Time and space complexity of deterministic and nondeterministic decision trees
In this paper, we study arbitrary infinite binary information systems each of which consists of an infinite set called universe and an infinite set of two-valued functions (attributes) defined on the universe. We consider the notion of a problem over information system, which is described by a finit...
Uloženo v:
| Vydáno v: | Annals of mathematics and artificial intelligence Ročník 91; číslo 1; s. 45 - 74 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Cham
Springer International Publishing
01.02.2023
Springer Springer Nature B.V |
| Témata: | |
| ISSN: | 1012-2443, 1573-7470 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In this paper, we study arbitrary infinite binary information systems each of which consists of an infinite set called universe and an infinite set of two-valued functions (attributes) defined on the universe. We consider the notion of a problem over information system, which is described by a finite number of attributes and a mapping associating a decision to each tuple of attribute values. As algorithms for problem solving, we use deterministic and nondeterministic decision trees. As time and space complexity, we study the depth and the number of nodes in the decision trees. In the worst case, with the growth of the number of attributes in the problem description, (i) the minimum depth of deterministic decision trees grows either almost as logarithm or linearly, (ii) the minimum depth of nondeterministic decision trees either is bounded from above by a constant or grows linearly, (iii) the minimum number of nodes in deterministic decision trees has either polynomial or exponential growth, and (iv) the minimum number of nodes in nondeterministic decision trees has either polynomial or exponential growth. Based on these results, we divide the set of all infinite binary information systems into five complexity classes, and study for each class issues related to time-space trade-off for decision trees. |
|---|---|
| AbstractList | In this paper, we study arbitrary infinite binary information systems each of which consists of an infinite set called universe and an infinite set of two-valued functions (attributes) defined on the universe. We consider the notion of a problem over information system, which is described by a finite number of attributes and a mapping associating a decision to each tuple of attribute values. As algorithms for problem solving, we use deterministic and nondeterministic decision trees. As time and space complexity, we study the depth and the number of nodes in the decision trees. In the worst case, with the growth of the number of attributes in the problem description, (i) the minimum depth of deterministic decision trees grows either almost as logarithm or linearly, (ii) the minimum depth of nondeterministic decision trees either is bounded from above by a constant or grows linearly, (iii) the minimum number of nodes in deterministic decision trees has either polynomial or exponential growth, and (iv) the minimum number of nodes in nondeterministic decision trees has either polynomial or exponential growth. Based on these results, we divide the set of all infinite binary information systems into five complexity classes, and study for each class issues related to time-space trade-off for decision trees. Keywords Deterministic decision trees * Nondeterministic decision trees * Time complexity * Space complexity * Complexity classes * Time-space trade-off In this paper, we study arbitrary infinite binary information systems each of which consists of an infinite set called universe and an infinite set of two-valued functions (attributes) defined on the universe. We consider the notion of a problem over information system, which is described by a finite number of attributes and a mapping associating a decision to each tuple of attribute values. As algorithms for problem solving, we use deterministic and nondeterministic decision trees. As time and space complexity, we study the depth and the number of nodes in the decision trees. In the worst case, with the growth of the number of attributes in the problem description, (i) the minimum depth of deterministic decision trees grows either almost as logarithm or linearly, (ii) the minimum depth of nondeterministic decision trees either is bounded from above by a constant or grows linearly, (iii) the minimum number of nodes in deterministic decision trees has either polynomial or exponential growth, and (iv) the minimum number of nodes in nondeterministic decision trees has either polynomial or exponential growth. Based on these results, we divide the set of all infinite binary information systems into five complexity classes, and study for each class issues related to time-space trade-off for decision trees. |
| Audience | Academic |
| Author | Moshkov, Mikhail |
| Author_xml | – sequence: 1 givenname: Mikhail orcidid: 0000-0003-0085-9483 surname: Moshkov fullname: Moshkov, Mikhail email: mikhail.moshkov@kaust.edu.sa organization: Computer, Electrical and Mathematical Sciences and Engineering Division and Computational Bioscience Research Center, King Abdullah University of Science and Technology (KAUST) |
| BookMark | eNp9kE1LAzEQhoMoWKt_wNOC59XJR_NxlOIXiF70HGJ2UiLd3ZqkoP_e2BVEDxKGhJn3mcm8R2R_GAck5JTCOQVQF5mCUKwFVsNoKlq6R2Z0oXirhIL9-gbKWiYEPyRHOb8CgJFazsjDU-yxcUPX5I3z2Pix36zxPZaPZgxNhwVTH4eYS_Q7VZ37O9mhjzmOQ1MSYj4mB8GtM55833PyfH31tLxt7x9v7paX960XwErLZdDGd44J7TgEXDhUQUsVWFgw4Y3khtZy_VD34iVoZRzXQQWppISOBj4nZ1PfTRrftpiLfR23aagjLTNUM6ACoKrOJ9XKrdHGIYwlOV9Ph3301cEQa_5S8YUxmrEvQE-AT2POCYP1sbhS16tgXFsK9stuO9ltq912Z7elFWV_0E2KvUsf_0N8gnIVDytMP2v8Q30CseiU3w |
| CitedBy_id | crossref_primary_10_1016_j_jisa_2025_104196 |
| Cites_doi | 10.1109/SFCS.1992.267765 10.1145/800061.808735 10.1016/0306-4379(81)90023-5 10.1142/6604 10.1016/0097-3165(72)90019-2 10.1016/j.ins.2006.06.003 10.1007/978-3-540-75549-4_8 10.1006/jcss.2001.1778 10.1007/978-3-642-20995-6 10.1111/coin.12049 10.1007/978-3-540-75197-7 10.1609/aaai.v33i01.33011624 10.1016/0022-0000(86)90004-8 10.1007/11574798_7 10.1016/0012-365X(94)00318-D 10.1007/978-3-319-91839-6 10.1609/aaai.v34i04.5711 10.3233/FI-1994-2147 10.1007/11427834_12 10.1016/0196-6774(82)90002-5 10.1609/aaai.v34i04.5717 10.1007/978-94-011-3534-4_7 10.1016/j.ejor.2018.06.011 10.3390/e23010014 10.24963/ijcai.2018/189 10.1007/s10994-017-5633-9 10.1016/j.procs.2021.09.140 10.1145/800061.808734 10.1007/978-3-030-12854-8 10.1007/978-3-030-77967-2_35 10.1007/978-3-030-41728-4 10.1007/BF02614316 10.1109/SFCS.1995.492481 10.1007/978-3-642-04985-9_12 10.1007/s10208-015-9283-7 10.1016/0022-0000(79)90054-0 10.1007/978-3-642-28667-4 10.1137/0205015 10.1109/SFCS.1987.30 10.1007/s000370050010 10.1016/S0304-3975(01)00144-X 10.1016/j.dam.2016.07.009 10.1145/195058.195414 10.1109/69.842268 10.3233/FI-1995-2231 10.2140/pjm.1972.41.247 10.1016/0022-0000(78)90026-0 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2022 COPYRIGHT 2023 Springer The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2022 – notice: COPYRIGHT 2023 Springer – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION 8FE 8FG ABJCF AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L6V M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| DOI | 10.1007/s10472-022-09814-1 |
| DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central Technology Collection ProQuest One ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
| DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Computer Science Database |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics Computer Science |
| EISSN | 1573-7470 |
| EndPage | 74 |
| ExternalDocumentID | A735998220 10_1007_s10472_022_09814_1 |
| GrantInformation_xml | – fundername: King Abdullah University of Science and Technology grantid: N/A funderid: https://doi.org/10.13039/501100004052 |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 23M 28- 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS C6C CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IAO IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K7- KDC KOV KOW LAK LLZTM M4Y M7S MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9O PF0 PT4 PT5 PTHSS QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TN5 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7X Z81 Z83 Z88 Z92 ZMTXR ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 8FE 8FG AZQEC DWQXO GNUQQ JQ2 L6V P62 PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c402t-36f89cda248a30fe5ae7f867f2f524c96391cdaacedbc60879a38f7f67660d1f3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000852103000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1012-2443 |
| IngestDate | Wed Nov 05 14:49:52 EST 2025 Sat Nov 29 10:29:36 EST 2025 Sat Nov 29 05:14:37 EST 2025 Tue Nov 18 22:23:58 EST 2025 Fri Feb 21 02:45:57 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Space complexity Deterministic decision trees Time complexity Nondeterministic decision trees Time-space trade-off Complexity classes |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c402t-36f89cda248a30fe5ae7f867f2f524c96391cdaacedbc60879a38f7f67660d1f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-0085-9483 |
| OpenAccessLink | https://link.springer.com/10.1007/s10472-022-09814-1 |
| PQID | 2918201400 |
| PQPubID | 2043872 |
| PageCount | 30 |
| ParticipantIDs | proquest_journals_2918201400 gale_infotracacademiconefile_A735998220 crossref_citationtrail_10_1007_s10472_022_09814_1 crossref_primary_10_1007_s10472_022_09814_1 springer_journals_10_1007_s10472_022_09814_1 |
| PublicationCentury | 2000 |
| PublicationDate | 20230200 2023-02-00 20230201 |
| PublicationDateYYYYMMDD | 2023-02-01 |
| PublicationDate_xml | – month: 2 year: 2023 text: 20230200 |
| PublicationDecade | 2020 |
| PublicationPlace | Cham |
| PublicationPlace_xml | – name: Cham – name: Dordrecht |
| PublicationTitle | Annals of mathematics and artificial intelligence |
| PublicationTitleAbbrev | Ann Math Artif Intell |
| PublicationYear | 2023 |
| Publisher | Springer International Publishing Springer Springer Nature B.V |
| Publisher_xml | – name: Springer International Publishing – name: Springer – name: Springer Nature B.V |
| References | Moshkov, M.: Comparative analysis of deterministic and nondeterministic decision tree complexity. Local approach. In: Trans. Rough Sets IV. Lecture Notes in Computer Science, vol. 3700, pp. 125–143. Springer (2005) Moshkov, M., Zielosko, B.: Combinatorial Machine Learning - A Rough Set Approach. Studies in Computational Intelligence, vol. 360. Springer (2011) MoshkovMComparative analysis of deterministic and nondeterministic decision tree complexityGlobal approach Fundam. Inform.199625220121413844210840.68090 Przybyla-Kasperek, M., Aning, S.: Bagging and single decision tree approaches to dispersed data. In: Paszynski, M., Kranzlmüller, D., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds.) Computational Science - ICCS 2021 - 21st International Conference, Krakow, Poland, June 16-18, 2021, Proceedings, Part III. Lecture Notes in Computer Science, vol. 12744, pp. 420–427. Springer (2021) Alsolami, F., Azad, M., Chikalov, I., Moshkov, M.: Decision and Inhibitory Trees and Rules for Decision Tables with Many-valued Decisions. Intelligent Systems Reference Library, vol. 156. Springer (2020) Moshkov, M., Piliszczuk, M., Zielosko, B.: Partial Covers, Reducts and Decision Rules in Rough Sets - Theory and Applications. Studies in Computational Intelligence, vol. 145. Springer (2008) PawlakZSkowronARudiments of rough setsInf. Sci.20071771327227273210.1016/j.ins.2006.06.0031142.68549 ChikalovIHussainSMoshkovMTotally optimal decision trees for Boolean functionsDiscret. Appl. Math.2016215113354897310.1016/j.dam.2016.07.0091403.94133 MoshkovMAbout the depth of decision trees computing Boolean functionsFundam. Inform.1995223203215132259210.3233/FI-1995-22310813.06012 PawlakZInformation systems theoretical foundationsInf. Syst.19816320521810.1016/0306-4379(81)90023-50462.68078 Pawlak, Z.: Rough Sets - Theoretical Aspects of Reasoning About Data. Theory and Decision Library: Series D, vol. 9. Kluwer (1991) TardosGQuery complexity, or why is it difficult to separate NPA ∩ coNPA from PA by random oracles A?Comb.1989943853920698.68051 Aglin, G., Nijssen, S., Schaus, P.: Learning optimal decision trees using caching branch-and-bound search. In: 34th AAAI Conference on Artificial Intelligence, AAAI 2020, pp. 3146–3153 (2020) Moshkov, M.: Decision Trees. Theory and Applications (in Russian). Nizhny Novgorod University Publishers (1994) Verwer, S., Zhang, Y.: Learning optimal classification trees using a binary linear program formulation. In: 33rd AAAI Conference on Artificial Intelligence, AAAI 2019, pp. 1625–1632 (2019) GabrielovAVorobjovNOn topological lower bounds for algebraic computation treesFound. Comput. Math.20171716172360084910.1007/s10208-015-9283-71365.14080 Narodytska, N., Ignatiev, A., Pereira, F., Marques-Silva, J.: Learning optimal decision trees with SAT. In: 27th International Joint Conference on Artificial Intelligence, IJCAI 2018, pp. 1362–1368 (2018) ZabinskiKZieloskoBDecision rules construction: Algorithm based on EAV modelEntropy202123114422421610.3390/e23010014 Moshkov, M.: Two approaches to investigation of deterministic and nondeterministic decision trees complexity. In: 2nd World Conference on the fundamentals of artificial intelligence, WOCFAI 1995, pp. 275–280 (1995) Moshkov, M.: Time complexity of decision trees. In: Trans. Rough Sets III. Lecture Notes in Computer Science, vol. 3400, pp. 244–459. Springer (2005) SauerNOn the density of families of setsJ. Comb. Theory (A)19721314514730790210.1016/0097-3165(72)90019-20248.05005 Hartmanis, J., Hemachandra, L.A.: One-way functions, robustness, and the non-isomorphism of NP-complete sets. In: 2nd Annual Conference on Structure in Complexity Theory, Cornell University, Ithaca, New York, USA, June 16-19, 1987 (1987) BuhrmanHde WolfRComplexity measures and decision tree complexity: A surveyTheor. Comput. Sci.200228812143193488810.1016/S0304-3975(01)00144-X1061.68058 Kaufman, K.A., Michalski, R.S., Pietrzykowski, J., Wojtusiak, J.: An integrated multi-task inductive database VINLEN: initial implementation and early results. In: Dzeroski, S., Struyf, J. (eds.) Knowledge Discovery in Inductive Databases, 5th International Workshop, KDID 2006, Berlin, Germany, September 18, 2006, Revised Selected and Invited Papers. Lecture Notes in Computer Science, vol. 4747, pp. 116–133. Springer (2006) Molnar, C.: Interpretable Machine Learning. A Guide for Making Black Box Models Explainable, 2nd edn. christophm.github.io/interpretable-ml-book/ (2022) Meyer auf der Heide, F.: A polynomial linear search algorithm for the n-dimensional knapsack problem. In: 15th Annual ACM Symposium on Theory of Computing, STOC 1983, pp. 70–79 (1983) DobkinDPLiptonRJA lower bound of the (1/2)n2 on linear search programs for the knapsack problemJ. Comput. Syst. Sci.197816341341710.1016/0022-0000(78)90026-00397.68045 BertsimasDDunnJOptimal classification treesMach. Learn.2017106710391082366578810.1007/s10994-017-5633-91455.68159 Abdelhalim, A., Traoré, I., Sayed, B.: RBDT-1: A new rule-based decision tree generation technique. In: Governatori, G, Hall, J., Paschke, A. (eds.) Rule Interchange and Applications, International Symposium, RuleML 2009, Las Vegas, Nevada, USA, November 5-7, 2009. Lecture Notes in Computer Science, vol. 5858, pp. 108–121. Springer (2009) DemirovicELukinaAHebrardEChanJBaileyJLeckieCRamamohanaraoKStuckeyPJMurtree: Optimal decision trees via dynamic programming and searchJ. Mach. Learn. Res.2022232612647442075107625179 Grigoriev, D., Karpinski, M., Vorobjov, N.: Improved lower bound on testing membership to a polyhedron by algebraic decision trees. In: 36th Annual Symposium on Foundations of Computer Science, FOCS 1995, pp. 258–265 (1995) GrigorievDKarpinskiMYaoACAn exponential lower bound on the size of algebraic decision trees for MaxComput. Complex.199873193203165775210.1007/s0003700500100918.68032 BorosEHammerPLIbarakiTKoganALogical analysis of numerical dataMath. Program.199779163190146476610.1007/BF026143160887.90179 MoshkovMOptimization problems for decision treesFundam. Inform.1994214391401132258210.3233/FI-1994-21470824.68090 MoshkovMOn conditional testsSov. Phys. Dokl.1982275285300505.90055 NaimanDQWynnHPIndependence number and the complexity of families of setsDiscr. Math.1996154203216139545910.1016/0012-365X(94)00318-D0852.05076 Rokach, L., Maimon, O.: Data Mining with Decision Trees - Theory and Applications. Series in Machine Perception and Artificial Intelligence, vol. 69. WorldScientific (2007) AbouEisha, H., Amin, T., Chikalov, I., Hussain, S., Moshkov, M.: Extensions of Dynamic Programming for Combinatorial Optimization and Data Mining. Intelligent Systems Reference Library, vol. 146. Springer (2019) Ben-Or, M.: Lower bounds for algebraic computation trees (preliminary report). In: 15th Annual ACM Symposium on Theory of Computing, STOC 1983, pp. 80–86 (1983) MorávekJA localization problem in geometry and complexity of discrete programmingKybernetika1972864985163958730248.90044 BorosEHammerPLIbarakiTKoganAMayorazEMuchnikIBAn implementation of logical analysis of dataIEEE Trans. Knowl. Data Eng.200012229230610.1109/69.842268 Yao, A.C.: Algebraic decision trees and Euler characteristics. In: 33rd Annual Symposium on Foundations of Computer Science, FOCS 1992, pp. 268–277 (1992) Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regression Trees. Wadsworth (1984) ShelahSA combinatorial problem; stability and order for models and theories in infinitary languagesPacific J. Math.19724124126130790310.2140/pjm.1972.41.247 BeamePJayramTSSaksMETime-space tradeoffs for branching programsJ. Comput. Syst. Sci.2001634542572189452110.1006/jcss.2001.17781052.68049 Zielosko, B., Zabinski, K.: Selected approaches for decision rules construction-comparative study. In: Knowledge-Based and Intelligent Information & Engineering Systems: 25th International Conference KES-2021, Virtual Event / Szczecin, Poland, 8-10 September 2021. Procedia Computer Science, vol. 192, pp. 3667–3676. Elsevier (2021) LejeuneMALozinVVLozinaIRagabAYacoutSRecent advances in the theory and practice of logical analysis of dataEur. J. Oper. Res.20192751115391334710.1016/j.ejor.2018.06.0111430.90495 AbdelhalimATraoréINakkabiYCreating decision trees from rules using RBDT-1Comput. Intell.2016322216239350245710.1111/coin.12049 Moshkov, M.: On time and space complexity of deterministic and nondeterministic decision trees. In: 8th International Conference Information Processing and Management of Uncertainty in Knowledge-based Systems, IPMU 2000, vol. 3, pp. 1932–1936 (2000) MoshkovMClassification of infinite information systems depending on complexity of decision trees and decision rule systemsFundam. Inform.200354434536820002201111.68705 Blum, M., Impagliazzo, R.: Generic oracles and oracle classes (extended abstract). In: 28th Annual Symposium on Foundations of Computer Science, Los Angeles, California, USA, 27-29 October 1987, pp. 118–126 (1987) DobkinDPLiptonRJOn the complexity of computations under varying sets of primitivesJ. Comput. Syst. Sci.1979181869152583210.1016/0022-0000(79)90054-00409.68023 Moshkov, M.: Comparative Analysis of Deterministic and Nondeterministic Decision Trees. Intelligent Systems Reference Library, vol. 179. Springer (2020) SteeleJMYaoACLower bounds for algebraic decision treesJ. Algorithms1982311864688610.1016/0196-6774(82)90002-50477.68065 Avellaneda, F.: Efficient inference of optimal decision trees. In: 34th AAAI Conference on Artificial Intelligence, AAAI 2020, pp. 3195–3202 (2020) Yao, A.C.: Decision tree complexity and Betti numbers. In: 26th Annual ACM Symposium on Theory of Computing, STOC 1994, pp. 615–624 (1994) Chikalov, I., Lozin, V.V., Lozina, I., Moshkov, M., Nguyen, H.S., Skowron, A., Zielosko, B.: Three Approaches to Data Analysis - Test Theory, Rough Sets and Logical Analysis of Data. Intelligent Systems Reference Library, vol. 41. Springer (2013) DobkinDPLiptonRJMultidimensional searching problemsSIAM J. Comput.19765218118641609910.1137/02050150333.68031 Fürnkranz, J., Gamberger, D., I Chikalov (9814_CR30) 2016; 215 M Moshkov (9814_CR52) 1982; 27 9814_CR36 9814_CR34 DP Dobkin (9814_CR51) 1976; 5 M Moshkov (9814_CR54) 2003; 54 E Boros (9814_CR8) 2000; 12 H Buhrman (9814_CR50) 2002; 288 A Abdelhalim (9814_CR16) 2016; 32 9814_CR39 A Gabrielov (9814_CR35) 2017; 17 G Tardos (9814_CR49) 1989; 9 MA Lejeune (9814_CR11) 2019; 275 9814_CR24 D Grigoriev (9814_CR37) 1998; 7 9814_CR22 9814_CR23 9814_CR21 S Shelah (9814_CR60) 1972; 41 DP Dobkin (9814_CR32) 1979; 18 9814_CR26 9814_CR27 E Boros (9814_CR7) 1997; 79 9814_CR2 9814_CR3 9814_CR1 M Moshkov (9814_CR44) 1996; 25 K Zabinski (9814_CR25) 2021; 23 D Bertsimas (9814_CR19) 2017; 106 9814_CR13 M Moshkov (9814_CR48) 1995; 22 9814_CR57 E Demirovic (9814_CR20) 2022; 23 J Morávek (9814_CR33) 1972; 8 9814_CR55 9814_CR9 9814_CR12 9814_CR56 9814_CR6 9814_CR53 9814_CR10 9814_CR4 M Moshkov (9814_CR41) 1994; 21 9814_CR5 N Sauer (9814_CR59) 1972; 13 9814_CR17 9814_CR18 9814_CR15 Z Pawlak (9814_CR14) 2007; 177 I Wegener (9814_CR28) 1986; 32 Z Pawlak (9814_CR45) 1981; 6 P Beame (9814_CR29) 2001; 63 JM Steele (9814_CR38) 1982; 3 9814_CR46 9814_CR47 9814_CR42 9814_CR43 9814_CR40 DQ Naiman (9814_CR58) 1996; 154 DP Dobkin (9814_CR31) 1978; 16 |
| References_xml | – reference: Moshkov, M.: Comparative analysis of deterministic and nondeterministic decision tree complexity. Local approach. In: Trans. Rough Sets IV. Lecture Notes in Computer Science, vol. 3700, pp. 125–143. Springer (2005) – reference: Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regression Trees. Wadsworth (1984) – reference: Hartmanis, J., Hemachandra, L.A.: One-way functions, robustness, and the non-isomorphism of NP-complete sets. In: 2nd Annual Conference on Structure in Complexity Theory, Cornell University, Ithaca, New York, USA, June 16-19, 1987 (1987) – reference: WegenerITime-space trade-offs for branching programsJ. Comput. Syst. Sci.1986321919684420410.1016/0022-0000(86)90004-80593.68038 – reference: Yao, A.C.: Decision tree complexity and Betti numbers. In: 26th Annual ACM Symposium on Theory of Computing, STOC 1994, pp. 615–624 (1994) – reference: MorávekJA localization problem in geometry and complexity of discrete programmingKybernetika1972864985163958730248.90044 – reference: Ben-Or, M.: Lower bounds for algebraic computation trees (preliminary report). In: 15th Annual ACM Symposium on Theory of Computing, STOC 1983, pp. 80–86 (1983) – reference: Moshkov, M.: Comparative Analysis of Deterministic and Nondeterministic Decision Trees. Intelligent Systems Reference Library, vol. 179. Springer (2020) – reference: MoshkovMOn conditional testsSov. Phys. Dokl.1982275285300505.90055 – reference: Moshkov, M.: On time and space complexity of deterministic and nondeterministic decision trees. In: 8th International Conference Information Processing and Management of Uncertainty in Knowledge-based Systems, IPMU 2000, vol. 3, pp. 1932–1936 (2000) – reference: ChikalovIHussainSMoshkovMTotally optimal decision trees for Boolean functionsDiscret. Appl. Math.2016215113354897310.1016/j.dam.2016.07.0091403.94133 – reference: SauerNOn the density of families of setsJ. Comb. Theory (A)19721314514730790210.1016/0097-3165(72)90019-20248.05005 – reference: Grigoriev, D., Karpinski, M., Vorobjov, N.: Improved lower bound on testing membership to a polyhedron by algebraic decision trees. In: 36th Annual Symposium on Foundations of Computer Science, FOCS 1995, pp. 258–265 (1995) – reference: TardosGQuery complexity, or why is it difficult to separate NPA ∩ coNPA from PA by random oracles A?Comb.1989943853920698.68051 – reference: DobkinDPLiptonRJOn the complexity of computations under varying sets of primitivesJ. Comput. Syst. Sci.1979181869152583210.1016/0022-0000(79)90054-00409.68023 – reference: MoshkovMOptimization problems for decision treesFundam. Inform.1994214391401132258210.3233/FI-1994-21470824.68090 – reference: Verwer, S., Zhang, Y.: Learning optimal classification trees using a binary linear program formulation. In: 33rd AAAI Conference on Artificial Intelligence, AAAI 2019, pp. 1625–1632 (2019) – reference: MoshkovMComparative analysis of deterministic and nondeterministic decision tree complexityGlobal approach Fundam. Inform.199625220121413844210840.68090 – reference: Abdelhalim, A., Traoré, I., Sayed, B.: RBDT-1: A new rule-based decision tree generation technique. In: Governatori, G, Hall, J., Paschke, A. (eds.) Rule Interchange and Applications, International Symposium, RuleML 2009, Las Vegas, Nevada, USA, November 5-7, 2009. Lecture Notes in Computer Science, vol. 5858, pp. 108–121. Springer (2009) – reference: DobkinDPLiptonRJA lower bound of the (1/2)n2 on linear search programs for the knapsack problemJ. Comput. Syst. Sci.197816341341710.1016/0022-0000(78)90026-00397.68045 – reference: BorosEHammerPLIbarakiTKoganALogical analysis of numerical dataMath. Program.199779163190146476610.1007/BF026143160887.90179 – reference: Chikalov, I., Lozin, V.V., Lozina, I., Moshkov, M., Nguyen, H.S., Skowron, A., Zielosko, B.: Three Approaches to Data Analysis - Test Theory, Rough Sets and Logical Analysis of Data. Intelligent Systems Reference Library, vol. 41. Springer (2013) – reference: Avellaneda, F.: Efficient inference of optimal decision trees. In: 34th AAAI Conference on Artificial Intelligence, AAAI 2020, pp. 3195–3202 (2020) – reference: Narodytska, N., Ignatiev, A., Pereira, F., Marques-Silva, J.: Learning optimal decision trees with SAT. In: 27th International Joint Conference on Artificial Intelligence, IJCAI 2018, pp. 1362–1368 (2018) – reference: Molnar, C.: Interpretable Machine Learning. A Guide for Making Black Box Models Explainable, 2nd edn. christophm.github.io/interpretable-ml-book/ (2022) – reference: Przybyla-Kasperek, M., Aning, S.: Bagging and single decision tree approaches to dispersed data. In: Paszynski, M., Kranzlmüller, D., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds.) Computational Science - ICCS 2021 - 21st International Conference, Krakow, Poland, June 16-18, 2021, Proceedings, Part III. Lecture Notes in Computer Science, vol. 12744, pp. 420–427. Springer (2021) – reference: Moshkov, M., Zielosko, B.: Combinatorial Machine Learning - A Rough Set Approach. Studies in Computational Intelligence, vol. 360. Springer (2011) – reference: ShelahSA combinatorial problem; stability and order for models and theories in infinitary languagesPacific J. Math.19724124126130790310.2140/pjm.1972.41.247 – reference: Fürnkranz, J., Gamberger, D., Lavrac, N.: Foundations of Rule Learning. Cognitive Technologies. Springer (2012) – reference: BertsimasDDunnJOptimal classification treesMach. Learn.2017106710391082366578810.1007/s10994-017-5633-91455.68159 – reference: Yao, A.C.: Algebraic decision trees and Euler characteristics. In: 33rd Annual Symposium on Foundations of Computer Science, FOCS 1992, pp. 268–277 (1992) – reference: BuhrmanHde WolfRComplexity measures and decision tree complexity: A surveyTheor. Comput. Sci.200228812143193488810.1016/S0304-3975(01)00144-X1061.68058 – reference: AbdelhalimATraoréINakkabiYCreating decision trees from rules using RBDT-1Comput. Intell.2016322216239350245710.1111/coin.12049 – reference: Moshkov, M.: Two approaches to investigation of deterministic and nondeterministic decision trees complexity. In: 2nd World Conference on the fundamentals of artificial intelligence, WOCFAI 1995, pp. 275–280 (1995) – reference: Rokach, L., Maimon, O.: Data Mining with Decision Trees - Theory and Applications. Series in Machine Perception and Artificial Intelligence, vol. 69. WorldScientific (2007) – reference: Kaufman, K.A., Michalski, R.S., Pietrzykowski, J., Wojtusiak, J.: An integrated multi-task inductive database VINLEN: initial implementation and early results. In: Dzeroski, S., Struyf, J. (eds.) Knowledge Discovery in Inductive Databases, 5th International Workshop, KDID 2006, Berlin, Germany, September 18, 2006, Revised Selected and Invited Papers. Lecture Notes in Computer Science, vol. 4747, pp. 116–133. Springer (2006) – reference: BeamePJayramTSSaksMETime-space tradeoffs for branching programsJ. Comput. Syst. Sci.2001634542572189452110.1006/jcss.2001.17781052.68049 – reference: Moshkov, M.: Time complexity of decision trees. In: Trans. Rough Sets III. Lecture Notes in Computer Science, vol. 3400, pp. 244–459. Springer (2005) – reference: Aglin, G., Nijssen, S., Schaus, P.: Learning optimal decision trees using caching branch-and-bound search. In: 34th AAAI Conference on Artificial Intelligence, AAAI 2020, pp. 3146–3153 (2020) – reference: Moshkov, M.: Decision Trees. Theory and Applications (in Russian). Nizhny Novgorod University Publishers (1994) – reference: Meyer auf der Heide, F.: A polynomial linear search algorithm for the n-dimensional knapsack problem. In: 15th Annual ACM Symposium on Theory of Computing, STOC 1983, pp. 70–79 (1983) – reference: Blum, M., Impagliazzo, R.: Generic oracles and oracle classes (extended abstract). In: 28th Annual Symposium on Foundations of Computer Science, Los Angeles, California, USA, 27-29 October 1987, pp. 118–126 (1987) – reference: SteeleJMYaoACLower bounds for algebraic decision treesJ. Algorithms1982311864688610.1016/0196-6774(82)90002-50477.68065 – reference: LejeuneMALozinVVLozinaIRagabAYacoutSRecent advances in the theory and practice of logical analysis of dataEur. J. Oper. Res.20192751115391334710.1016/j.ejor.2018.06.0111430.90495 – reference: Pawlak, Z.: Rough Sets - Theoretical Aspects of Reasoning About Data. Theory and Decision Library: Series D, vol. 9. Kluwer (1991) – reference: AbouEisha, H., Amin, T., Chikalov, I., Hussain, S., Moshkov, M.: Extensions of Dynamic Programming for Combinatorial Optimization and Data Mining. Intelligent Systems Reference Library, vol. 146. Springer (2019) – reference: GrigorievDKarpinskiMYaoACAn exponential lower bound on the size of algebraic decision trees for MaxComput. Complex.199873193203165775210.1007/s0003700500100918.68032 – reference: MoshkovMClassification of infinite information systems depending on complexity of decision trees and decision rule systemsFundam. Inform.200354434536820002201111.68705 – reference: Alsolami, F., Azad, M., Chikalov, I., Moshkov, M.: Decision and Inhibitory Trees and Rules for Decision Tables with Many-valued Decisions. Intelligent Systems Reference Library, vol. 156. Springer (2020) – reference: Zielosko, B., Zabinski, K.: Selected approaches for decision rules construction-comparative study. In: Knowledge-Based and Intelligent Information & Engineering Systems: 25th International Conference KES-2021, Virtual Event / Szczecin, Poland, 8-10 September 2021. Procedia Computer Science, vol. 192, pp. 3667–3676. Elsevier (2021) – reference: Moshkov, M., Piliszczuk, M., Zielosko, B.: Partial Covers, Reducts and Decision Rules in Rough Sets - Theory and Applications. Studies in Computational Intelligence, vol. 145. Springer (2008) – reference: ZabinskiKZieloskoBDecision rules construction: Algorithm based on EAV modelEntropy202123114422421610.3390/e23010014 – reference: NaimanDQWynnHPIndependence number and the complexity of families of setsDiscr. Math.1996154203216139545910.1016/0012-365X(94)00318-D0852.05076 – reference: PawlakZSkowronARudiments of rough setsInf. Sci.20071771327227273210.1016/j.ins.2006.06.0031142.68549 – reference: PawlakZInformation systems theoretical foundationsInf. Syst.19816320521810.1016/0306-4379(81)90023-50462.68078 – reference: GabrielovAVorobjovNOn topological lower bounds for algebraic computation treesFound. Comput. Math.20171716172360084910.1007/s10208-015-9283-71365.14080 – reference: DemirovicELukinaAHebrardEChanJBaileyJLeckieCRamamohanaraoKStuckeyPJMurtree: Optimal decision trees via dynamic programming and searchJ. Mach. Learn. Res.2022232612647442075107625179 – reference: MoshkovMAbout the depth of decision trees computing Boolean functionsFundam. Inform.1995223203215132259210.3233/FI-1995-22310813.06012 – reference: BorosEHammerPLIbarakiTKoganAMayorazEMuchnikIBAn implementation of logical analysis of dataIEEE Trans. Knowl. Data Eng.200012229230610.1109/69.842268 – reference: DobkinDPLiptonRJMultidimensional searching problemsSIAM J. Comput.19765218118641609910.1137/02050150333.68031 – ident: 9814_CR39 doi: 10.1109/SFCS.1992.267765 – ident: 9814_CR47 – ident: 9814_CR34 doi: 10.1145/800061.808735 – volume: 6 start-page: 205 issue: 3 year: 1981 ident: 9814_CR45 publication-title: Inf. Syst. doi: 10.1016/0306-4379(81)90023-5 – ident: 9814_CR6 doi: 10.1142/6604 – ident: 9814_CR43 – volume: 13 start-page: 145 year: 1972 ident: 9814_CR59 publication-title: J. Comb. Theory (A) doi: 10.1016/0097-3165(72)90019-2 – volume: 177 start-page: 3 issue: 1 year: 2007 ident: 9814_CR14 publication-title: Inf. Sci. doi: 10.1016/j.ins.2006.06.003 – ident: 9814_CR22 doi: 10.1007/978-3-540-75549-4_8 – volume: 63 start-page: 542 issue: 4 year: 2001 ident: 9814_CR29 publication-title: J. Comput. Syst. Sci. doi: 10.1006/jcss.2001.1778 – volume: 54 start-page: 345 issue: 4 year: 2003 ident: 9814_CR54 publication-title: Fundam. Inform. – ident: 9814_CR5 doi: 10.1007/978-3-642-20995-6 – volume: 32 start-page: 216 issue: 2 year: 2016 ident: 9814_CR16 publication-title: Comput. Intell. doi: 10.1111/coin.12049 – ident: 9814_CR10 doi: 10.1007/978-3-540-75197-7 – ident: 9814_CR24 doi: 10.1609/aaai.v33i01.33011624 – ident: 9814_CR57 – volume: 32 start-page: 91 issue: 1 year: 1986 ident: 9814_CR28 publication-title: J. Comput. Syst. Sci. doi: 10.1016/0022-0000(86)90004-8 – ident: 9814_CR55 doi: 10.1007/11574798_7 – volume: 154 start-page: 203 year: 1996 ident: 9814_CR58 publication-title: Discr. Math. doi: 10.1016/0012-365X(94)00318-D – ident: 9814_CR3 – ident: 9814_CR1 doi: 10.1007/978-3-319-91839-6 – ident: 9814_CR17 doi: 10.1609/aaai.v34i04.5711 – volume: 21 start-page: 391 issue: 4 year: 1994 ident: 9814_CR41 publication-title: Fundam. Inform. doi: 10.3233/FI-1994-2147 – ident: 9814_CR4 doi: 10.1007/11427834_12 – volume: 3 start-page: 1 issue: 1 year: 1982 ident: 9814_CR38 publication-title: J. Algorithms doi: 10.1016/0196-6774(82)90002-5 – ident: 9814_CR42 – ident: 9814_CR18 doi: 10.1609/aaai.v34i04.5717 – ident: 9814_CR13 doi: 10.1007/978-94-011-3534-4_7 – volume: 9 start-page: 385 issue: 4 year: 1989 ident: 9814_CR49 publication-title: Comb. – volume: 275 start-page: 1 issue: 1 year: 2019 ident: 9814_CR11 publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2018.06.011 – volume: 23 start-page: 14 issue: 1 year: 2021 ident: 9814_CR25 publication-title: Entropy doi: 10.3390/e23010014 – ident: 9814_CR23 doi: 10.24963/ijcai.2018/189 – volume: 106 start-page: 1039 issue: 7 year: 2017 ident: 9814_CR19 publication-title: Mach. Learn. doi: 10.1007/s10994-017-5633-9 – ident: 9814_CR26 doi: 10.1016/j.procs.2021.09.140 – ident: 9814_CR53 doi: 10.1145/800061.808734 – ident: 9814_CR2 doi: 10.1007/978-3-030-12854-8 – ident: 9814_CR21 doi: 10.1007/978-3-030-77967-2_35 – ident: 9814_CR56 doi: 10.1007/978-3-030-41728-4 – volume: 79 start-page: 163 year: 1997 ident: 9814_CR7 publication-title: Math. Program. doi: 10.1007/BF02614316 – ident: 9814_CR36 doi: 10.1109/SFCS.1995.492481 – volume: 27 start-page: 528 year: 1982 ident: 9814_CR52 publication-title: Sov. Phys. Dokl. – ident: 9814_CR15 doi: 10.1007/978-3-642-04985-9_12 – volume: 25 start-page: 201 issue: 2 year: 1996 ident: 9814_CR44 publication-title: Global approach Fundam. Inform. – volume: 17 start-page: 61 issue: 1 year: 2017 ident: 9814_CR35 publication-title: Found. Comput. Math. doi: 10.1007/s10208-015-9283-7 – volume: 18 start-page: 86 issue: 1 year: 1979 ident: 9814_CR32 publication-title: J. Comput. Syst. Sci. doi: 10.1016/0022-0000(79)90054-0 – ident: 9814_CR9 doi: 10.1007/978-3-642-28667-4 – volume: 5 start-page: 181 issue: 2 year: 1976 ident: 9814_CR51 publication-title: SIAM J. Comput. doi: 10.1137/0205015 – ident: 9814_CR27 – ident: 9814_CR46 doi: 10.1109/SFCS.1987.30 – volume: 7 start-page: 193 issue: 3 year: 1998 ident: 9814_CR37 publication-title: Comput. Complex. doi: 10.1007/s000370050010 – volume: 288 start-page: 21 issue: 1 year: 2002 ident: 9814_CR50 publication-title: Theor. Comput. Sci. doi: 10.1016/S0304-3975(01)00144-X – volume: 215 start-page: 1 year: 2016 ident: 9814_CR30 publication-title: Discret. Appl. Math. doi: 10.1016/j.dam.2016.07.009 – ident: 9814_CR40 doi: 10.1145/195058.195414 – volume: 8 start-page: 498 issue: 6 year: 1972 ident: 9814_CR33 publication-title: Kybernetika – volume: 12 start-page: 292 issue: 2 year: 2000 ident: 9814_CR8 publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/69.842268 – volume: 23 start-page: 26 year: 2022 ident: 9814_CR20 publication-title: J. Mach. Learn. Res. – volume: 22 start-page: 203 issue: 3 year: 1995 ident: 9814_CR48 publication-title: Fundam. Inform. doi: 10.3233/FI-1995-2231 – volume: 41 start-page: 241 year: 1972 ident: 9814_CR60 publication-title: Pacific J. Math. doi: 10.2140/pjm.1972.41.247 – ident: 9814_CR12 – volume: 16 start-page: 413 issue: 3 year: 1978 ident: 9814_CR31 publication-title: J. Comput. Syst. Sci. doi: 10.1016/0022-0000(78)90026-0 |
| SSID | ssj0009686 |
| Score | 2.3444738 |
| Snippet | In this paper, we study arbitrary infinite binary information systems each of which consists of an infinite set called universe and an infinite set of... |
| SourceID | proquest gale crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 45 |
| SubjectTerms | Algorithms Artificial Intelligence Complex Systems Complexity Computer Science Decision trees Information systems Mathematical analysis Mathematics Nodes Polynomials Problem solving Universe |
| SummonAdditionalLinks | – databaseName: Engineering Database dbid: M7S link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB58HfRgfWJ9kYPgQYN57G6yJxGxeLEIKngLaR4gSKtuFX--SZq1qOjF6yabhExmMklmvg_goOBGuuCYY18E962QlgSVYhwzLY0QspRyQBLZhOj35f19fZ0v3JocVtnaxGSo7cjEO_ITVkeo8XAcIKdPzziyRsXX1UyhMQvzESWBptC9mynobpWYHiOEFQ7bGM9JMzl1rhAMx1h2UktaYPplY_punn-8k6btp9f578BXYDk7nuhsslJWYcYN16DTkjqgrONrsHT1CeTarEM_poggPbQoWB7jUIpAd-_BdUcjj2yOpUlgz6nWcDT8-tFmDh8UX7-bDbjrXdyeX-JMwYBNOFiOMa-8rI3VrJCaE-9K7YSXlfDMl6wwQXtrGorDAOzAVESKWnPpha9EVRFLPd-EudCz2wJkTclEOaDVwLPCUaMZcYRzTUtLmXe2C7Sdf2UyPnmkyXhUU2TlKDMVZKaSzBTtwtHnP08TdI4_ax9GsaqouqFlo3MGQhhfBMFSZ4KXdcQzJF3YbWWpsk43airILhy3q2Fa_Hu_23-3tgOLkcN-Egq-C3Pjl1e3BwvmbfzQvOynFf0Bi1j58w priority: 102 providerName: ProQuest |
| Title | Time and space complexity of deterministic and nondeterministic decision trees |
| URI | https://link.springer.com/article/10.1007/s10472-022-09814-1 https://www.proquest.com/docview/2918201400 |
| Volume | 91 |
| WOSCitedRecordID | wos000852103000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1573-7470 dateEnd: 20241211 omitProxy: false ssIdentifier: ssj0009686 issn: 1012-2443 databaseCode: P5Z dateStart: 19970301 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1573-7470 dateEnd: 20241211 omitProxy: false ssIdentifier: ssj0009686 issn: 1012-2443 databaseCode: K7- dateStart: 19970301 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1573-7470 dateEnd: 20241211 omitProxy: false ssIdentifier: ssj0009686 issn: 1012-2443 databaseCode: M7S dateStart: 19970301 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1573-7470 dateEnd: 20241211 omitProxy: false ssIdentifier: ssj0009686 issn: 1012-2443 databaseCode: BENPR dateStart: 19970301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-7470 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009686 issn: 1012-2443 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bSxwxFD5U7YM-1HopbmuXPBT6oIFcZiaZR1uUQumyqBXxJWRzAaGs4qziz-9JNuPWXgT7Mg-TKyc5OSfknO8D-FBJpwM65jRW6L5V2jNUKSGpsNoppWutJyyTTajRSJ-ft-OSFNb10e79k2Q-qX9JdquUoCn6nLWaVxTvPCto7nQibDg-OVtA7TaZ3zEBV1E0XrKkyvy9j0fm6PdD-Y_X0Wx0jtb_b7qv4VVxMsnBfFdswIsw3YT1nsCBFH3ehLVvD6Ct3RaMUjoIsVNP8JRxgeRo83CPbjq5isSXuJkM7JxrTa-mj3_6wtdD0kt3tw3fjw5PP3-hhW6BOrxEzqhsom6dt6LSVrIYahtU1I2KItaicqipLcdinICfuIZp1Vqpo4qNahrmeZRvYBlHDjtAvKuFqie8mURRBe6sYIFJaXntuYjBD4D3UjeuYJEnSowfZoGinMRnUHwmi8_wAew9tLmeI3E8WftjWkyT1BR7drZkG-D8EuCVOVCybhN2IRvAbr_epuhvZ0SbgO3x8onF-_36Lor_Pe7b51V_B6uJv34eBr4Ly7Ob2_AeXrq72WV3M4SVT4ej8fEQlr4qOkxhqSf4HdcXw7zjfwLbevRv |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VggQcKBQQCwV8AHEAC78SOweEKqBqte2KQ5F6M14_JCS0W5rl9af4jYy9TlcF0VsPXGPHTuJvZjzxzDcAT5T0JuLGnCaF2zdlAkOREpIKZ7zWpjFmykqxCT2ZmKOj7v0a_BpyYXJY5aATi6IOc5__kb8UXaYaR3eAvT7-QnPVqHy6OpTQWMJiHH9-R5etf7X3Ftf3qRA77w7f7NJaVYB69JUWVLbJdD44oYyTLMXGRZ1Mq5NIjVAeAdlxbHY-hqlvmdGdkybp1Oq2ZYEnieNegstKGp3laqzpiuS3LZUlM2UWRbMpa5JOTdVTWtAcO886wxXlZwzhn-bgr3PZYu52Nv63D3UTbtSNNdleSsItWIuzTdgYilaQqsM24frBKVFtfxsmOQWGuFkgqFl9JCXCPv5A14TMEwk1VqiQWZdes_ns7MVQaxSRfLrf34EPF_KOd2EdZ473gATfCN1MeTtNQkXunWCRSel4E7hIMYyAD-ttfeVfz2VAPtsVc3TGiEWM2IIRy0fw_PSe4yX7yLm9n2UY2ayacGTvaoYFPl8m-bLbWjZd5mtkI9gasGOrzurtCjgjeDGgb9X873nvnz_aY7i6e3iwb_f3JuMHcE3gLnEZ9r4F64uTr_EhXPHfFp_6k0dFmgh8vGhU_gY8jFhY |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dSxwxEB-KFrEPtVVLr2rNQ6EPdTFfu8k-SuvRUnsIreJbyOUDhLKKdy3--U5yWc-vCsXXTTYJmUwyw8z8fgAfpHA6oGFeRYnmm9SeokpxUXGrnVK61npMM9mEGo30yUl7eKOKP2e79yHJWU1DQmnqprvnPu7eKHyTilcpE522mskK_Z9FmRLpk7_-83gOu9tkrscEYlXhQyZK2czDY9x6mu5e0PcipfkBGq48femv4GUxPsne7LS8hmehW4WVntiBFD1fhRc_rsFcJ2swSmUixHae4O3jAslZ6OESzXdyFokv-TQZ8Dn36s662x994fEhKQI-WYej4f6vz1-rQsNQOXQup5Voom6dt1xqK2gMtQ0q6kZFHmsuHWpwy7AZF-DHrqFatVboqGKjmoZ6FsUbWMCZw1sg3tVc1WPWjCOXgTnLaaBCWFZ7xmPwA2C9BIwrGOWJKuO3maMrp-0zuH0mb59hA_h0_c_5DKHj0d4fk2BNUl8c2dlShYDrS0BYZk-Juk2YhnQAm73sTdHrieFtArxHpxSbd3pZz5v_Pe-7_-u-DUuHX4bm4Nvo-wYsJ4r7Wab4JixML_6ELXju_k5PJxfv83G_AvSv-9U |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Time+and+space+complexity+of+deterministic+and+nondeterministic+decision+trees&rft.jtitle=Annals+of+mathematics+and+artificial+intelligence&rft.au=Moshkov%2C+Mikhail&rft.date=2023-02-01&rft.pub=Springer+International+Publishing&rft.issn=1012-2443&rft.eissn=1573-7470&rft.volume=91&rft.issue=1&rft.spage=45&rft.epage=74&rft_id=info:doi/10.1007%2Fs10472-022-09814-1&rft.externalDocID=10_1007_s10472_022_09814_1 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1012-2443&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1012-2443&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1012-2443&client=summon |