Time and space complexity of deterministic and nondeterministic decision trees

In this paper, we study arbitrary infinite binary information systems each of which consists of an infinite set called universe and an infinite set of two-valued functions (attributes) defined on the universe. We consider the notion of a problem over information system, which is described by a finit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of mathematics and artificial intelligence Jg. 91; H. 1; S. 45 - 74
1. Verfasser: Moshkov, Mikhail
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Cham Springer International Publishing 01.02.2023
Springer
Springer Nature B.V
Schlagworte:
ISSN:1012-2443, 1573-7470
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In this paper, we study arbitrary infinite binary information systems each of which consists of an infinite set called universe and an infinite set of two-valued functions (attributes) defined on the universe. We consider the notion of a problem over information system, which is described by a finite number of attributes and a mapping associating a decision to each tuple of attribute values. As algorithms for problem solving, we use deterministic and nondeterministic decision trees. As time and space complexity, we study the depth and the number of nodes in the decision trees. In the worst case, with the growth of the number of attributes in the problem description, (i) the minimum depth of deterministic decision trees grows either almost as logarithm or linearly, (ii) the minimum depth of nondeterministic decision trees either is bounded from above by a constant or grows linearly, (iii) the minimum number of nodes in deterministic decision trees has either polynomial or exponential growth, and (iv) the minimum number of nodes in nondeterministic decision trees has either polynomial or exponential growth. Based on these results, we divide the set of all infinite binary information systems into five complexity classes, and study for each class issues related to time-space trade-off for decision trees.
AbstractList In this paper, we study arbitrary infinite binary information systems each of which consists of an infinite set called universe and an infinite set of two-valued functions (attributes) defined on the universe. We consider the notion of a problem over information system, which is described by a finite number of attributes and a mapping associating a decision to each tuple of attribute values. As algorithms for problem solving, we use deterministic and nondeterministic decision trees. As time and space complexity, we study the depth and the number of nodes in the decision trees. In the worst case, with the growth of the number of attributes in the problem description, (i) the minimum depth of deterministic decision trees grows either almost as logarithm or linearly, (ii) the minimum depth of nondeterministic decision trees either is bounded from above by a constant or grows linearly, (iii) the minimum number of nodes in deterministic decision trees has either polynomial or exponential growth, and (iv) the minimum number of nodes in nondeterministic decision trees has either polynomial or exponential growth. Based on these results, we divide the set of all infinite binary information systems into five complexity classes, and study for each class issues related to time-space trade-off for decision trees.
In this paper, we study arbitrary infinite binary information systems each of which consists of an infinite set called universe and an infinite set of two-valued functions (attributes) defined on the universe. We consider the notion of a problem over information system, which is described by a finite number of attributes and a mapping associating a decision to each tuple of attribute values. As algorithms for problem solving, we use deterministic and nondeterministic decision trees. As time and space complexity, we study the depth and the number of nodes in the decision trees. In the worst case, with the growth of the number of attributes in the problem description, (i) the minimum depth of deterministic decision trees grows either almost as logarithm or linearly, (ii) the minimum depth of nondeterministic decision trees either is bounded from above by a constant or grows linearly, (iii) the minimum number of nodes in deterministic decision trees has either polynomial or exponential growth, and (iv) the minimum number of nodes in nondeterministic decision trees has either polynomial or exponential growth. Based on these results, we divide the set of all infinite binary information systems into five complexity classes, and study for each class issues related to time-space trade-off for decision trees. Keywords Deterministic decision trees * Nondeterministic decision trees * Time complexity * Space complexity * Complexity classes * Time-space trade-off
Audience Academic
Author Moshkov, Mikhail
Author_xml – sequence: 1
  givenname: Mikhail
  orcidid: 0000-0003-0085-9483
  surname: Moshkov
  fullname: Moshkov, Mikhail
  email: mikhail.moshkov@kaust.edu.sa
  organization: Computer, Electrical and Mathematical Sciences and Engineering Division and Computational Bioscience Research Center, King Abdullah University of Science and Technology (KAUST)
BookMark eNp9kE1LAzEQhoMoWKt_wNOC59XJR_NxlOIXiF70HGJ2UiLd3ZqkoP_e2BVEDxKGhJn3mcm8R2R_GAck5JTCOQVQF5mCUKwFVsNoKlq6R2Z0oXirhIL9-gbKWiYEPyRHOb8CgJFazsjDU-yxcUPX5I3z2Pix36zxPZaPZgxNhwVTH4eYS_Q7VZ37O9mhjzmOQ1MSYj4mB8GtM55833PyfH31tLxt7x9v7paX960XwErLZdDGd44J7TgEXDhUQUsVWFgw4Y3khtZy_VD34iVoZRzXQQWppISOBj4nZ1PfTRrftpiLfR23aagjLTNUM6ACoKrOJ9XKrdHGIYwlOV9Ph3301cEQa_5S8YUxmrEvQE-AT2POCYP1sbhS16tgXFsK9stuO9ltq912Z7elFWV_0E2KvUsf_0N8gnIVDytMP2v8Q30CseiU3w
CitedBy_id crossref_primary_10_1016_j_jisa_2025_104196
Cites_doi 10.1109/SFCS.1992.267765
10.1145/800061.808735
10.1016/0306-4379(81)90023-5
10.1142/6604
10.1016/0097-3165(72)90019-2
10.1016/j.ins.2006.06.003
10.1007/978-3-540-75549-4_8
10.1006/jcss.2001.1778
10.1007/978-3-642-20995-6
10.1111/coin.12049
10.1007/978-3-540-75197-7
10.1609/aaai.v33i01.33011624
10.1016/0022-0000(86)90004-8
10.1007/11574798_7
10.1016/0012-365X(94)00318-D
10.1007/978-3-319-91839-6
10.1609/aaai.v34i04.5711
10.3233/FI-1994-2147
10.1007/11427834_12
10.1016/0196-6774(82)90002-5
10.1609/aaai.v34i04.5717
10.1007/978-94-011-3534-4_7
10.1016/j.ejor.2018.06.011
10.3390/e23010014
10.24963/ijcai.2018/189
10.1007/s10994-017-5633-9
10.1016/j.procs.2021.09.140
10.1145/800061.808734
10.1007/978-3-030-12854-8
10.1007/978-3-030-77967-2_35
10.1007/978-3-030-41728-4
10.1007/BF02614316
10.1109/SFCS.1995.492481
10.1007/978-3-642-04985-9_12
10.1007/s10208-015-9283-7
10.1016/0022-0000(79)90054-0
10.1007/978-3-642-28667-4
10.1137/0205015
10.1109/SFCS.1987.30
10.1007/s000370050010
10.1016/S0304-3975(01)00144-X
10.1016/j.dam.2016.07.009
10.1145/195058.195414
10.1109/69.842268
10.3233/FI-1995-2231
10.2140/pjm.1972.41.247
10.1016/0022-0000(78)90026-0
ContentType Journal Article
Copyright The Author(s) 2022
COPYRIGHT 2023 Springer
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022
– notice: COPYRIGHT 2023 Springer
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1007/s10472-022-09814-1
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Databases
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList

CrossRef
Computer Science Database
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISSN 1573-7470
EndPage 74
ExternalDocumentID A735998220
10_1007_s10472_022_09814_1
GrantInformation_xml – fundername: King Abdullah University of Science and Technology
  grantid: N/A
  funderid: https://doi.org/10.13039/501100004052
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
23M
28-
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IAO
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
KOW
LAK
LLZTM
M4Y
M7S
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9O
PF0
PT4
PT5
PTHSS
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z81
Z83
Z88
Z92
ZMTXR
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
L6V
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c402t-36f89cda248a30fe5ae7f867f2f524c96391cdaacedbc60879a38f7f67660d1f3
IEDL.DBID RSV
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000852103000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1012-2443
IngestDate Wed Nov 05 14:49:52 EST 2025
Sat Nov 29 10:29:36 EST 2025
Sat Nov 29 05:14:37 EST 2025
Tue Nov 18 22:23:58 EST 2025
Fri Feb 21 02:45:57 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Space complexity
Deterministic decision trees
Time complexity
Nondeterministic decision trees
Time-space trade-off
Complexity classes
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c402t-36f89cda248a30fe5ae7f867f2f524c96391cdaacedbc60879a38f7f67660d1f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0085-9483
OpenAccessLink https://link.springer.com/10.1007/s10472-022-09814-1
PQID 2918201400
PQPubID 2043872
PageCount 30
ParticipantIDs proquest_journals_2918201400
gale_infotracacademiconefile_A735998220
crossref_citationtrail_10_1007_s10472_022_09814_1
crossref_primary_10_1007_s10472_022_09814_1
springer_journals_10_1007_s10472_022_09814_1
PublicationCentury 2000
PublicationDate 20230200
2023-02-00
20230201
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 2
  year: 2023
  text: 20230200
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Dordrecht
PublicationTitle Annals of mathematics and artificial intelligence
PublicationTitleAbbrev Ann Math Artif Intell
PublicationYear 2023
Publisher Springer International Publishing
Springer
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer
– name: Springer Nature B.V
References Moshkov, M.: Comparative analysis of deterministic and nondeterministic decision tree complexity. Local approach. In: Trans. Rough Sets IV. Lecture Notes in Computer Science, vol. 3700, pp. 125–143. Springer (2005)
Moshkov, M., Zielosko, B.: Combinatorial Machine Learning - A Rough Set Approach. Studies in Computational Intelligence, vol. 360. Springer (2011)
MoshkovMComparative analysis of deterministic and nondeterministic decision tree complexityGlobal approach Fundam. Inform.199625220121413844210840.68090
Przybyla-Kasperek, M., Aning, S.: Bagging and single decision tree approaches to dispersed data. In: Paszynski, M., Kranzlmüller, D., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds.) Computational Science - ICCS 2021 - 21st International Conference, Krakow, Poland, June 16-18, 2021, Proceedings, Part III. Lecture Notes in Computer Science, vol. 12744, pp. 420–427. Springer (2021)
Alsolami, F., Azad, M., Chikalov, I., Moshkov, M.: Decision and Inhibitory Trees and Rules for Decision Tables with Many-valued Decisions. Intelligent Systems Reference Library, vol. 156. Springer (2020)
Moshkov, M., Piliszczuk, M., Zielosko, B.: Partial Covers, Reducts and Decision Rules in Rough Sets - Theory and Applications. Studies in Computational Intelligence, vol. 145. Springer (2008)
PawlakZSkowronARudiments of rough setsInf. Sci.20071771327227273210.1016/j.ins.2006.06.0031142.68549
ChikalovIHussainSMoshkovMTotally optimal decision trees for Boolean functionsDiscret. Appl. Math.2016215113354897310.1016/j.dam.2016.07.0091403.94133
MoshkovMAbout the depth of decision trees computing Boolean functionsFundam. Inform.1995223203215132259210.3233/FI-1995-22310813.06012
PawlakZInformation systems theoretical foundationsInf. Syst.19816320521810.1016/0306-4379(81)90023-50462.68078
Pawlak, Z.: Rough Sets - Theoretical Aspects of Reasoning About Data. Theory and Decision Library: Series D, vol. 9. Kluwer (1991)
TardosGQuery complexity, or why is it difficult to separate NPA ∩ coNPA from PA by random oracles A?Comb.1989943853920698.68051
Aglin, G., Nijssen, S., Schaus, P.: Learning optimal decision trees using caching branch-and-bound search. In: 34th AAAI Conference on Artificial Intelligence, AAAI 2020, pp. 3146–3153 (2020)
Moshkov, M.: Decision Trees. Theory and Applications (in Russian). Nizhny Novgorod University Publishers (1994)
Verwer, S., Zhang, Y.: Learning optimal classification trees using a binary linear program formulation. In: 33rd AAAI Conference on Artificial Intelligence, AAAI 2019, pp. 1625–1632 (2019)
GabrielovAVorobjovNOn topological lower bounds for algebraic computation treesFound. Comput. Math.20171716172360084910.1007/s10208-015-9283-71365.14080
Narodytska, N., Ignatiev, A., Pereira, F., Marques-Silva, J.: Learning optimal decision trees with SAT. In: 27th International Joint Conference on Artificial Intelligence, IJCAI 2018, pp. 1362–1368 (2018)
ZabinskiKZieloskoBDecision rules construction: Algorithm based on EAV modelEntropy202123114422421610.3390/e23010014
Moshkov, M.: Two approaches to investigation of deterministic and nondeterministic decision trees complexity. In: 2nd World Conference on the fundamentals of artificial intelligence, WOCFAI 1995, pp. 275–280 (1995)
Moshkov, M.: Time complexity of decision trees. In: Trans. Rough Sets III. Lecture Notes in Computer Science, vol. 3400, pp. 244–459. Springer (2005)
SauerNOn the density of families of setsJ. Comb. Theory (A)19721314514730790210.1016/0097-3165(72)90019-20248.05005
Hartmanis, J., Hemachandra, L.A.: One-way functions, robustness, and the non-isomorphism of NP-complete sets. In: 2nd Annual Conference on Structure in Complexity Theory, Cornell University, Ithaca, New York, USA, June 16-19, 1987 (1987)
BuhrmanHde WolfRComplexity measures and decision tree complexity: A surveyTheor. Comput. Sci.200228812143193488810.1016/S0304-3975(01)00144-X1061.68058
Kaufman, K.A., Michalski, R.S., Pietrzykowski, J., Wojtusiak, J.: An integrated multi-task inductive database VINLEN: initial implementation and early results. In: Dzeroski, S., Struyf, J. (eds.) Knowledge Discovery in Inductive Databases, 5th International Workshop, KDID 2006, Berlin, Germany, September 18, 2006, Revised Selected and Invited Papers. Lecture Notes in Computer Science, vol. 4747, pp. 116–133. Springer (2006)
Molnar, C.: Interpretable Machine Learning. A Guide for Making Black Box Models Explainable, 2nd edn. christophm.github.io/interpretable-ml-book/ (2022)
Meyer auf der Heide, F.: A polynomial linear search algorithm for the n-dimensional knapsack problem. In: 15th Annual ACM Symposium on Theory of Computing, STOC 1983, pp. 70–79 (1983)
DobkinDPLiptonRJA lower bound of the (1/2)n2 on linear search programs for the knapsack problemJ. Comput. Syst. Sci.197816341341710.1016/0022-0000(78)90026-00397.68045
BertsimasDDunnJOptimal classification treesMach. Learn.2017106710391082366578810.1007/s10994-017-5633-91455.68159
Abdelhalim, A., Traoré, I., Sayed, B.: RBDT-1: A new rule-based decision tree generation technique. In: Governatori, G, Hall, J., Paschke, A. (eds.) Rule Interchange and Applications, International Symposium, RuleML 2009, Las Vegas, Nevada, USA, November 5-7, 2009. Lecture Notes in Computer Science, vol. 5858, pp. 108–121. Springer (2009)
DemirovicELukinaAHebrardEChanJBaileyJLeckieCRamamohanaraoKStuckeyPJMurtree: Optimal decision trees via dynamic programming and searchJ. Mach. Learn. Res.2022232612647442075107625179
Grigoriev, D., Karpinski, M., Vorobjov, N.: Improved lower bound on testing membership to a polyhedron by algebraic decision trees. In: 36th Annual Symposium on Foundations of Computer Science, FOCS 1995, pp. 258–265 (1995)
GrigorievDKarpinskiMYaoACAn exponential lower bound on the size of algebraic decision trees for MaxComput. Complex.199873193203165775210.1007/s0003700500100918.68032
BorosEHammerPLIbarakiTKoganALogical analysis of numerical dataMath. Program.199779163190146476610.1007/BF026143160887.90179
MoshkovMOptimization problems for decision treesFundam. Inform.1994214391401132258210.3233/FI-1994-21470824.68090
MoshkovMOn conditional testsSov. Phys. Dokl.1982275285300505.90055
NaimanDQWynnHPIndependence number and the complexity of families of setsDiscr. Math.1996154203216139545910.1016/0012-365X(94)00318-D0852.05076
Rokach, L., Maimon, O.: Data Mining with Decision Trees - Theory and Applications. Series in Machine Perception and Artificial Intelligence, vol. 69. WorldScientific (2007)
AbouEisha, H., Amin, T., Chikalov, I., Hussain, S., Moshkov, M.: Extensions of Dynamic Programming for Combinatorial Optimization and Data Mining. Intelligent Systems Reference Library, vol. 146. Springer (2019)
Ben-Or, M.: Lower bounds for algebraic computation trees (preliminary report). In: 15th Annual ACM Symposium on Theory of Computing, STOC 1983, pp. 80–86 (1983)
MorávekJA localization problem in geometry and complexity of discrete programmingKybernetika1972864985163958730248.90044
BorosEHammerPLIbarakiTKoganAMayorazEMuchnikIBAn implementation of logical analysis of dataIEEE Trans. Knowl. Data Eng.200012229230610.1109/69.842268
Yao, A.C.: Algebraic decision trees and Euler characteristics. In: 33rd Annual Symposium on Foundations of Computer Science, FOCS 1992, pp. 268–277 (1992)
Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regression Trees. Wadsworth (1984)
ShelahSA combinatorial problem; stability and order for models and theories in infinitary languagesPacific J. Math.19724124126130790310.2140/pjm.1972.41.247
BeamePJayramTSSaksMETime-space tradeoffs for branching programsJ. Comput. Syst. Sci.2001634542572189452110.1006/jcss.2001.17781052.68049
Zielosko, B., Zabinski, K.: Selected approaches for decision rules construction-comparative study. In: Knowledge-Based and Intelligent Information & Engineering Systems: 25th International Conference KES-2021, Virtual Event / Szczecin, Poland, 8-10 September 2021. Procedia Computer Science, vol. 192, pp. 3667–3676. Elsevier (2021)
LejeuneMALozinVVLozinaIRagabAYacoutSRecent advances in the theory and practice of logical analysis of dataEur. J. Oper. Res.20192751115391334710.1016/j.ejor.2018.06.0111430.90495
AbdelhalimATraoréINakkabiYCreating decision trees from rules using RBDT-1Comput. Intell.2016322216239350245710.1111/coin.12049
Moshkov, M.: On time and space complexity of deterministic and nondeterministic decision trees. In: 8th International Conference Information Processing and Management of Uncertainty in Knowledge-based Systems, IPMU 2000, vol. 3, pp. 1932–1936 (2000)
MoshkovMClassification of infinite information systems depending on complexity of decision trees and decision rule systemsFundam. Inform.200354434536820002201111.68705
Blum, M., Impagliazzo, R.: Generic oracles and oracle classes (extended abstract). In: 28th Annual Symposium on Foundations of Computer Science, Los Angeles, California, USA, 27-29 October 1987, pp. 118–126 (1987)
DobkinDPLiptonRJOn the complexity of computations under varying sets of primitivesJ. Comput. Syst. Sci.1979181869152583210.1016/0022-0000(79)90054-00409.68023
Moshkov, M.: Comparative Analysis of Deterministic and Nondeterministic Decision Trees. Intelligent Systems Reference Library, vol. 179. Springer (2020)
SteeleJMYaoACLower bounds for algebraic decision treesJ. Algorithms1982311864688610.1016/0196-6774(82)90002-50477.68065
Avellaneda, F.: Efficient inference of optimal decision trees. In: 34th AAAI Conference on Artificial Intelligence, AAAI 2020, pp. 3195–3202 (2020)
Yao, A.C.: Decision tree complexity and Betti numbers. In: 26th Annual ACM Symposium on Theory of Computing, STOC 1994, pp. 615–624 (1994)
Chikalov, I., Lozin, V.V., Lozina, I., Moshkov, M., Nguyen, H.S., Skowron, A., Zielosko, B.: Three Approaches to Data Analysis - Test Theory, Rough Sets and Logical Analysis of Data. Intelligent Systems Reference Library, vol. 41. Springer (2013)
DobkinDPLiptonRJMultidimensional searching problemsSIAM J. Comput.19765218118641609910.1137/02050150333.68031
Fürnkranz, J., Gamberger, D.,
I Chikalov (9814_CR30) 2016; 215
M Moshkov (9814_CR52) 1982; 27
9814_CR36
9814_CR34
DP Dobkin (9814_CR51) 1976; 5
M Moshkov (9814_CR54) 2003; 54
E Boros (9814_CR8) 2000; 12
H Buhrman (9814_CR50) 2002; 288
A Abdelhalim (9814_CR16) 2016; 32
9814_CR39
A Gabrielov (9814_CR35) 2017; 17
G Tardos (9814_CR49) 1989; 9
MA Lejeune (9814_CR11) 2019; 275
9814_CR24
D Grigoriev (9814_CR37) 1998; 7
9814_CR22
9814_CR23
9814_CR21
S Shelah (9814_CR60) 1972; 41
DP Dobkin (9814_CR32) 1979; 18
9814_CR26
9814_CR27
E Boros (9814_CR7) 1997; 79
9814_CR2
9814_CR3
9814_CR1
M Moshkov (9814_CR44) 1996; 25
K Zabinski (9814_CR25) 2021; 23
D Bertsimas (9814_CR19) 2017; 106
9814_CR13
M Moshkov (9814_CR48) 1995; 22
9814_CR57
E Demirovic (9814_CR20) 2022; 23
J Morávek (9814_CR33) 1972; 8
9814_CR55
9814_CR9
9814_CR12
9814_CR56
9814_CR6
9814_CR53
9814_CR10
9814_CR4
M Moshkov (9814_CR41) 1994; 21
9814_CR5
N Sauer (9814_CR59) 1972; 13
9814_CR17
9814_CR18
9814_CR15
Z Pawlak (9814_CR14) 2007; 177
I Wegener (9814_CR28) 1986; 32
Z Pawlak (9814_CR45) 1981; 6
P Beame (9814_CR29) 2001; 63
JM Steele (9814_CR38) 1982; 3
9814_CR46
9814_CR47
9814_CR42
9814_CR43
9814_CR40
DQ Naiman (9814_CR58) 1996; 154
DP Dobkin (9814_CR31) 1978; 16
References_xml – reference: Moshkov, M.: Comparative analysis of deterministic and nondeterministic decision tree complexity. Local approach. In: Trans. Rough Sets IV. Lecture Notes in Computer Science, vol. 3700, pp. 125–143. Springer (2005)
– reference: Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regression Trees. Wadsworth (1984)
– reference: Hartmanis, J., Hemachandra, L.A.: One-way functions, robustness, and the non-isomorphism of NP-complete sets. In: 2nd Annual Conference on Structure in Complexity Theory, Cornell University, Ithaca, New York, USA, June 16-19, 1987 (1987)
– reference: WegenerITime-space trade-offs for branching programsJ. Comput. Syst. Sci.1986321919684420410.1016/0022-0000(86)90004-80593.68038
– reference: Yao, A.C.: Decision tree complexity and Betti numbers. In: 26th Annual ACM Symposium on Theory of Computing, STOC 1994, pp. 615–624 (1994)
– reference: MorávekJA localization problem in geometry and complexity of discrete programmingKybernetika1972864985163958730248.90044
– reference: Ben-Or, M.: Lower bounds for algebraic computation trees (preliminary report). In: 15th Annual ACM Symposium on Theory of Computing, STOC 1983, pp. 80–86 (1983)
– reference: Moshkov, M.: Comparative Analysis of Deterministic and Nondeterministic Decision Trees. Intelligent Systems Reference Library, vol. 179. Springer (2020)
– reference: MoshkovMOn conditional testsSov. Phys. Dokl.1982275285300505.90055
– reference: Moshkov, M.: On time and space complexity of deterministic and nondeterministic decision trees. In: 8th International Conference Information Processing and Management of Uncertainty in Knowledge-based Systems, IPMU 2000, vol. 3, pp. 1932–1936 (2000)
– reference: ChikalovIHussainSMoshkovMTotally optimal decision trees for Boolean functionsDiscret. Appl. Math.2016215113354897310.1016/j.dam.2016.07.0091403.94133
– reference: SauerNOn the density of families of setsJ. Comb. Theory (A)19721314514730790210.1016/0097-3165(72)90019-20248.05005
– reference: Grigoriev, D., Karpinski, M., Vorobjov, N.: Improved lower bound on testing membership to a polyhedron by algebraic decision trees. In: 36th Annual Symposium on Foundations of Computer Science, FOCS 1995, pp. 258–265 (1995)
– reference: TardosGQuery complexity, or why is it difficult to separate NPA ∩ coNPA from PA by random oracles A?Comb.1989943853920698.68051
– reference: DobkinDPLiptonRJOn the complexity of computations under varying sets of primitivesJ. Comput. Syst. Sci.1979181869152583210.1016/0022-0000(79)90054-00409.68023
– reference: MoshkovMOptimization problems for decision treesFundam. Inform.1994214391401132258210.3233/FI-1994-21470824.68090
– reference: Verwer, S., Zhang, Y.: Learning optimal classification trees using a binary linear program formulation. In: 33rd AAAI Conference on Artificial Intelligence, AAAI 2019, pp. 1625–1632 (2019)
– reference: MoshkovMComparative analysis of deterministic and nondeterministic decision tree complexityGlobal approach Fundam. Inform.199625220121413844210840.68090
– reference: Abdelhalim, A., Traoré, I., Sayed, B.: RBDT-1: A new rule-based decision tree generation technique. In: Governatori, G, Hall, J., Paschke, A. (eds.) Rule Interchange and Applications, International Symposium, RuleML 2009, Las Vegas, Nevada, USA, November 5-7, 2009. Lecture Notes in Computer Science, vol. 5858, pp. 108–121. Springer (2009)
– reference: DobkinDPLiptonRJA lower bound of the (1/2)n2 on linear search programs for the knapsack problemJ. Comput. Syst. Sci.197816341341710.1016/0022-0000(78)90026-00397.68045
– reference: BorosEHammerPLIbarakiTKoganALogical analysis of numerical dataMath. Program.199779163190146476610.1007/BF026143160887.90179
– reference: Chikalov, I., Lozin, V.V., Lozina, I., Moshkov, M., Nguyen, H.S., Skowron, A., Zielosko, B.: Three Approaches to Data Analysis - Test Theory, Rough Sets and Logical Analysis of Data. Intelligent Systems Reference Library, vol. 41. Springer (2013)
– reference: Avellaneda, F.: Efficient inference of optimal decision trees. In: 34th AAAI Conference on Artificial Intelligence, AAAI 2020, pp. 3195–3202 (2020)
– reference: Narodytska, N., Ignatiev, A., Pereira, F., Marques-Silva, J.: Learning optimal decision trees with SAT. In: 27th International Joint Conference on Artificial Intelligence, IJCAI 2018, pp. 1362–1368 (2018)
– reference: Molnar, C.: Interpretable Machine Learning. A Guide for Making Black Box Models Explainable, 2nd edn. christophm.github.io/interpretable-ml-book/ (2022)
– reference: Przybyla-Kasperek, M., Aning, S.: Bagging and single decision tree approaches to dispersed data. In: Paszynski, M., Kranzlmüller, D., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds.) Computational Science - ICCS 2021 - 21st International Conference, Krakow, Poland, June 16-18, 2021, Proceedings, Part III. Lecture Notes in Computer Science, vol. 12744, pp. 420–427. Springer (2021)
– reference: Moshkov, M., Zielosko, B.: Combinatorial Machine Learning - A Rough Set Approach. Studies in Computational Intelligence, vol. 360. Springer (2011)
– reference: ShelahSA combinatorial problem; stability and order for models and theories in infinitary languagesPacific J. Math.19724124126130790310.2140/pjm.1972.41.247
– reference: Fürnkranz, J., Gamberger, D., Lavrac, N.: Foundations of Rule Learning. Cognitive Technologies. Springer (2012)
– reference: BertsimasDDunnJOptimal classification treesMach. Learn.2017106710391082366578810.1007/s10994-017-5633-91455.68159
– reference: Yao, A.C.: Algebraic decision trees and Euler characteristics. In: 33rd Annual Symposium on Foundations of Computer Science, FOCS 1992, pp. 268–277 (1992)
– reference: BuhrmanHde WolfRComplexity measures and decision tree complexity: A surveyTheor. Comput. Sci.200228812143193488810.1016/S0304-3975(01)00144-X1061.68058
– reference: AbdelhalimATraoréINakkabiYCreating decision trees from rules using RBDT-1Comput. Intell.2016322216239350245710.1111/coin.12049
– reference: Moshkov, M.: Two approaches to investigation of deterministic and nondeterministic decision trees complexity. In: 2nd World Conference on the fundamentals of artificial intelligence, WOCFAI 1995, pp. 275–280 (1995)
– reference: Rokach, L., Maimon, O.: Data Mining with Decision Trees - Theory and Applications. Series in Machine Perception and Artificial Intelligence, vol. 69. WorldScientific (2007)
– reference: Kaufman, K.A., Michalski, R.S., Pietrzykowski, J., Wojtusiak, J.: An integrated multi-task inductive database VINLEN: initial implementation and early results. In: Dzeroski, S., Struyf, J. (eds.) Knowledge Discovery in Inductive Databases, 5th International Workshop, KDID 2006, Berlin, Germany, September 18, 2006, Revised Selected and Invited Papers. Lecture Notes in Computer Science, vol. 4747, pp. 116–133. Springer (2006)
– reference: BeamePJayramTSSaksMETime-space tradeoffs for branching programsJ. Comput. Syst. Sci.2001634542572189452110.1006/jcss.2001.17781052.68049
– reference: Moshkov, M.: Time complexity of decision trees. In: Trans. Rough Sets III. Lecture Notes in Computer Science, vol. 3400, pp. 244–459. Springer (2005)
– reference: Aglin, G., Nijssen, S., Schaus, P.: Learning optimal decision trees using caching branch-and-bound search. In: 34th AAAI Conference on Artificial Intelligence, AAAI 2020, pp. 3146–3153 (2020)
– reference: Moshkov, M.: Decision Trees. Theory and Applications (in Russian). Nizhny Novgorod University Publishers (1994)
– reference: Meyer auf der Heide, F.: A polynomial linear search algorithm for the n-dimensional knapsack problem. In: 15th Annual ACM Symposium on Theory of Computing, STOC 1983, pp. 70–79 (1983)
– reference: Blum, M., Impagliazzo, R.: Generic oracles and oracle classes (extended abstract). In: 28th Annual Symposium on Foundations of Computer Science, Los Angeles, California, USA, 27-29 October 1987, pp. 118–126 (1987)
– reference: SteeleJMYaoACLower bounds for algebraic decision treesJ. Algorithms1982311864688610.1016/0196-6774(82)90002-50477.68065
– reference: LejeuneMALozinVVLozinaIRagabAYacoutSRecent advances in the theory and practice of logical analysis of dataEur. J. Oper. Res.20192751115391334710.1016/j.ejor.2018.06.0111430.90495
– reference: Pawlak, Z.: Rough Sets - Theoretical Aspects of Reasoning About Data. Theory and Decision Library: Series D, vol. 9. Kluwer (1991)
– reference: AbouEisha, H., Amin, T., Chikalov, I., Hussain, S., Moshkov, M.: Extensions of Dynamic Programming for Combinatorial Optimization and Data Mining. Intelligent Systems Reference Library, vol. 146. Springer (2019)
– reference: GrigorievDKarpinskiMYaoACAn exponential lower bound on the size of algebraic decision trees for MaxComput. Complex.199873193203165775210.1007/s0003700500100918.68032
– reference: MoshkovMClassification of infinite information systems depending on complexity of decision trees and decision rule systemsFundam. Inform.200354434536820002201111.68705
– reference: Alsolami, F., Azad, M., Chikalov, I., Moshkov, M.: Decision and Inhibitory Trees and Rules for Decision Tables with Many-valued Decisions. Intelligent Systems Reference Library, vol. 156. Springer (2020)
– reference: Zielosko, B., Zabinski, K.: Selected approaches for decision rules construction-comparative study. In: Knowledge-Based and Intelligent Information & Engineering Systems: 25th International Conference KES-2021, Virtual Event / Szczecin, Poland, 8-10 September 2021. Procedia Computer Science, vol. 192, pp. 3667–3676. Elsevier (2021)
– reference: Moshkov, M., Piliszczuk, M., Zielosko, B.: Partial Covers, Reducts and Decision Rules in Rough Sets - Theory and Applications. Studies in Computational Intelligence, vol. 145. Springer (2008)
– reference: ZabinskiKZieloskoBDecision rules construction: Algorithm based on EAV modelEntropy202123114422421610.3390/e23010014
– reference: NaimanDQWynnHPIndependence number and the complexity of families of setsDiscr. Math.1996154203216139545910.1016/0012-365X(94)00318-D0852.05076
– reference: PawlakZSkowronARudiments of rough setsInf. Sci.20071771327227273210.1016/j.ins.2006.06.0031142.68549
– reference: PawlakZInformation systems theoretical foundationsInf. Syst.19816320521810.1016/0306-4379(81)90023-50462.68078
– reference: GabrielovAVorobjovNOn topological lower bounds for algebraic computation treesFound. Comput. Math.20171716172360084910.1007/s10208-015-9283-71365.14080
– reference: DemirovicELukinaAHebrardEChanJBaileyJLeckieCRamamohanaraoKStuckeyPJMurtree: Optimal decision trees via dynamic programming and searchJ. Mach. Learn. Res.2022232612647442075107625179
– reference: MoshkovMAbout the depth of decision trees computing Boolean functionsFundam. Inform.1995223203215132259210.3233/FI-1995-22310813.06012
– reference: BorosEHammerPLIbarakiTKoganAMayorazEMuchnikIBAn implementation of logical analysis of dataIEEE Trans. Knowl. Data Eng.200012229230610.1109/69.842268
– reference: DobkinDPLiptonRJMultidimensional searching problemsSIAM J. Comput.19765218118641609910.1137/02050150333.68031
– ident: 9814_CR39
  doi: 10.1109/SFCS.1992.267765
– ident: 9814_CR47
– ident: 9814_CR34
  doi: 10.1145/800061.808735
– volume: 6
  start-page: 205
  issue: 3
  year: 1981
  ident: 9814_CR45
  publication-title: Inf. Syst.
  doi: 10.1016/0306-4379(81)90023-5
– ident: 9814_CR6
  doi: 10.1142/6604
– ident: 9814_CR43
– volume: 13
  start-page: 145
  year: 1972
  ident: 9814_CR59
  publication-title: J. Comb. Theory (A)
  doi: 10.1016/0097-3165(72)90019-2
– volume: 177
  start-page: 3
  issue: 1
  year: 2007
  ident: 9814_CR14
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2006.06.003
– ident: 9814_CR22
  doi: 10.1007/978-3-540-75549-4_8
– volume: 63
  start-page: 542
  issue: 4
  year: 2001
  ident: 9814_CR29
  publication-title: J. Comput. Syst. Sci.
  doi: 10.1006/jcss.2001.1778
– volume: 54
  start-page: 345
  issue: 4
  year: 2003
  ident: 9814_CR54
  publication-title: Fundam. Inform.
– ident: 9814_CR5
  doi: 10.1007/978-3-642-20995-6
– volume: 32
  start-page: 216
  issue: 2
  year: 2016
  ident: 9814_CR16
  publication-title: Comput. Intell.
  doi: 10.1111/coin.12049
– ident: 9814_CR10
  doi: 10.1007/978-3-540-75197-7
– ident: 9814_CR24
  doi: 10.1609/aaai.v33i01.33011624
– ident: 9814_CR57
– volume: 32
  start-page: 91
  issue: 1
  year: 1986
  ident: 9814_CR28
  publication-title: J. Comput. Syst. Sci.
  doi: 10.1016/0022-0000(86)90004-8
– ident: 9814_CR55
  doi: 10.1007/11574798_7
– volume: 154
  start-page: 203
  year: 1996
  ident: 9814_CR58
  publication-title: Discr. Math.
  doi: 10.1016/0012-365X(94)00318-D
– ident: 9814_CR3
– ident: 9814_CR1
  doi: 10.1007/978-3-319-91839-6
– ident: 9814_CR17
  doi: 10.1609/aaai.v34i04.5711
– volume: 21
  start-page: 391
  issue: 4
  year: 1994
  ident: 9814_CR41
  publication-title: Fundam. Inform.
  doi: 10.3233/FI-1994-2147
– ident: 9814_CR4
  doi: 10.1007/11427834_12
– volume: 3
  start-page: 1
  issue: 1
  year: 1982
  ident: 9814_CR38
  publication-title: J. Algorithms
  doi: 10.1016/0196-6774(82)90002-5
– ident: 9814_CR42
– ident: 9814_CR18
  doi: 10.1609/aaai.v34i04.5717
– ident: 9814_CR13
  doi: 10.1007/978-94-011-3534-4_7
– volume: 9
  start-page: 385
  issue: 4
  year: 1989
  ident: 9814_CR49
  publication-title: Comb.
– volume: 275
  start-page: 1
  issue: 1
  year: 2019
  ident: 9814_CR11
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2018.06.011
– volume: 23
  start-page: 14
  issue: 1
  year: 2021
  ident: 9814_CR25
  publication-title: Entropy
  doi: 10.3390/e23010014
– ident: 9814_CR23
  doi: 10.24963/ijcai.2018/189
– volume: 106
  start-page: 1039
  issue: 7
  year: 2017
  ident: 9814_CR19
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-017-5633-9
– ident: 9814_CR26
  doi: 10.1016/j.procs.2021.09.140
– ident: 9814_CR53
  doi: 10.1145/800061.808734
– ident: 9814_CR2
  doi: 10.1007/978-3-030-12854-8
– ident: 9814_CR21
  doi: 10.1007/978-3-030-77967-2_35
– ident: 9814_CR56
  doi: 10.1007/978-3-030-41728-4
– volume: 79
  start-page: 163
  year: 1997
  ident: 9814_CR7
  publication-title: Math. Program.
  doi: 10.1007/BF02614316
– ident: 9814_CR36
  doi: 10.1109/SFCS.1995.492481
– volume: 27
  start-page: 528
  year: 1982
  ident: 9814_CR52
  publication-title: Sov. Phys. Dokl.
– ident: 9814_CR15
  doi: 10.1007/978-3-642-04985-9_12
– volume: 25
  start-page: 201
  issue: 2
  year: 1996
  ident: 9814_CR44
  publication-title: Global approach Fundam. Inform.
– volume: 17
  start-page: 61
  issue: 1
  year: 2017
  ident: 9814_CR35
  publication-title: Found. Comput. Math.
  doi: 10.1007/s10208-015-9283-7
– volume: 18
  start-page: 86
  issue: 1
  year: 1979
  ident: 9814_CR32
  publication-title: J. Comput. Syst. Sci.
  doi: 10.1016/0022-0000(79)90054-0
– ident: 9814_CR9
  doi: 10.1007/978-3-642-28667-4
– volume: 5
  start-page: 181
  issue: 2
  year: 1976
  ident: 9814_CR51
  publication-title: SIAM J. Comput.
  doi: 10.1137/0205015
– ident: 9814_CR27
– ident: 9814_CR46
  doi: 10.1109/SFCS.1987.30
– volume: 7
  start-page: 193
  issue: 3
  year: 1998
  ident: 9814_CR37
  publication-title: Comput. Complex.
  doi: 10.1007/s000370050010
– volume: 288
  start-page: 21
  issue: 1
  year: 2002
  ident: 9814_CR50
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/S0304-3975(01)00144-X
– volume: 215
  start-page: 1
  year: 2016
  ident: 9814_CR30
  publication-title: Discret. Appl. Math.
  doi: 10.1016/j.dam.2016.07.009
– ident: 9814_CR40
  doi: 10.1145/195058.195414
– volume: 8
  start-page: 498
  issue: 6
  year: 1972
  ident: 9814_CR33
  publication-title: Kybernetika
– volume: 12
  start-page: 292
  issue: 2
  year: 2000
  ident: 9814_CR8
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/69.842268
– volume: 23
  start-page: 26
  year: 2022
  ident: 9814_CR20
  publication-title: J. Mach. Learn. Res.
– volume: 22
  start-page: 203
  issue: 3
  year: 1995
  ident: 9814_CR48
  publication-title: Fundam. Inform.
  doi: 10.3233/FI-1995-2231
– volume: 41
  start-page: 241
  year: 1972
  ident: 9814_CR60
  publication-title: Pacific J. Math.
  doi: 10.2140/pjm.1972.41.247
– ident: 9814_CR12
– volume: 16
  start-page: 413
  issue: 3
  year: 1978
  ident: 9814_CR31
  publication-title: J. Comput. Syst. Sci.
  doi: 10.1016/0022-0000(78)90026-0
SSID ssj0009686
Score 2.3443823
Snippet In this paper, we study arbitrary infinite binary information systems each of which consists of an infinite set called universe and an infinite set of...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 45
SubjectTerms Algorithms
Artificial Intelligence
Complex Systems
Complexity
Computer Science
Decision trees
Information systems
Mathematical analysis
Mathematics
Nodes
Polynomials
Problem solving
Universe
SummonAdditionalLinks – databaseName: Engineering Database
  dbid: M7S
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NixMxFH-41cPuwWp12bpVchA8aHCSzOTjtBSxeLEIKvQWMvkAQdpup7v455ukmZYq9uJ1kklCXt7Lx3vv9wN4zX1DveIKt4pyXAsvseTW4qZuLaPCEGZCJpsQ87lcLNSX8uDWlbDK3iZmQ-1WNr2Rv6cqQY3H60B1s77FiTUqeVcLhcYZPEwoCSSH7n09gO7yzPSYIKxw3MZYSZopqXO1oDjFsldKkhqTo43pT_P8l580bz-z4f8O_Ak8LgdPNN2tlKfwwC9HMOxJHVDR8RFcfN4DuXbPYJ5SRJBZOhQtj_UoR6D7X_HojlYBuRJLk8Gec63lann80RUOH5S8391z-D77-O3DJ1woGLCNF8stZjxIZZ2htTSsCr4xXgTJRaChobWN2qtILI4DcK3llRTKMBlE4ILzypHALmEQe_ZXgDhriW85q02ItyRKjXFWOksaX3viDBsD6edf24JPnmgyfuoDsnKSmY4y01lmmozh7f6f9Q6d42TtN0msOqlubNmakoEQx5dAsPRUsEYlPMNqDJNelrrodKcPghzDu341HIr_3e-L061dw3nisN-Fgk9gsN3c-ZfwyN5vf3SbV3lF_wY3B_ru
  priority: 102
  providerName: ProQuest
Title Time and space complexity of deterministic and nondeterministic decision trees
URI https://link.springer.com/article/10.1007/s10472-022-09814-1
https://www.proquest.com/docview/2918201400
Volume 91
WOSCitedRecordID wos000852103000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1573-7470
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0009686
  issn: 1012-2443
  databaseCode: P5Z
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1573-7470
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0009686
  issn: 1012-2443
  databaseCode: K7-
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database (subscription)
  customDbUrl:
  eissn: 1573-7470
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0009686
  issn: 1012-2443
  databaseCode: M7S
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1573-7470
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0009686
  issn: 1012-2443
  databaseCode: BENPR
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLink Journals
  customDbUrl:
  eissn: 1573-7470
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009686
  issn: 1012-2443
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NaxQxFH9o68EerFbFrXXJQfCggUkyk49jlZaCuCytSvESMvmAgmylsxX__L5kM12rVtDLHCafvOTl5ZH3fj-AlzJ2PBppaG-4pK2KmmrpPe3a3guuHBMuFbIJNZvp01Mzr0lhwxjtPj5JlpP6p2S3VnGao88bo1lL0efZRHOnM2HD8cnnNdSuLPyOGbiKovESNVXmz33cMEe_Hsq_vY4Wo3O4_X_TfQgP6iWT7K92xSO4Exc7sD0SOJCqzzuw9eEatHV4DLOcDkLcIhA8ZXwkJdo8_sBrOjlPJNS4mQLsXGotzhc3f4bK10PyS_fwBD4dHnx8d0Qr3QL16EQuqZBJGx8cb7UTTYqdiyppqRJPHW89aqphWIwTCL2XjVbGCZ1UkkrKJrAknsIGjhyfAZGiZ7GXonUJPSLOnQteB8-62EYWnJgAG6VufcUiz5QYX-0aRTmLz6L4bBGfZRN4fd3m2wqJ46-1X-XFtFlNsWfvarYBzi8DXtl9JTqTsQubCeyN622r_g6Wmwxsj84nFr8Z13ddfPu4u_9W_Tncz_z1qzDwPdhYXlzGF3DPf1-eDRdT2Hx7MJsfT-Hue0WnOSz1BL_z7su07PgroWv1ag
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL0qBQm6oFBADBTwAsQCLOJH_FggVAFVq2lHLIrUnXH8kJDQTGkG2v4U34jtcToqiO66YBs7dhIfX_vG954D8FyElgYtNO40FZjLoLASzuGWd45RaQmzsYhNyMlEHR7qTyvwa8iFyWGVg00shtrPXP5H_obqTDWe3IHm3dF3nFWj8unqIKGxgMU4nJ0kl61_u_shje8LSrc_HrzfwVVVALvkK80xE1Fp5y3lyrImhtYGGZWQkcaWcpcAqUkqti74zolGSW2ZijIKKUTjSWSp3WtwnTMl87waS7wk-RVFWTJTZuG0bLKapFNT9bikOMfON1oRjsmFhfDP5eCvc9my3G2v_28f6g7crhtrtLWYCXdhJUw3YH0QrUDVhm3A2v45UW1_DyY5BQbZqUfJsrqASoR9OE2uCZpF5GusUCGzLrWms-nFi75qFKF8ut_fh89X8o4PYDX1HB4CEqwjoROM25i8QEqt9U55R9rAA_GWjYAM421c5V_PMiDfzJI5OmPEJIyYghFDRvDq_J6jBfvIpbVfZhiZbJpSy87WDIv0fJnky2xJ1urM19iMYHPAjqk2qzdL4Izg9YC-ZfG_-310eWvP4ObOwf6e2dudjB_DLZp2iYuw901YnR__CE_ghvs5_9ofPy2zCcGXq0blb_wwWVM
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba1QxEB6kStEHa6viatU8CH2ooSeXk8tjURdFuxRsS99CTi5QkLOlu0p_fpNsTrdXQXw9yUnCTCbJMDPfB_BBhJYGLTTuNBWYy6CwEs7hlneOUWkJs7GQTcjJRB0f6_0rVfwl230ISS5qGjJKUz_fOfVx50rhG5cU50z0RivCcfJ_HvKcSJ_99Z9HS9hdUbgeM4gVThcZq2Uzd49x7Wq6eUDfipSWC2i89v9LfwZP6-MT7S52yzo8CP0GrA3EDqja-QY82bsEc509h0kuE0G29yidPi6gkoUeztPzHU0j8jWfpgA-l179tL_-0VceH5Qj4LMXcDj-cvDpK640DNgl53KOmYhKO28pV5Y1MbQ2yKiEjDS2lLtkwZqk5rQA3znRKKktU1FGIYVoPInsJaykmcMrQIJ1JHSCcRuTp0Sptd4p70gbeCDeshGQQQPGVYzyTJXxyyzRlbP4TBKfKeIzZATbl_-cLhA6_tp7KyvWZPNNIztbqxDS-jIQltmVrNUZ07AZweage1PtemaozoD3ySlNzR8HXS-b75_39b91fw-r-5_H5se3yfc38DhT3C8yxTdhZX72O7yFR-7P_GR29q5s9wu90_zQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Time+and+space+complexity+of+deterministic+and+nondeterministic+decision+trees&rft.jtitle=Annals+of+mathematics+and+artificial+intelligence&rft.au=Moshkov%2C+Mikhail&rft.date=2023-02-01&rft.pub=Springer+International+Publishing&rft.issn=1012-2443&rft.eissn=1573-7470&rft.volume=91&rft.issue=1&rft.spage=45&rft.epage=74&rft_id=info:doi/10.1007%2Fs10472-022-09814-1&rft.externalDocID=10_1007_s10472_022_09814_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1012-2443&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1012-2443&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1012-2443&client=summon