An a priori error analysis of a Lord–Shulman poro-thermoelastic problem with microtemperatures

In this paper, we deal with the numerical analysis of the Lord–Shulman thermoelastic problem with porosity and microtemperatures. The thermomechanical problem leads to a coupled system composed of linear hyperbolic partial differential equations written in terms of transformations of the displacemen...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Acta mechanica Ročník 231; číslo 10; s. 4055 - 4076
Hlavní autoři: Baldonedo, Jacobo, Bazarra, Noelia, Fernández, José R., Quintanilla, Ramón
Médium: Journal Article
Jazyk:angličtina
Vydáno: Vienna Springer Vienna 01.10.2020
Springer
Springer Nature B.V
Témata:
ISSN:0001-5970, 1619-6937
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, we deal with the numerical analysis of the Lord–Shulman thermoelastic problem with porosity and microtemperatures. The thermomechanical problem leads to a coupled system composed of linear hyperbolic partial differential equations written in terms of transformations of the displacement field and the volume fraction, the temperature and the microtemperatures. An existence and uniqueness result is stated. Then, a fully discrete approximation is introduced using the finite element method and the implicit Euler scheme. A discrete stability property is shown, and an a priori error analysis is provided, from which the linear convergence is derived under suitable regularity conditions. Finally, some numerical simulations are presented to demonstrate the accuracy of the approximation, the comparison with the classical Fourier theory and the behavior of the solution in two-dimensional examples.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0001-5970
1619-6937
DOI:10.1007/s00707-020-02738-z