Probabilistic Selection Approaches in Decomposition-Based Evolutionary Algorithms for Offline Data-Driven Multiobjective Optimization
In offline data-driven multiobjective optimization, no new data are available during the optimization process. Approximation models, also known as surrogates, are built using the provided offline data. A multiobjective evolutionary algorithm can be utilized to find solutions by using these surrogate...
Uložené v:
| Vydané v: | IEEE transactions on evolutionary computation Ročník 26; číslo 5; s. 1182 - 1191 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
IEEE
01.10.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 1089-778X, 1941-0026 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | In offline data-driven multiobjective optimization, no new data are available during the optimization process. Approximation models, also known as surrogates, are built using the provided offline data. A multiobjective evolutionary algorithm can be utilized to find solutions by using these surrogates. The accuracy of the approximated solutions depends on the surrogates and approximations typically involve uncertainties. In this article, we propose probabilistic selection approaches that utilize the uncertainty information of the Kriging models (as surrogates) to improve the solution process in offline data-driven multiobjective optimization. These approaches are designed for decomposition-based multiobjective evolutionary algorithms and can, thus, handle a large number of objectives. The proposed approaches were tested on distance-based visualizable test problems and the DTLZ suite. The proposed approaches produced solutions with a greater hypervolume, and a lower root mean squared error compared to generic approaches and a transfer learning approach that do not use uncertainty information. |
|---|---|
| AbstractList | In offline data-driven multiobjective optimization, no new data are available during the optimization process. Approximation models, also known as surrogates, are built using the provided offline data. A multiobjective evolutionary algorithm can be utilized to find solutions by using these surrogates. The accuracy of the approximated solutions depends on the surrogates and approximations typically involve uncertainties. In this article, we propose probabilistic selection approaches that utilize the uncertainty information of the Kriging models (as surrogates) to improve the solution process in offline data-driven multiobjective optimization. These approaches are designed for decomposition-based multiobjective evolutionary algorithms and can, thus, handle a large number of objectives. The proposed approaches were tested on distance-based visualizable test problems and the DTLZ suite. The proposed approaches produced solutions with a greater hypervolume, and a lower root mean squared error compared to generic approaches and a transfer learning approach that do not use uncertainty information. |
| Author | Chugh, Tinkle Miettinen, Kaisa Hakanen, Jussi Mazumdar, Atanu |
| Author_xml | – sequence: 1 givenname: Atanu orcidid: 0000-0002-7760-3171 surname: Mazumdar fullname: Mazumdar, Atanu email: atanu.a.mazumdar@jyu.fi organization: Faculty of Information Technology, University of Jyvaskyla, University of Jyvaskyla, Finland – sequence: 2 givenname: Tinkle orcidid: 0000-0001-5123-8148 surname: Chugh fullname: Chugh, Tinkle organization: Department of Computer Science, University of Exeter, Exeter, U.K – sequence: 3 givenname: Jussi surname: Hakanen fullname: Hakanen, Jussi organization: Faculty of Information Technology, University of Jyvaskyla, University of Jyvaskyla, Finland – sequence: 4 givenname: Kaisa orcidid: 0000-0003-1013-4689 surname: Miettinen fullname: Miettinen, Kaisa organization: Faculty of Information Technology, University of Jyvaskyla, University of Jyvaskyla, Finland |
| BookMark | eNp9kE1rGzEQhkVIIF_9AaEXQc7raPSx8h5d220DKQ40LbktWnnUyKxXG0k2tPf87-7WoYcccpoZ5n3n4zknx13okJArYBMAVt08LH_OJ5xxPhGgJBdwRM6gklAwxsvjIWfTqtB6-nhKzlPaMAZSQXVGXu5jaEzjW5-yt_Q7tmizDx2d9X0Mxj5hor6jC7Rh24fkx17xySRc0-U-tLuxNvE3nbW_QvT5aZuoC5GunGt9h3RhsikW0e-xo9927aBuNuOCPdJVn_3W_zHjhEty4kyb8MNrvCA_Pi8f5l-Lu9WX2_nsrrCS8VyI0pauqYzhToJqpOWVFqhKYSVIjppLV_K1Lp1pVKP5VIBGB8yKphQK10ZckOvD3OG35x2mXG_CLnbDypprqJRSTMOg0geVjSGliK62Pv-7M0fj2xpYPTKvR-b1yLx-ZT444Y2zj3478HnX8_Hg8Yj4X19pDhKm4i8Sn5HV |
| CODEN | ITEVF5 |
| CitedBy_id | crossref_primary_10_1007_s40747_023_01179_0 crossref_primary_10_1016_j_eswa_2025_126834 crossref_primary_10_1016_j_engappai_2024_108897 crossref_primary_10_1109_TSMC_2024_3383219 |
| Cites_doi | 10.1109/TEVC.2016.2555315 10.1109/TEVC.2016.2608507 10.1109/TEVC.2007.892759 10.1109/TEVC.2019.2925959 10.1162/evco_a_00217 10.1109/4235.996017 10.1109/TEVC.2016.2519378 10.1109/TEVC.2018.2869001 10.1109/TCYB.2018.2869674 10.2307/3001968 10.1016/j.swevo.2011.05.001 10.1007/1-84628-137-7_6 10.1109/TEVC.2018.2834881 10.1007/978-3-030-12598-1_37 10.1007/978-3-642-01020-0_16 10.1214/aoms/1177728190 10.1145/3321707.3321727 10.1007/3-540-44719-9_23 10.1109/TEVC.2015.2395073 10.1007/978-3-030-63710-1_8 10.1016/j.apenergy.2018.07.101 10.1109/TEVC.2013.2281533 10.1002/9780470770801 10.1109/TEVC.2013.2281535 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TEVC.2022.3154231 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Statistics Computer Science |
| EISSN | 1941-0026 |
| EndPage | 1191 |
| ExternalDocumentID | 10_1109_TEVC_2022_3154231 9721418 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Academy of Finland grantid: 311877 funderid: 10.13039/501100002341 |
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IF 6IK 6IL 6IN 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFO ACGFS ACIWK ADZIZ AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CHZPO CS3 EBS EJD HZ~ H~9 IEGSK IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RIL RNS TN5 VH1 AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c402t-36c6fb9aa2f415b4c2973e563c4142e724f62d76fab5b728317ef10c3b635eda3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 12 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000862385200031&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1089-778X |
| IngestDate | Sun Nov 09 06:34:13 EST 2025 Sat Nov 29 03:13:49 EST 2025 Tue Nov 18 22:38:11 EST 2025 Wed Aug 27 02:14:19 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c402t-36c6fb9aa2f415b4c2973e563c4142e724f62d76fab5b728317ef10c3b635eda3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-5123-8148 0000-0003-1013-4689 0000-0002-7760-3171 |
| OpenAccessLink | https://jyx.jyu.fi/bitstreams/48c659b3-7983-4c94-b118-a9bce9136a08/download |
| PQID | 2719555071 |
| PQPubID | 85418 |
| PageCount | 10 |
| ParticipantIDs | crossref_citationtrail_10_1109_TEVC_2022_3154231 ieee_primary_9721418 crossref_primary_10_1109_TEVC_2022_3154231 proquest_journals_2719555071 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-10-01 |
| PublicationDateYYYYMMDD | 2022-10-01 |
| PublicationDate_xml | – month: 10 year: 2022 text: 2022-10-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on evolutionary computation |
| PublicationTitleAbbrev | TEVC |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref11 ref32 Bishop (ref20) 2006 ref2 Silverman (ref25) 1986 ref1 ref16 ref19 ref18 Li (ref21) 2021 ref24 ref23 ref26 ref22 Pedregosa (ref30) 2011; 12 Fonseca (ref10) ref28 ref27 ref8 ref7 ref9 ref4 ref3 ref6 ref5 Metropolis (ref17) 1987 Fieldsend (ref29) 2019 Avriel (ref31) 2003 |
| References_xml | – ident: ref2 doi: 10.1109/TEVC.2016.2555315 – ident: ref22 doi: 10.1109/TEVC.2016.2608507 – ident: ref15 doi: 10.1109/TEVC.2007.892759 – ident: ref6 doi: 10.1109/TEVC.2019.2925959 – ident: ref13 doi: 10.1162/evco_a_00217 – ident: ref12 doi: 10.1109/4235.996017 – ident: ref14 doi: 10.1109/TEVC.2016.2519378 – ident: ref4 doi: 10.1109/TEVC.2018.2869001 – ident: ref5 doi: 10.1109/TCYB.2018.2869674 – ident: ref32 doi: 10.2307/3001968 – ident: ref1 doi: 10.1016/j.swevo.2011.05.001 – ident: ref28 doi: 10.1007/1-84628-137-7_6 – volume: 12 start-page: 2825 year: 2011 ident: ref30 article-title: Scikit-learn: Machine learning in Python publication-title: J. Mach. Learn. Res. – ident: ref3 doi: 10.1109/TEVC.2018.2834881 – ident: ref8 doi: 10.1007/978-3-030-12598-1_37 – volume-title: Nonlinear Programming: Analysis and Methods year: 2003 ident: ref31 – ident: ref11 doi: 10.1007/978-3-642-01020-0_16 – ident: ref18 doi: 10.1214/aoms/1177728190 – year: 2021 ident: ref21 article-title: Decomposition multi-objective evolutionary optimization: From state-of-the-art to future opportunities publication-title: arXiv:2108.09588 – volume-title: fieldsend/DBMOPP_Generator year: 2019 ident: ref29 – volume-title: Density Estimation for Statistics and Data Analysis year: 1986 ident: ref25 – ident: ref27 doi: 10.1145/3321707.3321727 – ident: ref7 doi: 10.1007/3-540-44719-9_23 – ident: ref24 doi: 10.1109/TEVC.2015.2395073 – ident: ref26 doi: 10.1007/978-3-030-63710-1_8 – ident: ref9 doi: 10.1016/j.apenergy.2018.07.101 – ident: ref23 doi: 10.1109/TEVC.2013.2281533 – ident: ref19 doi: 10.1002/9780470770801 – ident: ref16 doi: 10.1109/TEVC.2013.2281535 – start-page: 416 volume-title: Proc. 5th Int. Conf. Genet. Algorithms ident: ref10 article-title: Genetic algorithms for multiobjective optimization: FormulationDiscussion and generalization – volume-title: Pattern Recognition and Machine Learning year: 2006 ident: ref20 – start-page: 125 volume-title: The Beginning of the Monte Carlo Method year: 1987 ident: ref17 |
| SSID | ssj0014519 |
| Score | 2.478008 |
| Snippet | In offline data-driven multiobjective optimization, no new data are available during the optimization process. Approximation models, also known as surrogates,... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1182 |
| SubjectTerms | Approximation Decomposition Evolutionary algorithms Gaussian processes kernel density estimation Kriging Linear programming metamodeling Multiple objective analysis Optimization Pareto optimality Probabilistic logic Probability density function Sociology Statistics surrogate Uncertainty |
| Title | Probabilistic Selection Approaches in Decomposition-Based Evolutionary Algorithms for Offline Data-Driven Multiobjective Optimization |
| URI | https://ieeexplore.ieee.org/document/9721418 https://www.proquest.com/docview/2719555071 |
| Volume | 26 |
| WOSCitedRecordID | wos000862385200031&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0026 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014519 issn: 1089-778X databaseCode: RIE dateStart: 19970101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NbxMxEB21FYdyoCUFkVIqHzghltreD6-PoUnFAbWVKCi3le0d06I2QZu0Un8A_xuP14lARZW4rVa2tdKzZ96sZ94AvC1csPs2dxlXXlBJjsuMDjEP1jUW0nNrXJTM_6xOT-vpVJ9vwPt1LQwixuQz_ECP8S6_nbtb-lV2REozhag3YVOpqq_VWt8YkExKn0yvA2Osp-kGU3B9dDH5dhwiQSlDgFoG-iD-8kGxqcoDSxzdy8nO_33YLjxLNJKNetyfwwbOBrCzatHA0okdwNM_9AYHsE3Usldm3oNf5104y5QbSy_Yl9gQJ6DERklmHBfsasbGSFnnKbUr-xicXssmd2nDmu6eja6_z7ur5eXNggUCzM68J-bKxmZpsnFHxpTFKt-5_dEbV3YWzNRNqv98AV9PJhfHn7LUlCFzIdRcZnnlKm-1MdIH328D1lrlWFa5K0QhUcnCV7JVlTe2tCqQF6HQC-5yG6gNtiZ_CVuz-QxfAStdaXjFW2FaUxhZ1by0iMrbtlCtsXoIfAVT45JiOTXOuG5i5MJ1Q8g2hGyTkB3Cu_WUn71cx2OD9wjK9cCE4hAOVnuhSQd60UgldEnab2L_37Newzat3ef5HcDWsrvFN_DE3QVYu8O4V38D8fLp3g |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Rb9MwED6NgcR4YNCBVhjgB54QYbbjxPFjWTsNUbpJFNS3yHZs2LS1KO0m8QP435wdtwKBkHiLIluO9Nl338V33wG8FBbtvsltRqVnoSTHZlphzOOqygnuqdE2SuaP5WRSzWbqbAteb2phnHMx-cy9CY_xLr9Z2Ovwq-wwKM0IVt2C24UQnHbVWps7gyCU0qXTK-SM1SzdYTKqDqejz0cYC3KOIWqBBIL95oViW5U_bHF0MMe7__dpD-B-IpJk0CH_ELbcvAe76yYNJJ3ZHtz7RXGwBzuBXHbazHvw46zF0xyyY8ML8jG2xEGcyCAJjbslOZ-ToQt55ym5K3uLbq8ho5u0ZXX7nQwuvyza89XXqyVBCkxOvQ_clQz1SmfDNphTEut8F-aiM6_kFA3VVaoAfQSfjkfTo5MstWXILAabqywvbemN0pp79P4G0VYyd0WZW8EEd5ILX_JGll6bwkikL0w6z6jNDZIb1-j8MWzPF3O3D6SwhaYlbZhutNC8rGhhnJPeNEI22qg-0DVMtU2a5aF1xmUdYxeq6oBsHZCtE7J9eLWZ8q0T7PjX4L0A5WZgQrEPB-u9UKcjvay5ZKoI6m_syd9nvYC7J9MP43r8bvL-KeyEdbqsvwPYXrXX7hncsTcIcfs87tufO_HtJQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Probabilistic+Selection+Approaches+in+Decomposition-Based+Evolutionary+Algorithms+for+Offline+Data-Driven+Multiobjective+Optimization&rft.jtitle=IEEE+transactions+on+evolutionary+computation&rft.au=Mazumdar%2C+Atanu&rft.au=Chugh%2C+Tinkle&rft.au=Hakanen%2C+Jussi&rft.au=Miettinen%2C+Kaisa&rft.date=2022-10-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1089-778X&rft.eissn=1941-0026&rft.volume=26&rft.issue=5&rft.spage=1182&rft_id=info:doi/10.1109%2FTEVC.2022.3154231&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon |