Probabilistic Selection Approaches in Decomposition-Based Evolutionary Algorithms for Offline Data-Driven Multiobjective Optimization

In offline data-driven multiobjective optimization, no new data are available during the optimization process. Approximation models, also known as surrogates, are built using the provided offline data. A multiobjective evolutionary algorithm can be utilized to find solutions by using these surrogate...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on evolutionary computation Ročník 26; číslo 5; s. 1182 - 1191
Hlavní autori: Mazumdar, Atanu, Chugh, Tinkle, Hakanen, Jussi, Miettinen, Kaisa
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 01.10.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:1089-778X, 1941-0026
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In offline data-driven multiobjective optimization, no new data are available during the optimization process. Approximation models, also known as surrogates, are built using the provided offline data. A multiobjective evolutionary algorithm can be utilized to find solutions by using these surrogates. The accuracy of the approximated solutions depends on the surrogates and approximations typically involve uncertainties. In this article, we propose probabilistic selection approaches that utilize the uncertainty information of the Kriging models (as surrogates) to improve the solution process in offline data-driven multiobjective optimization. These approaches are designed for decomposition-based multiobjective evolutionary algorithms and can, thus, handle a large number of objectives. The proposed approaches were tested on distance-based visualizable test problems and the DTLZ suite. The proposed approaches produced solutions with a greater hypervolume, and a lower root mean squared error compared to generic approaches and a transfer learning approach that do not use uncertainty information.
AbstractList In offline data-driven multiobjective optimization, no new data are available during the optimization process. Approximation models, also known as surrogates, are built using the provided offline data. A multiobjective evolutionary algorithm can be utilized to find solutions by using these surrogates. The accuracy of the approximated solutions depends on the surrogates and approximations typically involve uncertainties. In this article, we propose probabilistic selection approaches that utilize the uncertainty information of the Kriging models (as surrogates) to improve the solution process in offline data-driven multiobjective optimization. These approaches are designed for decomposition-based multiobjective evolutionary algorithms and can, thus, handle a large number of objectives. The proposed approaches were tested on distance-based visualizable test problems and the DTLZ suite. The proposed approaches produced solutions with a greater hypervolume, and a lower root mean squared error compared to generic approaches and a transfer learning approach that do not use uncertainty information.
Author Chugh, Tinkle
Miettinen, Kaisa
Hakanen, Jussi
Mazumdar, Atanu
Author_xml – sequence: 1
  givenname: Atanu
  orcidid: 0000-0002-7760-3171
  surname: Mazumdar
  fullname: Mazumdar, Atanu
  email: atanu.a.mazumdar@jyu.fi
  organization: Faculty of Information Technology, University of Jyvaskyla, University of Jyvaskyla, Finland
– sequence: 2
  givenname: Tinkle
  orcidid: 0000-0001-5123-8148
  surname: Chugh
  fullname: Chugh, Tinkle
  organization: Department of Computer Science, University of Exeter, Exeter, U.K
– sequence: 3
  givenname: Jussi
  surname: Hakanen
  fullname: Hakanen, Jussi
  organization: Faculty of Information Technology, University of Jyvaskyla, University of Jyvaskyla, Finland
– sequence: 4
  givenname: Kaisa
  orcidid: 0000-0003-1013-4689
  surname: Miettinen
  fullname: Miettinen, Kaisa
  organization: Faculty of Information Technology, University of Jyvaskyla, University of Jyvaskyla, Finland
BookMark eNp9kE1rGzEQhkVIIF_9AaEXQc7raPSx8h5d220DKQ40LbktWnnUyKxXG0k2tPf87-7WoYcccpoZ5n3n4zknx13okJArYBMAVt08LH_OJ5xxPhGgJBdwRM6gklAwxsvjIWfTqtB6-nhKzlPaMAZSQXVGXu5jaEzjW5-yt_Q7tmizDx2d9X0Mxj5hor6jC7Rh24fkx17xySRc0-U-tLuxNvE3nbW_QvT5aZuoC5GunGt9h3RhsikW0e-xo9927aBuNuOCPdJVn_3W_zHjhEty4kyb8MNrvCA_Pi8f5l-Lu9WX2_nsrrCS8VyI0pauqYzhToJqpOWVFqhKYSVIjppLV_K1Lp1pVKP5VIBGB8yKphQK10ZckOvD3OG35x2mXG_CLnbDypprqJRSTMOg0geVjSGliK62Pv-7M0fj2xpYPTKvR-b1yLx-ZT444Y2zj3478HnX8_Hg8Yj4X19pDhKm4i8Sn5HV
CODEN ITEVF5
CitedBy_id crossref_primary_10_1007_s40747_023_01179_0
crossref_primary_10_1016_j_eswa_2025_126834
crossref_primary_10_1016_j_engappai_2024_108897
crossref_primary_10_1109_TSMC_2024_3383219
Cites_doi 10.1109/TEVC.2016.2555315
10.1109/TEVC.2016.2608507
10.1109/TEVC.2007.892759
10.1109/TEVC.2019.2925959
10.1162/evco_a_00217
10.1109/4235.996017
10.1109/TEVC.2016.2519378
10.1109/TEVC.2018.2869001
10.1109/TCYB.2018.2869674
10.2307/3001968
10.1016/j.swevo.2011.05.001
10.1007/1-84628-137-7_6
10.1109/TEVC.2018.2834881
10.1007/978-3-030-12598-1_37
10.1007/978-3-642-01020-0_16
10.1214/aoms/1177728190
10.1145/3321707.3321727
10.1007/3-540-44719-9_23
10.1109/TEVC.2015.2395073
10.1007/978-3-030-63710-1_8
10.1016/j.apenergy.2018.07.101
10.1109/TEVC.2013.2281533
10.1002/9780470770801
10.1109/TEVC.2013.2281535
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TEVC.2022.3154231
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Statistics
Computer Science
EISSN 1941-0026
EndPage 1191
ExternalDocumentID 10_1109_TEVC_2022_3154231
9721418
Genre orig-research
GrantInformation_xml – fundername: Academy of Finland
  grantid: 311877
  funderid: 10.13039/501100002341
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IF
6IK
6IL
6IN
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ADZIZ
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
EBS
EJD
HZ~
H~9
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RIL
RNS
TN5
VH1
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c402t-36c6fb9aa2f415b4c2973e563c4142e724f62d76fab5b728317ef10c3b635eda3
IEDL.DBID RIE
ISICitedReferencesCount 12
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000862385200031&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1089-778X
IngestDate Sun Nov 09 06:34:13 EST 2025
Sat Nov 29 03:13:49 EST 2025
Tue Nov 18 22:38:11 EST 2025
Wed Aug 27 02:14:19 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c402t-36c6fb9aa2f415b4c2973e563c4142e724f62d76fab5b728317ef10c3b635eda3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5123-8148
0000-0003-1013-4689
0000-0002-7760-3171
OpenAccessLink https://jyx.jyu.fi/bitstreams/48c659b3-7983-4c94-b118-a9bce9136a08/download
PQID 2719555071
PQPubID 85418
PageCount 10
ParticipantIDs crossref_citationtrail_10_1109_TEVC_2022_3154231
ieee_primary_9721418
crossref_primary_10_1109_TEVC_2022_3154231
proquest_journals_2719555071
PublicationCentury 2000
PublicationDate 2022-10-01
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on evolutionary computation
PublicationTitleAbbrev TEVC
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref32
Bishop (ref20) 2006
ref2
Silverman (ref25) 1986
ref1
ref16
ref19
ref18
Li (ref21) 2021
ref24
ref23
ref26
ref22
Pedregosa (ref30) 2011; 12
Fonseca (ref10)
ref28
ref27
ref8
ref7
ref9
ref4
ref3
ref6
ref5
Metropolis (ref17) 1987
Fieldsend (ref29) 2019
Avriel (ref31) 2003
References_xml – ident: ref2
  doi: 10.1109/TEVC.2016.2555315
– ident: ref22
  doi: 10.1109/TEVC.2016.2608507
– ident: ref15
  doi: 10.1109/TEVC.2007.892759
– ident: ref6
  doi: 10.1109/TEVC.2019.2925959
– ident: ref13
  doi: 10.1162/evco_a_00217
– ident: ref12
  doi: 10.1109/4235.996017
– ident: ref14
  doi: 10.1109/TEVC.2016.2519378
– ident: ref4
  doi: 10.1109/TEVC.2018.2869001
– ident: ref5
  doi: 10.1109/TCYB.2018.2869674
– ident: ref32
  doi: 10.2307/3001968
– ident: ref1
  doi: 10.1016/j.swevo.2011.05.001
– ident: ref28
  doi: 10.1007/1-84628-137-7_6
– volume: 12
  start-page: 2825
  year: 2011
  ident: ref30
  article-title: Scikit-learn: Machine learning in Python
  publication-title: J. Mach. Learn. Res.
– ident: ref3
  doi: 10.1109/TEVC.2018.2834881
– ident: ref8
  doi: 10.1007/978-3-030-12598-1_37
– volume-title: Nonlinear Programming: Analysis and Methods
  year: 2003
  ident: ref31
– ident: ref11
  doi: 10.1007/978-3-642-01020-0_16
– ident: ref18
  doi: 10.1214/aoms/1177728190
– year: 2021
  ident: ref21
  article-title: Decomposition multi-objective evolutionary optimization: From state-of-the-art to future opportunities
  publication-title: arXiv:2108.09588
– volume-title: fieldsend/DBMOPP_Generator
  year: 2019
  ident: ref29
– volume-title: Density Estimation for Statistics and Data Analysis
  year: 1986
  ident: ref25
– ident: ref27
  doi: 10.1145/3321707.3321727
– ident: ref7
  doi: 10.1007/3-540-44719-9_23
– ident: ref24
  doi: 10.1109/TEVC.2015.2395073
– ident: ref26
  doi: 10.1007/978-3-030-63710-1_8
– ident: ref9
  doi: 10.1016/j.apenergy.2018.07.101
– ident: ref23
  doi: 10.1109/TEVC.2013.2281533
– ident: ref19
  doi: 10.1002/9780470770801
– ident: ref16
  doi: 10.1109/TEVC.2013.2281535
– start-page: 416
  volume-title: Proc. 5th Int. Conf. Genet. Algorithms
  ident: ref10
  article-title: Genetic algorithms for multiobjective optimization: FormulationDiscussion and generalization
– volume-title: Pattern Recognition and Machine Learning
  year: 2006
  ident: ref20
– start-page: 125
  volume-title: The Beginning of the Monte Carlo Method
  year: 1987
  ident: ref17
SSID ssj0014519
Score 2.478008
Snippet In offline data-driven multiobjective optimization, no new data are available during the optimization process. Approximation models, also known as surrogates,...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1182
SubjectTerms Approximation
Decomposition
Evolutionary algorithms
Gaussian processes
kernel density estimation
Kriging
Linear programming
metamodeling
Multiple objective analysis
Optimization
Pareto optimality
Probabilistic logic
Probability density function
Sociology
Statistics
surrogate
Uncertainty
Title Probabilistic Selection Approaches in Decomposition-Based Evolutionary Algorithms for Offline Data-Driven Multiobjective Optimization
URI https://ieeexplore.ieee.org/document/9721418
https://www.proquest.com/docview/2719555071
Volume 26
WOSCitedRecordID wos000862385200031&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0026
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014519
  issn: 1089-778X
  databaseCode: RIE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NbxMxEB21FYdyoCUFkVIqHzghltreD6-PoUnFAbWVKCi3le0d06I2QZu0Un8A_xuP14lARZW4rVa2tdKzZ96sZ94AvC1csPs2dxlXXlBJjsuMDjEP1jUW0nNrXJTM_6xOT-vpVJ9vwPt1LQwixuQz_ECP8S6_nbtb-lV2REozhag3YVOpqq_VWt8YkExKn0yvA2Osp-kGU3B9dDH5dhwiQSlDgFoG-iD-8kGxqcoDSxzdy8nO_33YLjxLNJKNetyfwwbOBrCzatHA0okdwNM_9AYHsE3Usldm3oNf5104y5QbSy_Yl9gQJ6DERklmHBfsasbGSFnnKbUr-xicXssmd2nDmu6eja6_z7ur5eXNggUCzM68J-bKxmZpsnFHxpTFKt-5_dEbV3YWzNRNqv98AV9PJhfHn7LUlCFzIdRcZnnlKm-1MdIH328D1lrlWFa5K0QhUcnCV7JVlTe2tCqQF6HQC-5yG6gNtiZ_CVuz-QxfAStdaXjFW2FaUxhZ1by0iMrbtlCtsXoIfAVT45JiOTXOuG5i5MJ1Q8g2hGyTkB3Cu_WUn71cx2OD9wjK9cCE4hAOVnuhSQd60UgldEnab2L_37Newzat3ef5HcDWsrvFN_DE3QVYu8O4V38D8fLp3g
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Rb9MwED6NgcR4YNCBVhjgB54QYbbjxPFjWTsNUbpJFNS3yHZs2LS1KO0m8QP435wdtwKBkHiLIluO9Nl338V33wG8FBbtvsltRqVnoSTHZlphzOOqygnuqdE2SuaP5WRSzWbqbAteb2phnHMx-cy9CY_xLr9Z2Ovwq-wwKM0IVt2C24UQnHbVWps7gyCU0qXTK-SM1SzdYTKqDqejz0cYC3KOIWqBBIL95oViW5U_bHF0MMe7__dpD-B-IpJk0CH_ELbcvAe76yYNJJ3ZHtz7RXGwBzuBXHbazHvw46zF0xyyY8ML8jG2xEGcyCAJjbslOZ-ToQt55ym5K3uLbq8ho5u0ZXX7nQwuvyza89XXqyVBCkxOvQ_clQz1SmfDNphTEut8F-aiM6_kFA3VVaoAfQSfjkfTo5MstWXILAabqywvbemN0pp79P4G0VYyd0WZW8EEd5ILX_JGll6bwkikL0w6z6jNDZIb1-j8MWzPF3O3D6SwhaYlbZhutNC8rGhhnJPeNEI22qg-0DVMtU2a5aF1xmUdYxeq6oBsHZCtE7J9eLWZ8q0T7PjX4L0A5WZgQrEPB-u9UKcjvay5ZKoI6m_syd9nvYC7J9MP43r8bvL-KeyEdbqsvwPYXrXX7hncsTcIcfs87tufO_HtJQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Probabilistic+Selection+Approaches+in+Decomposition-Based+Evolutionary+Algorithms+for+Offline+Data-Driven+Multiobjective+Optimization&rft.jtitle=IEEE+transactions+on+evolutionary+computation&rft.au=Mazumdar%2C+Atanu&rft.au=Chugh%2C+Tinkle&rft.au=Hakanen%2C+Jussi&rft.au=Miettinen%2C+Kaisa&rft.date=2022-10-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1089-778X&rft.eissn=1941-0026&rft.volume=26&rft.issue=5&rft.spage=1182&rft_id=info:doi/10.1109%2FTEVC.2022.3154231&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon