_primary_10_1016_j_neucom_2023_126873
crossref_primary_10_1109_ACCESS_2019_2958052
crossref_primary_10_1007_s13042_020_01170_y
crossref_primary_10_1049_iet_cvi_2017_0438
crossref_primary_10_1109_TIP_2014_2327805
crossref_primary_10_1016_j_engappai_2022_105012
crossref_primary_10_1016_j_neucom_2020_01_078
crossref_primary_10_1109_TASE_2018_2876611
crossref_primary_10_1109_TAI_2023_3308555
crossref_primary_10_1109_TIP_2021_3135480
crossref_primary_10_1007_s10489_022_03257_1
crossref_primary_10_1016_j_neucom_2021_01_037
crossref_primary_10_1109_TMM_2022_3145237
crossref_primary_10_1007_s10489_023_04808_w
crossref_primary_10_1007_s41745_019_0099_3
crossref_primary_10_3390_s18082485
crossref_primary_10_1016_j_engappai_2025_111692
crossref_primary_10_1007_s12559_019_09629_z
crossref_primary_10_1109_ACCESS_2019_2925383
crossref_primary_10_1109_JSTARS_2021_3132189
crossref_primary_10_3390_a9010017
crossref_primary_10_1016_j_inffus_2023_101917
crossref_primary_10_1109_ACCESS_2023_3343759
crossref_primary_10_1016_j_eswa_2015_07_049
crossref_primary_10_1016_j_ipm_2023_103479
crossref_primary_10_1109_TIP_2018_2831454
crossref_primary_10_1016_j_ins_2020_01_025
crossref_primary_10_1016_j_jvcir_2018_12_041
crossref_primary_10_1016_j_sigpro_2019_05_022
crossref_primary_10_1007_s11263_020_01340_z
crossref_primary_10_1016_j_jtice_2024_105784
crossref_primary_10_1109_TCDS_2016_2632178
crossref_primary_10_1109_TMM_2020_3047546
crossref_primary_10_1109_TNNLS_2020_3026876
crossref_primary_10_1109_ACCESS_2019_2935175
crossref_primary_10_1016_j_neunet_2021_07_031
crossref_primary_10_1109_TIM_2025_3553970
crossref_primary_10_1016_j_patrec_2022_02_002
crossref_primary_10_1002_int_22811
crossref_primary_10_1109_TIP_2018_2813530
crossref_primary_10_1109_TNNLS_2024_3350715
crossref_primary_10_1109_TCSVT_2019_2908487
crossref_primary_10_1109_TIP_2023_3295738
crossref_primary_10_1016_j_neunet_2025_107997
crossref_primary_10_1016_j_ress_2023_109591
crossref_primary_10_1016_j_inffus_2025_103124
crossref_primary_10_1109_TPAMI_2022_3163667
crossref_primary_10_1016_j_neunet_2024_106170
crossref_primary_10_1109_TIP_2019_2932502
crossref_primary_10_1109_TPAMI_2019_2921960
crossref_primary_10_1016_j_patcog_2024_110451
crossref_primary_10_1162_neco_a_01256
crossref_primary_10_1016_j_compmedimag_2016_01_001
crossref_primary_10_1016_j_image_2023_116955
crossref_primary_10_1016_j_isatra_2024_12_026
crossref_primary_10_1109_TNNLS_2019_2904991
crossref_primary_10_1109_TPAMI_2022_3144984
crossref_primary_10_3169_mta_4_209
crossref_primary_10_1109_TCSVT_2025_3529937
crossref_primary_10_1016_j_neucom_2023_126320
crossref_primary_10_1016_j_neunet_2021_05_019
crossref_primary_10_1109_TCDS_2020_3044313
crossref_primary_10_1007_s10994_022_06196_7
crossref_primary_10_1016_j_psep_2023_07_080
crossref_primary_10_1016_j_robot_2018_03_002
crossref_primary_10_1109_TPAMI_2019_2893215
crossref_primary_10_18267_j_aip_288
crossref_primary_10_1016_j_robot_2019_05_013
crossref_primary_10_1016_j_eswa_2025_126488
crossref_primary_10_1049_ipr2_13113
crossref_primary_10_1007_s11704_019_8249_3
crossref_primary_10_1016_j_neucom_2019_09_062
crossref_primary_10_1016_j_robot_2024_104688
crossref_primary_10_1049_ipr2_12147
crossref_primary_10_1109_TKDE_2016_2545658
crossref_primary_10_1080_01691864_2016_1164621
crossref_primary_10_3233_SW_212959
crossref_primary_10_1016_j_artmed_2024_102949
crossref_primary_10_1016_j_knosys_2020_105651
crossref_primary_10_1109_LSP_2020_2968213
crossref_primary_10_1016_j_cogsys_2018_12_003
crossref_primary_10_1109_JIOT_2024_3511592
crossref_primary_10_1109_TCSVT_2021_3067067
crossref_primary_10_1109_TMM_2022_3145666
crossref_primary_10_1109_TPAMI_2017_2693987
crossref_primary_10_1109_TPAMI_2016_2636827
crossref_primary_10_1109_TNNLS_2017_2728060
crossref_primary_10_1109_ACCESS_2020_2971174
crossref_primary_10_1109_TCYB_2018_2804326
crossref_primary_10_1109_TETCI_2018_2868061
crossref_primary_10_1016_j_patcog_2021_107953
crossref_primary_10_1109_TMM_2020_2993952
crossref_primary_10_1016_j_eswa_2024_126192
crossref_primary_10_1109_TIP_2020_2975980
crossref_primary_10_1109_TPAMI_2020_2965531
crossref_primary_10_3233_JIFS_191292
crossref_primary_10_1007_s00521_023_08299_1
crossref_primary_10_1109_TPAMI_2020_2965534
crossref_primary_10_1145_3603147
crossref_primary_10_1016_j_ipm_2022_103233
crossref_primary_10_1109_TIP_2020_2986892
crossref_primary_10_1109_TPAMI_2023_3273712
crossref_primary_10_1145_3419972
crossref_primary_10_1109_ACCESS_2020_2964613
crossref_primary_10_3390_rs16101653
crossref_primary_10_1016_j_patcog_2019_107003
crossref_primary_10_1016_j_image_2022_116897
crossref_primary_10_1109_ACCESS_2019_2938349
crossref_primary_10_1109_ACCESS_2022_3175873
crossref_primary_10_3103_S0735272723030020
crossref_primary_10_1016_j_neucom_2017_12_068
crossref_primary_10_1109_TIP_2024_3451931
crossref_primary_10_1109_TAI_2024_3524955
crossref_primary_10_1109_TII_2024_3514090
crossref_primary_10_1109_TCSVT_2023_3324648
crossref_primary_10_1063_5_0093439
crossref_primary_10_1109_TIP_2023_3293769
crossref_primary_10_1109_ACCESS_2024_3414651
crossref_primary_10_3390_math11163578
crossref_primary_10_1109_TNNLS_2021_3083367
crossref_primary_10_1109_TPAMI_2017_2737007
crossref_primary_10_1016_j_patcog_2024_110561
crossref_primary_10_1145_3379344
crossref_primary_10_1109_TAFFC_2016_2622690
crossref_primary_10_1016_j_knosys_2020_105796
crossref_primary_10_3390_math11040820
crossref_primary_10_3233_SW_210435
crossref_primary_10_1007_s00500_018_3051_y
crossref_primary_10_1051_matecconf_201927702028
crossref_primary_10_1007_s11633_019_1177_8
crossref_primary_10_1007_s13042_022_01509_7
crossref_primary_10_1007_s00521_022_07413_z
crossref_primary_10_1016_j_neucom_2020_02_077
crossref_primary_10_1016_j_cose_2024_103849
crossref_primary_10_1109_TCYB_2020_3004641
crossref_primary_10_1155_2022_9710667
crossref_primary_10_1109_TMM_2019_2944241
crossref_primary_10_1007_s11042_018_5879_7
crossref_primary_10_1016_j_procs_2021_08_143
crossref_primary_10_1109_JIOT_2023_3243401
crossref_primary_10_1016_j_patcog_2023_110133
crossref_primary_10_1145_3176647
crossref_primary_10_1186_s12938_021_00968_3
crossref_primary_10_1016_j_cviu_2022_103454
crossref_primary_10_1145_3451884
crossref_primary_10_1002_widm_1488
crossref_primary_10_1016_j_cogsys_2023_101186
crossref_primary_10_1109_TMM_2023_3264847
crossref_primary_10_1155_2020_8875910
crossref_primary_10_1016_j_neucom_2016_04_056
crossref_primary_10_1049_iet_cvi_2015_0131
crossref_primary_10_1109_TII_2024_3405634
crossref_primary_10_1016_j_aei_2024_102515
crossref_primary_10_1109_TIP_2021_3100552
crossref_primary_10_1016_j_neucom_2019_08_111
crossref_primary_10_1109_TPAMI_2021_3127346
crossref_primary_10_1016_j_ins_2021_09_032
crossref_primary_10_1007_s00371_022_02470_w
crossref_primary_10_1109_TIM_2023_3289549
crossref_primary_10_1587_transinf_2015EDP7226
crossref_primary_10_1007_s13042_024_02512_w
crossref_primary_10_1016_j_patcog_2020_107488
crossref_primary_10_1016_j_knosys_2024_112848
crossref_primary_10_1016_j_neucom_2020_05_043
crossref_primary_10_1109_ACCESS_2019_2919073
crossref_primary_10_1016_j_engappai_2022_105309
crossref_primary_10_1016_j_patcog_2020_107370
crossref_primary_10_1007_s11263_019_01232_x
crossref_primary_10_1016_j_patrec_2017_09_030
crossref_primary_10_1109_TPAMI_2020_3045530
crossref_primary_10_1109_TPAMI_2021_3130759
crossref_primary_10_1109_TCSVT_2022_3209209
crossref_primary_10_1016_j_ins_2024_120374
crossref_primary_10_1109_TIP_2018_2872916
crossref_primary_10_1049_el_2018_5027
crossref_primary_10_1016_j_neucom_2022_02_056
crossref_primary_10_1109_TMM_2022_3190678
crossref_primary_10_1109_TNNLS_2021_3132366
crossref_primary_10_1029_2019PA003612
crossref_primary_10_1109_TGRS_2017_2754648
crossref_primary_10_1109_TMM_2022_3154592
crossref_primary_10_1016_j_neucom_2020_12_127
crossref_primary_10_3390_math10193587
crossref_primary_10_1016_j_patcog_2018_02_028
crossref_primary_10_1109_TMM_2022_3200578
crossref_primary_10_1109_TPAMI_2016_2645157
crossref_primary_10_1109_TSMC_2018_2791603
crossref_primary_10_1109_TMM_2021_3139211
crossref_primary_10_1016_j_ins_2023_120052
crossref_primary_10_1109_ACCESS_2020_3048756
crossref_primary_10_1016_j_knosys_2021_107780
crossref_primary_10_1109_ACCESS_2020_3046573
crossref_primary_10_1016_j_engappai_2024_109020
crossref_primary_10_1016_j_eswa_2021_116268
crossref_primary_10_1016_j_neucom_2023_126264
crossref_primary_10_1016_j_neunet_2020_09_010
crossref_primary_10_1007_s00521_023_08915_0
crossref_primary_10_1007_s13042_024_02381_3
crossref_primary_10_1109_TIM_2025_3548779
crossref_primary_10_1109_TIP_2020_2964429
crossref_primary_10_1016_j_neucom_2022_09_070
crossref_primary_10_1109_ACCESS_2018_2886597
crossref_primary_10_1109_TNNLS_2023_3242473
crossref_primary_10_1016_j_neucom_2020_12_017
crossref_primary_10_1109_TNNLS_2017_2761401
crossref_primary_10_3390_s23042311
crossref_primary_10_1109_TCSVT_2022_3201822
crossref_primary_10_1109_TIP_2024_3374217
crossref_primary_10_1016_j_aei_2023_102204
crossref_primary_10_1109_TCSS_2021_3130401
crossref_primary_10_1016_j_neunet_2021_04_014
crossref_primary_10_1109_TPAMI_2017_2707495
crossref_primary_10_1007_s00530_024_01373_1
crossref_primary_10_1109_TCYB_2018_2831457
crossref_primary_10_1016_j_image_2019_02_011
crossref_primary_10_1016_j_imavis_2020_104077
crossref_primary_10_1109_TSMC_2021_3102834
crossref_primary_10_1007_s10489_021_03101_y
crossref_primary_10_1016_j_infsof_2020_106472
crossref_primary_10_1016_j_cviu_2023_103811
crossref_primary_10_1109_TMM_2019_2919469
crossref_primary_10_1016_j_neucom_2025_130264
crossref_primary_10_1007_s11263_022_01650_4
crossref_primary_10_1145_3424341
crossref_primary_10_1109_TCYB_2021_3110369
crossref_primary_10_3390_recycling10040144
crossref_primary_10_1007_s11042_018_6842_3
crossref_primary_10_1016_j_neunet_2020_11_007
crossref_primary_10_1007_s10489_023_04686_2
crossref_primary_10_3390_s25175499
crossref_primary_10_1109_LSP_2016_2612247
crossref_primary_10_1109_TCSVT_2019_2899569
crossref_primary_10_1007_s11432_023_4051_9
crossref_primary_10_1016_j_patcog_2018_03_006
crossref_primary_10_1109_TBME_2016_2604856
crossref_primary_10_1109_TNNLS_2024_3499377
crossref_primary_10_1177_0956797616663878
crossref_primary_10_3390_app122412642
crossref_primary_10_1002_asi_23827
crossref_primary_10_1007_s12524_023_01734_9
crossref_primary_10_1016_j_eswa_2023_123133
crossref_primary_10_1109_TIP_2019_2933728
crossref_primary_10_1109_TSG_2024_3390441
crossref_primary_10_1016_j_knosys_2020_105490
crossref_primary_10_1016_j_inffus_2025_103633
crossref_primary_10_1016_j_patrec_2022_05_009
crossref_primary_10_1109_TMM_2024_3408048
crossref_primary_10_1007_s10489_022_03869_7
crossref_primary_10_1109_ACCESS_2020_3000347
crossref_primary_10_1109_TNNLS_2022_3202014
crossref_primary_10_1109_TMM_2020_2984091
crossref_primary_10_1016_j_neunet_2024_106227
crossref_primary_10_1016_j_patrec_2018_10_022
crossref_primary_10_1109_TMI_2022_3163232
crossref_primary_10_1007_s11280_018_0642_6
crossref_primary_10_1109_TNNLS_2020_3027588
crossref_primary_10_1016_j_jvcir_2020_102871
crossref_primary_10_1109_TETCI_2018_2872036
crossref_primary_10_1109_TMM_2020_3033124
crossref_primary_10_1109_TSMC_2018_2818184
crossref_primary_10_1016_j_jprocont_2024_103297
crossref_primary_10_1016_j_image_2020_115920
crossref_primary_10_1109_TIP_2021_3122003
crossref_primary_10_1109_TIP_2019_2902115
crossref_primary_10_1016_j_measurement_2023_113236
crossref_primary_10_1016_j_patcog_2020_107263
crossref_primary_10_1109_TPAMI_2020_2987013
crossref_primary_10_1109_TPAMI_2025_3566169
crossref_primary_10_1162_neco_a_01639
crossref_primary_10_1016_j_adhoc_2020_102380
crossref_primary_10_1016_j_knosys_2020_106378
crossref_primary_10_1016_j_knosys_2021_106773
crossref_primary_10_1016_j_neucom_2023_03_007
crossref_primary_10_3390_sym17081291
crossref_primary_10_1109_TIP_2024_3351439
crossref_primary_10_1109_TITS_2022_3215572
crossref_primary_10_1109_TMM_2021_3087098
crossref_primary_10_1016_j_jvcir_2020_102981
crossref_primary_10_1016_j_patcog_2021_108435
crossref_primary_10_1016_j_jprocont_2024_103267
crossref_primary_10_1016_j_imavis_2025_105490
crossref_primary_10_1088_1361_6501_ad99f3
crossref_primary_10_1109_TIP_2016_2602078
crossref_primary_10_1109_TPAMI_2023_3346869
crossref_primary_10_1007_s11042_020_09316_4
crossref_primary_10_1109_TPAMI_2020_3037734
crossref_primary_10_1109_TPAMI_2018_2836461
crossref_primary_10_1109_TIP_2018_2869696
crossref_primary_10_1093_bioinformatics_btae387
crossref_primary_10_1007_s11263_020_01342_x
crossref_primary_10_1007_s42979_021_00648_y
crossref_primary_10_1007_s00521_021_05746_9
crossref_primary_10_1016_j_neucom_2022_01_007
crossref_primary_10_1016_j_patrec_2024_09_007
crossref_primary_10_1109_TCYB_2019_2915789
crossref_primary_10_1109_TWC_2023_3323380
crossref_primary_10_1007_s00521_025_11005_y
crossref_primary_10_3390_rs14215516
crossref_primary_10_1145_3461646
crossref_primary_10_1016_j_patrec_2018_04_011
crossref_primary_10_1016_j_enbuild_2025_116159
crossref_primary_10_3389_fncom_2015_00008
crossref_primary_10_1016_j_ifacol_2022_09_250
crossref_primary_10_1109_THMS_2014_2358649
crossref_primary_10_1016_j_neunet_2024_106324
crossref_primary_10_1007_s10032_023_00447_6
crossref_primary_10_1016_j_imavis_2020_103924
crossref_primary_10_1016_j_neucom_2018_10_043
crossref_primary_10_1109_TNSRE_2023_3235804
crossref_primary_10_1109_TMM_2024_3353457
crossref_primary_10_1016_j_jvcir_2022_103657
crossref_primary_10_1109_TNNLS_2021_3105377
crossref_primary_10_1007_s00530_020_00660_x
crossref_primary_10_1049_el_2020_1594
crossref_primary_10_1007_s11263_016_0983_5
crossref_primary_10_3390_rs10081307
crossref_primary_10_1016_j_neucom_2025_130213
crossref_primary_10_1007_s40430_022_03965_2
crossref_primary_10_1017_eds_2024_53
crossref_primary_10_1109_TPAMI_2019_2922175
crossref_primary_10_1109_TAES_2025_3534140
crossref_primary_10_3390_s22010134
crossref_primary_10_1016_j_ins_2021_08_061
crossref_primary_10_1080_03081079_2023_2199991
crossref_primary_10_1109_TITS_2021_3127632
crossref_primary_10_1109_TMM_2019_2909860
crossref_primary_10_1016_j_eswa_2023_123062
crossref_primary_10_1109_TMM_2015_2463218
crossref_primary_10_1109_TCDS_2021_3049274
crossref_primary_10_1016_j_ins_2023_119135
crossref_primary_10_1145_3728637
crossref_primary_10_1016_j_neunet_2021_02_009
crossref_primary_10_1007_s11704_023_3396_y
crossref_primary_10_1109_TMM_2021_3089017
crossref_primary_10_1109_TPAMI_2022_3148853
crossref_primary_10_1016_j_patcog_2024_110824
crossref_primary_10_1038_s41598_025_13612_0
crossref_primary_10_20965_jaciii_2019_p0705
crossref_primary_10_1016_j_compag_2024_109880
crossref_primary_10_1109_TMI_2024_3429471
crossref_primary_10_1016_j_trit_2017_01_001
crossref_primary_10_1016_j_cviu_2015_02_006
crossref_primary_10_1016_j_imavis_2023_104630
crossref_primary_10_1109_TCSVT_2020_2965966
crossref_primary_10_1016_j_neucom_2015_07_155
crossref_primary_10_1002_pra2_778
crossref_primary_10_1007_s00138_022_01361_3
crossref_primary_10_1016_j_apacoust_2020_107691
crossref_primary_10_1109_TNSM_2022_3183247
crossref_primary_10_1016_j_neucom_2021_08_027
crossref_primary_10_1016_j_patrec_2023_01_005
crossref_primary_10_1016_j_patrec_2016_09_015
crossref_primary_10_1109_TIP_2024_3403053
crossref_primary_10_1016_j_neucom_2019_04_070
crossref_primary_10_1016_j_neunet_2021_02_015
crossref_primary_10_1109_TIP_2020_2991527
crossref_primary_10_1109_TPAMI_2024_3487631
crossref_primary_10_1109_TIP_2018_2862625
crossref_primary_10_1007_s00521_020_05322_7
crossref_primary_10_1109_TIP_2019_2912126
crossref_primary_10_1016_j_neunet_2019_08_023
crossref_primary_10_1051_jnwpu_20193761271
crossref_primary_10_1016_j_patcog_2021_108237
crossref_primary_10_1080_01431161_2021_1996655
crossref_primary_10_1109_TCSVT_2024_3486074
crossref_primary_10_1016_j_imavis_2016_05_004
crossref_primary_10_1007_s11263_023_01767_0
crossref_primary_10_1016_j_inffus_2024_102605
crossref_primary_10_1145_3514247
crossref_primary_10_1007_s11263_016_0896_3
crossref_primary_10_1109_TSMC_2019_2912206
crossref_primary_10_1109_TKDE_2024_3487907
crossref_primary_10_1016_j_patcog_2022_108642
crossref_primary_10_1109_TNNLS_2018_2844399
crossref_primary_10_1109_TNNLS_2017_2677441
crossref_primary_10_1007_s10044_022_01109_9
crossref_primary_10_1007_s11042_016_3309_2
crossref_primary_10_1109_TCYB_2017_2742705
crossref_primary_10_1016_j_ecoinf_2021_101222
crossref_primary_10_1007_s11263_025_02384_9
crossref_primary_10_1016_j_neucom_2023_127188
crossref_primary_10_1109_TIP_2019_2910052
crossref_primary_10_1016_j_patcog_2021_108469
crossref_primary_10_1109_ACCESS_2020_2998495
crossref_primary_10_1007_s10514_021_10009_6
crossref_primary_10_1109_TII_2024_3475429
crossref_primary_10_1016_j_neunet_2023_03_003
crossref_primary_10_1109_TCSVT_2024_3396215
crossref_primary_10_1109_TSMC_2025_3549235
crossref_primary_10_1016_j_jag_2023_103569
crossref_primary_10_1109_TMM_2021_3110098
crossref_primary_10_1109_TIP_2024_3360899
crossref_primary_10_1007_s11263_020_01355_6
crossref_primary_10_1088_1742_6596_2010_1_012116
crossref_primary_10_3390_rs13091672
crossref_primary_10_3390_app15116338
crossref_primary_10_3390_math13030412
crossref_primary_10_1007_s00530_024_01273_4
crossref_primary_10_1109_TIP_2017_2696747
crossref_primary_10_1109_ACCESS_2022_3220906
crossref_primary_10_1016_j_neucom_2017_01_038
crossref_primary_10_1016_j_asoc_2021_107352
crossref_primary_10_1016_j_patrec_2020_04_029
crossref_primary_10_3390_info10080245
crossref_primary_10_1007_s11042_023_16316_7
crossref_primary_10_1007_s11263_021_01451_1
crossref_primary_10_1016_j_inffus_2023_102021
crossref_primary_10_1109_TMI_2021_3131245
crossref_primary_10_1016_j_knosys_2021_107337
crossref_primary_10_1109_TMM_2022_3142958
crossref_primary_10_1109_TMM_2022_3222657
crossref_primary_10_1109_TASLP_2021_3065234
crossref_primary_10_1007_s11263_017_1027_5
crossref_primary_10_1109_TDEI_2024_3469913
crossref_primary_10_1109_TMECH_2017_2775208
crossref_primary_10_1109_ACCESS_2019_2961933
crossref_primary_10_1109_TNNLS_2022_3155602
crossref_primary_10_1016_j_engappai_2025_112177
crossref_primary_10_1109_TMM_2024_3521852
crossref_primary_10_1016_j_ins_2024_120572
crossref_primary_10_1007_s00138_016_0763_9
crossref_primary_10_1016_j_inffus_2025_102934
crossref_primary_10_1109_TPAMI_2022_3229526
crossref_primary_10_1109_TPAMI_2021_3140070
crossref_primary_10_3390_app9153133
crossref_primary_10_1016_j_patrec_2021_06_020
crossref_primary_10_1109_TNNLS_2023_3349142
crossref_primary_10_1109_TNSRE_2020_3027004
crossref_primary_10_1109_TPAMI_2022_3177295
crossref_primary_10_1007_s00138_023_01470_7
crossref_primary_10_3390_rs17010134
crossref_primary_10_1109_TIP_2016_2601260
crossref_primary_10_1007_s00521_024_09724_9
crossref_primary_10_1016_j_neucom_2018_10_069
crossref_primary_10_1049_joe_2018_8292
crossref_primary_10_1109_TCYB_2019_2930744
crossref_primary_10_1109_TPAMI_2024_3395778
crossref_primary_10_1109_TCSVT_2024_3422491
crossref_primary_10_1109_TPAMI_2023_3277881
crossref_primary_10_1109_TPAMI_2022_3143074
crossref_primary_10_1016_j_neucom_2019_03_100
crossref_primary_10_1109_TIP_2021_3050677
crossref_primary_10_1109_TCYB_2017_2751741
crossref_primary_10_1109_TMM_2021_3125134
crossref_primary_10_1016_j_ins_2020_12_063
crossref_primary_10_1016_j_neucom_2025_129530
crossref_primary_10_1016_j_imavis_2022_104489
crossref_primary_10_1109_TIP_2019_2899987
crossref_primary_10_1016_j_ins_2023_119399
crossref_primary_10_1109_TIP_2018_2861573
crossref_primary_10_1016_j_aei_2022_101813
crossref_primary_10_1016_j_patcog_2021_108024
crossref_primary_10_1016_j_patcog_2022_108563
crossref_primary_10_1016_j_aei_2025_103885
crossref_primary_10_1016_j_eswa_2021_116197
crossref_primary_10_1109_TPAMI_2017_2723882
crossref_primary_10_1016_j_neunet_2024_106964
crossref_primary_10_1109_TMM_2022_3155928
crossref_primary_10_1109_TCSVT_2016_2539604
crossref_primary_10_1109_TPAMI_2022_3191696
crossref_primary_10_1016_j_knosys_2022_109949
crossref_primary_10_3390_ijgi13120422
crossref_primary_10_1109_TCSVT_2022_3208256
crossref_primary_10_1109_TII_2024_3359460
Cites_doi 10.1109/TPAMI.2007.1055
10.7551/mitpress/1602.001.0001
10.1561/0600000027
10.1109/CVPR.2000.855856
10.1007/978-3-642-15549-9_48
10.5244/C.22.80
10.1109/CVPR.2012.6248021
10.1145/1178677.1178722
10.1109/TPAMI.2006.79
10.1613/jair.105
10.7551/mitpress/1113.003.0008
10.1109/CVPR.2010.5539970
10.1109/TPAMI.2011.48
10.1006/jcss.1997.1504
10.1006/cogp.1993.1006
10.1162/neco.1994.6.2.181
10.1109/CVPR.2007.383198
10.1109/ICCV.2005.148
10.21236/ada164453
10.1109/CVPR.2008.4587658
10.1109/ICCV.2011.6126281
10.1109/CVPR.2005.117
10.1109/CVPR.2012.6248026
10.1007/978-3-642-15549-9_56
10.1109/CVPR.2003.1211479
10.1109/TIP.2009.2019809
10.1007/978-3-642-33712-3_26
10.1109/CVPR.2011.5995368
10.7551/mitpress/4175.001.0001
10.1109/CVPR.2007.383157
10.1109/CVPR.2009.5206772
10.1007/BF01079209
10.5244/C.23.2
10.1007/978-3-642-33715-4_18
10.1109/CVPR.2011.5995353
10.1109/CVPR.2012.6247998
10.1109/CVPR.2005.177
10.1038/nn1794
10.1016/j.cviu.2007.09.014
10.1109/CVPR.2011.5995466
10.1109/TPAMI.2012.256
10.1109/CVPR.2011.5995451
10.1109/CVPR.2009.5206594
10.2307/2325085
10.1207/s15516709cog1502_3
10.1109/T-C.1973.223602
10.1007/978-3-540-88693-8_25
10.1007/978-3-642-15555-0_12
10.1109/CVPR.2010.5540121
10.1145/1101149.1101241
10.1037/0033-295X.94.2.115
10.1007/978-3-642-37331-2_1
10.1109/CVPR.2008.4587597
10.1023/b:visi.0000029664.99615.94
10.1145/1991996.1992014
10.7551/mitpress/8291.001.0001
10.1145/1282280.1282340
10.1007/978-3-642-15555-0_10
10.1109/CVPR.2010.5540053
10.1007/978-3-642-35749-7_5
ContentType Journal Article
Copyright 2015 INIST-CNRS
Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Mar 2014
Copyright_xml – notice: 2015 INIST-CNRS
– notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Mar 2014
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
F28
FR3
DOI 10.1109/TPAMI.2013.140
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList
MEDLINE - Academic
MEDLINE
Technology Research Database
Technology Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Applied Sciences
EISSN 2160-9292
1939-3539
EndPage 465
ExternalDocumentID 3238372951
24457503
28402986
10_1109_TPAMI_2013_140
6571196
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
9M8
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ADRHT
AENEX
AETEA
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
FA8
HZ~
H~9
IBMZZ
ICLAB
IEDLZ
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNI
RNS
RXW
RZB
TAE
TN5
UHB
VH1
XJT
~02
AAYXX
CITATION
AAYOK
IQODW
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
F28
FR3
ID FETCH-LOGICAL-c402t-514241ca74b45da586d2ab7ab832aa08d1fd83ef30fd9045e4901bd1428acbfa3
IEDL.DBID RIE
ISICitedReferencesCount 1261
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000331450100005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0162-8828
1939-3539
IngestDate Sun Sep 28 09:03:28 EDT 2025
Sat Sep 27 21:11:52 EDT 2025
Mon Jun 30 03:36:39 EDT 2025
Mon Jul 21 05:55:04 EDT 2025
Wed Apr 02 07:27:33 EDT 2025
Sat Nov 29 08:07:25 EST 2025
Tue Nov 18 20:53:11 EST 2025
Tue Aug 26 16:49:19 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Computer vision
Zero-shot learning
Image interpretation
Image databank
Pattern recognition
Object recognition
Annotation
Semantics
Scene analysis
Animal
vision and scene understanding
Object oriented
Collection
Categorization
Image classification
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c402t-514241ca74b45da586d2ab7ab832aa08d1fd83ef30fd9045e4901bd1428acbfa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PMID 24457503
PQID 1504635202
PQPubID 85458
PageCount 13
ParticipantIDs proquest_journals_1504635202
pubmed_primary_24457503
ieee_primary_6571196
pascalfrancis_primary_28402986
crossref_primary_10_1109_TPAMI_2013_140
proquest_miscellaneous_1492705297
proquest_miscellaneous_1520950795
crossref_citationtrail_10_1109_TPAMI_2013_140
PublicationCentury 2000
PublicationDate 2014-03-01
PublicationDateYYYYMMDD 2014-03-01
PublicationDate_xml – month: 03
  year: 2014
  text: 2014-03-01
  day: 01
PublicationDecade 2010
PublicationPlace Los Alamitos, CA
PublicationPlace_xml – name: Los Alamitos, CA
– name: United States
– name: New York
PublicationTitle IEEE transactions on pattern analysis and machine intelligence
PublicationTitleAbbrev TPAMI
PublicationTitleAlternate IEEE Trans Pattern Anal Mach Intell
PublicationYear 2014
Publisher IEEE
IEEE Computer Society
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: IEEE Computer Society
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref16
ref19
ref18
Platt (ref23)
Kemp (ref57)
ref51
ref50
Ferrari (ref32)
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
Breiman (ref13) 1984
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref2
ref1
ref39
ref38
Rifkin (ref17) 2004; 5
ref24
ref67
ref26
ref25
ref20
ref64
ref63
ref22
ref66
ref21
ref65
ref28
Larochelle (ref29); 1
ref27
ref60
ref62
ref61
References_xml – ident: ref24
  doi: 10.1109/TPAMI.2007.1055
– ident: ref8
  doi: 10.7551/mitpress/1602.001.0001
– ident: ref4
  doi: 10.1561/0600000027
– volume-title: Proc. Advances in Neural Information Processing Systems (NIPS)
  ident: ref23
  article-title: Large Margin DAGs for Multiclass Classification
– ident: ref26
  doi: 10.1109/CVPR.2000.855856
– ident: ref40
  doi: 10.1007/978-3-642-15549-9_48
– ident: ref25
  doi: 10.5244/C.22.80
– ident: ref44
  doi: 10.1109/CVPR.2012.6248021
– volume-title: Proc. Advances in Neural Information Processing Systems (NIPS)
  ident: ref32
  article-title: Learning Visual Attributes
– ident: ref33
  doi: 10.1145/1178677.1178722
– ident: ref27
  doi: 10.1109/TPAMI.2006.79
– ident: ref16
  doi: 10.1613/jair.105
– ident: ref63
  doi: 10.7551/mitpress/1113.003.0008
– ident: ref62
  doi: 10.1109/CVPR.2010.5539970
– volume-title: Classification and Regression Trees
  year: 1984
  ident: ref13
– ident: ref35
  doi: 10.1109/TPAMI.2011.48
– ident: ref15
  doi: 10.1006/jcss.1997.1504
– ident: ref54
  doi: 10.1006/cogp.1993.1006
– ident: ref14
  doi: 10.1162/neco.1994.6.2.181
– ident: ref61
  doi: 10.1109/CVPR.2007.383198
– ident: ref19
  doi: 10.1109/ICCV.2005.148
– ident: ref12
  doi: 10.21236/ada164453
– volume: 5
  start-page: 101
  year: 2004
  ident: ref17
  article-title: In Defense of One-vs -All Classification
  publication-title: J. Machine Learning Research
– ident: ref58
  doi: 10.1109/CVPR.2008.4587658
– volume-title: Proc. Nat’l Conf. Artificial Intelligence (AAAI)
  ident: ref57
  article-title: Learning Systems of Concepts with an Infinite Relational Model
– ident: ref10
  doi: 10.1109/ICCV.2011.6126281
– ident: ref28
  doi: 10.1109/CVPR.2005.117
– ident: ref51
  doi: 10.1109/CVPR.2012.6248026
– ident: ref64
  doi: 10.1007/978-3-642-15549-9_56
– ident: ref21
  doi: 10.1109/CVPR.2003.1211479
– ident: ref31
  doi: 10.1109/TIP.2009.2019809
– ident: ref52
  doi: 10.1007/978-3-642-33712-3_26
– ident: ref7
  doi: 10.1109/CVPR.2011.5995368
– ident: ref3
  doi: 10.7551/mitpress/4175.001.0001
– ident: ref18
  doi: 10.1109/CVPR.2007.383157
– ident: ref45
  doi: 10.1109/CVPR.2009.5206772
– ident: ref53
  doi: 10.1007/BF01079209
– ident: ref39
  doi: 10.5244/C.23.2
– ident: ref37
  doi: 10.1007/978-3-642-33715-4_18
– ident: ref47
  doi: 10.1109/CVPR.2011.5995353
– ident: ref46
  doi: 10.1109/CVPR.2012.6247998
– ident: ref2
  doi: 10.1109/CVPR.2005.177
– ident: ref55
  doi: 10.1038/nn1794
– ident: ref60
  doi: 10.1016/j.cviu.2007.09.014
– ident: ref50
  doi: 10.1109/CVPR.2011.5995466
– ident: ref66
  doi: 10.1109/TPAMI.2012.256
– ident: ref36
  doi: 10.1109/CVPR.2011.5995451
– ident: ref9
  doi: 10.1109/CVPR.2009.5206594
– ident: ref11
  doi: 10.2307/2325085
– ident: ref56
  doi: 10.1207/s15516709cog1502_3
– ident: ref20
  doi: 10.1109/T-C.1973.223602
– ident: ref34
  doi: 10.1007/978-3-540-88693-8_25
– ident: ref42
  doi: 10.1007/978-3-642-15555-0_12
– ident: ref49
  doi: 10.1109/CVPR.2010.5540121
– ident: ref38
  doi: 10.1145/1101149.1101241
– ident: ref6
  doi: 10.1037/0033-295X.94.2.115
– ident: ref67
  doi: 10.1007/978-3-642-37331-2_1
– ident: ref22
  doi: 10.1109/CVPR.2008.4587597
– ident: ref1
  doi: 10.1023/b:visi.0000029664.99615.94
– ident: ref48
  doi: 10.1145/1991996.1992014
– ident: ref5
  doi: 10.7551/mitpress/8291.001.0001
– ident: ref30
  doi: 10.1145/1101149.1101241
– ident: ref59
  doi: 10.1145/1282280.1282340
– ident: ref43
  doi: 10.1007/978-3-642-15555-0_10
– volume: 1
  start-page: 646
  issue: 2
  volume-title: Proc. 23rd Nat’l Conf. Artificial Intelligence
  ident: ref29
  article-title: Zero-Data Learning of New Tasks
– ident: ref65
  doi: 10.1109/CVPR.2010.5540053
– ident: ref41
  doi: 10.1007/978-3-642-35749-7_5
SSID ssj0014503
Score 2.6471958
Snippet We study the problem of object recognition for categories for which we have no training examples, a task also called zero--data or zero-shot learning. This...
SourceID proquest
pubmed
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 453
SubjectTerms Animals
Applied sciences
Artificial intelligence
Classification
Classification - methods
Computer science; control theory; systems
Computer vision
Databases, Factual
Exact sciences and technology
Image Processing, Computer-Assisted - methods
Learning
Marine animals
Models, Statistical
Object recognition
Pattern Recognition, Automated - methods
Pattern recognition. Digital image processing. Computational geometry
Probabilistic logic
Programming languages
Semantics
Software
Support Vector Machine
Tasks
Training
Vectors
vision and scene understanding
Title Attribute-Based Classification for Zero-Shot Visual Object Categorization
URI https://ieeexplore.ieee.org/document/6571196
https://www.ncbi.nlm.nih.gov/pubmed/24457503
https://www.proquest.com/docview/1504635202
https://www.proquest.com/docview/1492705297
https://www.proquest.com/docview/1520950795
Volume 36
WOSCitedRecordID wos000331450100005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library
  customDbUrl:
  eissn: 2160-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014503
  issn: 0162-8828
  databaseCode: RIE
  dateStart: 19790101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fa9RAEB7a4oM-WG21RusRodAX126STTb7eC0W-2AttJXDl7C_QgvlInc5_35nNnuxBSv4FshANjszmW8ys_MBHHCjuM5MiUlOJZjIpWJoN45VDsFIIZ1sLQ9kE_L8vJ7N1MUGfBzPwnjvQ_OZ_0SXoZbvOruiX2VHVSkztJhN2JRSDme1xoqBKAMLMiIY9HBMI-KAxoyro6uL6dcz6uIq8LtA1G8Y0kqq3z2IRYFchVoj9RJ3px1oLR7HnSH-nG7_38pfwPOIM9PpYBgvYcPPd2B7zeGQRpfegWf3BhLuwtm0HxiwPDvG8ObSwJlJ3URBgSki3PSHX3Ts8qbr0--3yxU-45uhfznpCc2c6BbxXOcruD79fHXyhUWyBWYxhexZSUfeMqulMKJ0uqwrl2sjtUHVac1rl7WuLnxb8NYpxIFeIJIwjga2aWtaXbyGrXk3928gtVJWxla8tVqhVKUqIw1KqdrUXrUyAbbe9sbGSeREiHHXhIyEqyZorCGNYWrCEzgc5X8OMzgeldylvR-l4rYnMHmg1fE-xmYaQY8C-2s1N9GHlw1CZYFwLOd5Ah_G2-h9VFLRc9-tUEaoXFKxVP5DhjqNEHarMoG9wYT-LCBa4tu_L_wdPMVXE0PP2z5s9YuVfw9P7K_-drmYoBvM6klwg9-OLgFt
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEB9qFdQHq60f0VojCL4Yu0l2s9nHs1h62J4FTym-hP0KFuQidzn_fmc2e9GCFXwLZCCbnZnMbzKz8wN4xYxiOjcCk5yKZ7yQKkO7cVnlEIyU0snWskA2IWez-uJCnW_Bm_EsjPc-NJ_5t3QZavmus2v6VXZYCZmjxdyAm4LzIh9Oa401Ay4CDzJiGPRxTCTiiMacqcP5-eRsSn1cJX4ZiPwNg5qgCt6VaBToVag5Uq9wf9qB2OJ65Bki0PHO_639PtyLSDOdDKbxALb8Yhd2NiwOaXTqXbj7x0jCPZhO-oEDy2fvMMC5NLBmUj9RUGGKGDf96pdd9ulb16dfLldrfMZHQ39z0iOaOtEt48nOh_D5-P386CSLdAuZxSSyzwQdesutltxw4bSoK1doI7VB5WnNape3ri59W7LWKUSCniOWMI5GtmlrWl0-gu1Ft_BPILVSVsZWrLVaoVSlKiMNSqna1F61MoFss-2NjbPIiRLjexNyEqaaoLGGNIbJCUvg9Sj_Y5jCca3kHu39KBW3PYGDK1od72N0piH0KLC_UXMTvXjVIFjmCMgKViTwcryN_kdFFb3w3RpluCoklUvlP2So1wiBtxIJPB5M6PcCoiU-_fvCX8Dtk_nZaXM6nX14BnfwNfnQAbcP2_1y7Z_DLfuzv1wtD4Iz_AL_6wPM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Attribute-Based+Classification+for+Zero-Shot+Visual+Object+Categorization&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Lampert%2C+Christoph+H&rft.au=Nickisch%2C+Hannes&rft.au=Harmeling%2C+Stefan&rft.date=2014-03-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0162-8828&rft.eissn=1939-3539&rft.volume=36&rft.issue=3&rft.spage=453&rft_id=info:doi/10.1109%2FTPAMI.2013.140&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3238372951
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon