Eye Movement Analysis for Activity Recognition Using Electrooculography
In this work, we investigate eye movement analysis as a new sensing modality for activity recognition. Eye movement data were recorded using an electrooculography (EOG) system. We first describe and evaluate algorithms for detecting three eye movement characteristics from EOG signals-saccades, fixat...
Uloženo v:
| Vydáno v: | IEEE transactions on pattern analysis and machine intelligence Ročník 33; číslo 4; s. 741 - 753 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Los Alamitos, CA
IEEE
01.04.2011
IEEE Computer Society The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 0162-8828, 1939-3539, 1939-3539 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In this work, we investigate eye movement analysis as a new sensing modality for activity recognition. Eye movement data were recorded using an electrooculography (EOG) system. We first describe and evaluate algorithms for detecting three eye movement characteristics from EOG signals-saccades, fixations, and blinks-and propose a method for assessing repetitive patterns of eye movements. We then devise 90 different features based on these characteristics and select a subset of them using minimum redundancy maximum relevance (mRMR) feature selection. We validate the method using an eight participant study in an office environment using an example set of five activity classes: copying a text, reading a printed paper, taking handwritten notes, watching a video, and browsing the Web. We also include periods with no specific activity (the NULL class). Using a support vector machine (SVM) classifier and person-independent (leave-one-person-out) training, we obtain an average precision of 76.1 percent and recall of 70.5 percent over all classes and participants. The work demonstrates the promise of eye-based activity recognition (EAR) and opens up discussion on the wider applicability of EAR to other activities that are difficult, or even impossible, to detect using common sensing modalities. |
|---|---|
| AbstractList | In this work, we investigate eye movement analysis as a new sensing modality for activity recognition. Eye movement data were recorded using an electrooculography (EOG) system. We first describe and evaluate algorithms for detecting three eye movement characteristics from EOG signals--saccades, fixations, and blinks--and propose a method for assessing repetitive patterns of eye movements. We then devise 90 different features based on these characteristics and select a subset of them using minimum redundancy maximum relevance (mRMR) feature selection. We validate the method using an eight participant study in an office environment using an example set of five activity classes: copying a text, reading a printed paper, taking handwritten notes, watching a video, and browsing the Web. We also include periods with no specific activity (the NULL class). Using a support vector machine (SVM) classifier and person-independent (leave-one-person-out) training, we obtain an average precision of 76.1 percent and recall of 70.5 percent over all classes and participants. The work demonstrates the promise of eye-based activity recognition (EAR) and opens up discussion on the wider applicability of EAR to other activities that are difficult, or even impossible, to detect using common sensing modalities. In this work, we investigate eye movement analysis as a new sensing modality for activity recognition. Eye movement data were recorded using an electrooculography (EOG) system. We first describe and evaluate algorithms for detecting three eye movement characteristics from EOG signals-saccades, fixations, and blinks-and propose a method for assessing repetitive patterns of eye movements. We then devise 90 different features based on these characteristics and select a subset of them using minimum redundancy maximum relevance (mRMR) feature selection. We validate the method using an eight participant study in an office environment using an example set of five activity classes: copying a text, reading a printed paper, taking handwritten notes, watching a video, and browsing the Web. We also include periods with no specific activity (the NULL class). Using a support vector machine (SVM) classifier and person-independent (leave-one-person-out) training, we obtain an average precision of 76.1 percent and recall of 70.5 percent over all classes and participants. The work demonstrates the promise of eye-based activity recognition (EAR) and opens up discussion on the wider applicability of EAR to other activities that are difficult, or even impossible, to detect using common sensing modalities.In this work, we investigate eye movement analysis as a new sensing modality for activity recognition. Eye movement data were recorded using an electrooculography (EOG) system. We first describe and evaluate algorithms for detecting three eye movement characteristics from EOG signals-saccades, fixations, and blinks-and propose a method for assessing repetitive patterns of eye movements. We then devise 90 different features based on these characteristics and select a subset of them using minimum redundancy maximum relevance (mRMR) feature selection. We validate the method using an eight participant study in an office environment using an example set of five activity classes: copying a text, reading a printed paper, taking handwritten notes, watching a video, and browsing the Web. We also include periods with no specific activity (the NULL class). Using a support vector machine (SVM) classifier and person-independent (leave-one-person-out) training, we obtain an average precision of 76.1 percent and recall of 70.5 percent over all classes and participants. The work demonstrates the promise of eye-based activity recognition (EAR) and opens up discussion on the wider applicability of EAR to other activities that are difficult, or even impossible, to detect using common sensing modalities. |
| Author | Ward, Jamie A Bulling, Andreas Tröster, Gerhard Gellersen, Hans |
| Author_xml | – sequence: 1 givenname: Andreas surname: Bulling fullname: Bulling, Andreas email: andreas.bulling@acm.org organization: Comput. Lab., Univ. of Cambridge, Cambridge, UK – sequence: 2 givenname: Jamie A surname: Ward fullname: Ward, Jamie A email: j.ward@comp.lancs.ac.uk organization: Sch. of Comput. & Commun., Lancaster Univ., Lancaster, UK – sequence: 3 givenname: Hans surname: Gellersen fullname: Gellersen, Hans email: hwg@comp.lancs.ac.uk organization: Sch. of Comput. & Commun., Lancaster Univ., Lancaster, UK – sequence: 4 givenname: Gerhard surname: Tröster fullname: Tröster, Gerhard email: troester@ife.ee.ethz.ch organization: Dept. of Inf. Technol. & Electr. Eng., ETH Zurich, Zurich, Switzerland |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24415969$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/20421675$$D View this record in MEDLINE/PubMed |
| BookMark | eNp90c9rFDEUB_AgFbtdPXoSZBBEL1Pze5LjUtZaaFGkPQ-ZzMuaMjtZk0xh_nuz7lqhoKeQ8HkvvPc9QydjGAGh1wSfE4L1p9tvq5urc4rLXclnaEE00zUTTJ-gBSaS1kpRdYrOUrrHmHCB2Qt0SjGnRDZigS7XM1Q34QG2MOZqNZphTj5VLsRqZbN_8HmuvoMNm9FnH8bqLvlxU60HsDmGYKchbKLZ_ZhfoufODAleHc8luvu8vr34Ul9_vby6WF3XlmOaa0Y6qQGUVaa3wlHVS9IZLZqOuQYcNeWx4xJzKXsKTmNpJO2VlIpy7IxiS_Th0HcXw88JUm63PlkYBjNCmFKrJG8U14wU-fG_ssxPqCCi7GqJ3j2h92GKZReln6ANVZrxgt4e0dRtoW930W9NnNs_uyzg_RGYZM3gohmtT38d50RoqYurD87GkFIE90gIbveZtr8zbfeZlnmKZ0-89dns08jR-OGfVW8OVR4AHn8QnHPVaPYLliiruA |
| CODEN | ITPIDJ |
| CitedBy_id | crossref_primary_10_1016_j_bios_2019_111336 crossref_primary_10_1109_TNSRE_2022_3157768 crossref_primary_10_1016_j_bspc_2018_07_005 crossref_primary_10_1109_MSP_2015_2503881 crossref_primary_10_3390_electronics9060970 crossref_primary_10_1109_JIOT_2022_3215916 crossref_primary_10_3390_s22082949 crossref_primary_10_1016_j_neucom_2014_08_069 crossref_primary_10_1088_1741_2552_aa5a98 crossref_primary_10_1109_TIM_2025_3591857 crossref_primary_10_1016_j_cmpb_2021_106171 crossref_primary_10_1061_JCEMD4_COENG_13675 crossref_primary_10_1109_TNSRE_2023_3267114 crossref_primary_10_2478_jaiscr_2019_0007 crossref_primary_10_1109_TAFFC_2020_2979440 crossref_primary_10_1007_s13534_024_00426_8 crossref_primary_10_1145_2499621 crossref_primary_10_1109_TIM_2023_3307756 crossref_primary_10_1109_TVCG_2023_3247048 crossref_primary_10_1016_j_bspc_2025_108585 crossref_primary_10_1016_j_buildenv_2018_07_051 crossref_primary_10_1007_s12193_014_0171_2 crossref_primary_10_1145_3448105 crossref_primary_10_1109_TSMC_2013_2297398 crossref_primary_10_1088_1742_6596_2273_1_012025 crossref_primary_10_1016_j_cmpb_2015_10_011 crossref_primary_10_1016_j_neucom_2020_01_028 crossref_primary_10_1038_s41598_018_31425_2 crossref_primary_10_1155_2018_2389158 crossref_primary_10_3390_s19030626 crossref_primary_10_1007_s00500_013_1080_0 crossref_primary_10_7717_peerj_cs_2594 crossref_primary_10_1016_j_bbe_2019_12_002 crossref_primary_10_1515_bmt_2013_0137 crossref_primary_10_1039_C8RA08523D crossref_primary_10_1016_j_neucom_2013_08_008 crossref_primary_10_1109_TCSII_2014_2368617 crossref_primary_10_1016_j_bspc_2019_101767 crossref_primary_10_1007_s00500_015_1598_4 crossref_primary_10_1038_s41598_024_73514_5 crossref_primary_10_1109_JSEN_2016_2628346 crossref_primary_10_1016_j_measurement_2018_06_017 crossref_primary_10_1080_13658816_2018_1482554 crossref_primary_10_3389_fnbot_2017_00035 crossref_primary_10_1111_ejn_15095 crossref_primary_10_1016_j_bios_2016_12_001 crossref_primary_10_1016_j_bspc_2021_102945 crossref_primary_10_3390_s17071534 crossref_primary_10_3390_s21062220 crossref_primary_10_1109_TBME_2014_2369483 crossref_primary_10_1155_2014_973063 crossref_primary_10_3390_s22030916 crossref_primary_10_1145_3053330 crossref_primary_10_1145_3130971 crossref_primary_10_1109_TCYB_2020_3022647 crossref_primary_10_1109_TAFFC_2025_3558141 crossref_primary_10_1016_j_compbiomed_2017_10_026 crossref_primary_10_1109_MPRV_2010_86 crossref_primary_10_1109_TBME_2015_2394409 crossref_primary_10_1109_TNSRE_2018_2839116 crossref_primary_10_3389_fphys_2023_1196919 crossref_primary_10_1145_3161601 crossref_primary_10_1109_TIP_2015_2438540 crossref_primary_10_1007_s10115_012_0558_x crossref_primary_10_1109_MPOT_2018_2850540 crossref_primary_10_1186_s13640_021_00575_1 crossref_primary_10_1007_s11042_022_12377_2 crossref_primary_10_1016_j_eswa_2023_120177 crossref_primary_10_1016_j_ins_2016_01_007 crossref_primary_10_1109_ACCESS_2023_3316032 crossref_primary_10_3390_s19173756 crossref_primary_10_3389_fninf_2022_758537 crossref_primary_10_1038_s41597_024_03729_8 crossref_primary_10_1109_ACCESS_2020_2978028 crossref_primary_10_1109_TIM_2022_3214265 crossref_primary_10_1016_j_bspc_2014_08_007 crossref_primary_10_1186_s12938_015_0046_0 crossref_primary_10_1109_LRA_2021_3097274 crossref_primary_10_1371_journal_pone_0138198 crossref_primary_10_1049_htl_2017_0020 crossref_primary_10_1007_s10586_017_0977_2 crossref_primary_10_1007_s10707_016_0282_x crossref_primary_10_1007_s42979_021_00553_4 crossref_primary_10_1155_2014_713818 crossref_primary_10_3758_s13428_017_0876_8 crossref_primary_10_1145_3478088 crossref_primary_10_1038_s41467_018_05547_0 crossref_primary_10_3390_ijgi9020097 crossref_primary_10_1145_3372300_3372307 crossref_primary_10_1016_j_bspc_2016_08_012 crossref_primary_10_1145_3287067 crossref_primary_10_1088_1741_2552_aafc88 crossref_primary_10_1016_j_eswa_2012_03_007 crossref_primary_10_1016_j_compenvurbsys_2022_101758 crossref_primary_10_1515_icom_2021_0038 crossref_primary_10_2478_v10048_012_0010_0 crossref_primary_10_1038_s41598_022_05095_0 crossref_primary_10_1109_ACCESS_2017_2683199 crossref_primary_10_1088_1741_2552_ab933e crossref_primary_10_1002_smsc_202300008 crossref_primary_10_3389_fnhum_2018_00105 crossref_primary_10_4108_eetpht_8_3432 crossref_primary_10_1080_03091902_2020_1853838 crossref_primary_10_1109_ACCESS_2017_2750701 crossref_primary_10_1109_TBCAS_2022_3168236 crossref_primary_10_1016_j_buildenv_2020_107519 crossref_primary_10_1016_j_neucom_2014_07_055 crossref_primary_10_1007_s13534_019_00095_y crossref_primary_10_1145_3656376 crossref_primary_10_1109_ACCESS_2017_2754299 crossref_primary_10_3390_bios12121097 crossref_primary_10_3390_brainsci10100687 crossref_primary_10_1007_s10489_021_02309_2 crossref_primary_10_1109_JBHI_2020_3004686 crossref_primary_10_1016_j_ijinfomgt_2019_02_003 crossref_primary_10_1016_j_sigpro_2013_11_033 crossref_primary_10_1016_j_bspc_2014_10_005 crossref_primary_10_1016_j_compmedimag_2014_08_001 crossref_primary_10_1109_TIM_2025_3544371 crossref_primary_10_1155_2022_6894392 crossref_primary_10_1038_s41598_025_16839_z crossref_primary_10_1016_j_neucom_2017_09_085 crossref_primary_10_1186_s12984_017_0303_5 crossref_primary_10_3389_fmed_2019_00287 crossref_primary_10_3390_s150511312 crossref_primary_10_1016_j_bspc_2022_104263 crossref_primary_10_1002_aisy_202000117 crossref_primary_10_1016_j_heliyon_2023_e23611 crossref_primary_10_1109_ACCESS_2019_2915533 crossref_primary_10_3390_jlpea13040061 crossref_primary_10_3390_s25103015 crossref_primary_10_1007_s12652_023_04622_9 crossref_primary_10_1109_TVCG_2021_3138902 crossref_primary_10_1109_TCSVT_2021_3071621 crossref_primary_10_3390_s17071505 crossref_primary_10_1016_j_patrec_2016_11_002 crossref_primary_10_1016_j_bspc_2022_103608 crossref_primary_10_1002_smm2_1068 crossref_primary_10_1109_ACCESS_2023_3263045 crossref_primary_10_3390_s18092892 crossref_primary_10_1016_j_artmed_2015_10_002 crossref_primary_10_3389_fpsyg_2025_1509569 crossref_primary_10_3233_JIFS_189849 crossref_primary_10_1016_j_cag_2024_103909 crossref_primary_10_1016_j_artint_2020_103275 crossref_primary_10_1109_TBME_2017_2732479 crossref_primary_10_1145_3448074 crossref_primary_10_3390_s19122690 crossref_primary_10_1109_JSEN_2023_3282171 crossref_primary_10_3390_s19173808 crossref_primary_10_1016_j_compbiomed_2019_03_025 crossref_primary_10_1016_j_compbiomed_2016_01_012 crossref_primary_10_3390_electronics6020044 crossref_primary_10_1016_j_comcom_2011_11_002 crossref_primary_10_2478_ngoe_2024_0006 crossref_primary_10_1007_s40843_024_3115_x crossref_primary_10_1007_s13218_017_0502_z crossref_primary_10_3390_s20247140 crossref_primary_10_1109_TSMCC_2013_2258337 crossref_primary_10_1016_j_compbiomed_2014_08_007 crossref_primary_10_1007_s00138_016_0776_4 crossref_primary_10_1016_j_compbiomed_2015_03_002 crossref_primary_10_1016_j_proeng_2012_01_1264 crossref_primary_10_3390_bios12111039 crossref_primary_10_3390_s20030592 crossref_primary_10_1016_j_comnet_2021_107859 crossref_primary_10_1371_journal_pone_0309832 crossref_primary_10_1155_2018_8528176 crossref_primary_10_1016_j_bios_2017_01_044 crossref_primary_10_1177_1550147719864883 crossref_primary_10_1016_j_engappai_2013_01_003 crossref_primary_10_1088_1741_2552_ab909f crossref_primary_10_1145_3295748 crossref_primary_10_1080_15230406_2021_1980435 crossref_primary_10_1016_j_neucom_2021_11_081 crossref_primary_10_3390_electronics9122002 crossref_primary_10_1145_3494998 crossref_primary_10_1109_THMS_2023_3238113 crossref_primary_10_3389_fpsyg_2018_00936 crossref_primary_10_1016_j_bspc_2018_01_003 crossref_primary_10_1007_s40593_022_00316_z crossref_primary_10_1109_TCYB_2018_2797176 crossref_primary_10_1016_j_knosys_2021_106970 crossref_primary_10_4018_jaci_2011070102 crossref_primary_10_1515_bmt_2018_0018 crossref_primary_10_1016_j_bspc_2018_05_011 crossref_primary_10_1002_int_21833 crossref_primary_10_3390_s22186736 crossref_primary_10_1007_s11042_012_1162_5 crossref_primary_10_1002_adfm_202007428 crossref_primary_10_1016_j_visres_2014_08_014 crossref_primary_10_3390_app11115051 crossref_primary_10_3390_electronics14030420 crossref_primary_10_1016_j_neucom_2016_10_077 crossref_primary_10_1109_TBME_2020_2972747 crossref_primary_10_1016_j_bspc_2024_107377 crossref_primary_10_1109_TVCG_2024_3412190 crossref_primary_10_3390_s131012852 crossref_primary_10_1109_MPRV_2014_42 crossref_primary_10_1109_TNSRE_2017_2716109 crossref_primary_10_1016_j_iot_2019_100124 crossref_primary_10_1111_tgis_12067 crossref_primary_10_1109_TNSRE_2021_3054733 crossref_primary_10_3389_fpsyg_2023_1144048 crossref_primary_10_3758_s13428_021_01763_7 crossref_primary_10_1007_s40279_016_0585_y crossref_primary_10_1016_j_jneumeth_2023_109939 crossref_primary_10_1109_ACCESS_2014_2315523 crossref_primary_10_1016_j_bspc_2023_105282 crossref_primary_10_1111_jsr_12962 crossref_primary_10_1109_JIOT_2023_3308654 crossref_primary_10_1145_3314410 crossref_primary_10_1007_s12652_020_02683_8 crossref_primary_10_1016_j_cviu_2024_104105 crossref_primary_10_4018_ijdet_2014100105 crossref_primary_10_3390_s16020227 crossref_primary_10_1109_MITS_2017_2743171 crossref_primary_10_1016_j_compbiomed_2017_12_025 crossref_primary_10_3390_s18092826 crossref_primary_10_1016_j_bspc_2019_101738 crossref_primary_10_1088_1757_899X_1130_1_012079 crossref_primary_10_1007_s11042_016_3723_5 crossref_primary_10_1109_TCYB_2021_3123842 crossref_primary_10_3390_s21103439 crossref_primary_10_1080_13658816_2021_1946542 crossref_primary_10_3389_fict_2019_00018 crossref_primary_10_3390_bios11090343 crossref_primary_10_1145_2134203_2134205 crossref_primary_10_1080_13658816_2024_2309188 crossref_primary_10_1155_2016_4069790 crossref_primary_10_1109_TFUZZ_2018_2809691 crossref_primary_10_1371_journal_pone_0190420 crossref_primary_10_1007_s11517_023_02976_y crossref_primary_10_3390_electronics11101637 crossref_primary_10_1109_JTEHM_2023_3320713 crossref_primary_10_3390_s18113691 crossref_primary_10_1038_s41598_017_13153_1 crossref_primary_10_1109_TIM_2024_3472779 crossref_primary_10_1109_MITS_2017_2743165 crossref_primary_10_1109_ACCESS_2021_3068055 crossref_primary_10_3233_ICA_160520 crossref_primary_10_1109_JBHI_2023_3330192 crossref_primary_10_3390_s24082548 crossref_primary_10_3390_s24010080 crossref_primary_10_1016_j_cmpb_2018_04_005 crossref_primary_10_1016_j_bspc_2025_108211 crossref_primary_10_1371_journal_pone_0164627 crossref_primary_10_1016_j_eswa_2019_04_039 crossref_primary_10_1016_j_eswa_2020_114037 crossref_primary_10_1145_3090088 crossref_primary_10_1016_j_neuroimage_2021_118616 crossref_primary_10_3390_s20082384 crossref_primary_10_20965_jrm_2017_p0728 crossref_primary_10_1145_3491207 crossref_primary_10_1089_brain_2020_0885 crossref_primary_10_1109_ACCESS_2018_2884411 crossref_primary_10_3390_s130810561 crossref_primary_10_1016_j_eswa_2017_09_017 crossref_primary_10_1007_s00500_018_3670_3 crossref_primary_10_3233_AIS_160402 crossref_primary_10_1002_admt_202201677 crossref_primary_10_1016_j_eswa_2024_123153 crossref_primary_10_1016_j_iswa_2025_200578 crossref_primary_10_1145_3557887 crossref_primary_10_1016_j_procs_2018_08_037 crossref_primary_10_1109_MPRV_2010_49 crossref_primary_10_3390_jemr18020008 crossref_primary_10_1109_TBME_2012_2228645 crossref_primary_10_1145_3550331 crossref_primary_10_1109_JSEN_2021_3095423 crossref_primary_10_1016_j_asoc_2015_02_038 crossref_primary_10_1016_j_measurement_2023_113767 crossref_primary_10_1007_s11265_024_01936_5 crossref_primary_10_1016_j_apmt_2020_100651 crossref_primary_10_1007_s12555_024_0555_3 crossref_primary_10_1038_s41699_018_0064_4 crossref_primary_10_1109_TIM_2015_2433652 crossref_primary_10_1109_JSEN_2018_2868879 crossref_primary_10_3390_a16020086 crossref_primary_10_1109_TNSRE_2016_2542524 crossref_primary_10_1109_TNSRE_2023_3299350 |
| Cites_doi | 10.1145/1409635.1409647 10.1109/TPAMI.2005.159 10.1109/18.382009 10.1145/1620545.1620552 10.1109/NFSI-ICFBI.2007.4387719 10.1109/ROBOT.2004.1307158 10.1109/TNSRE.2002.806829 10.1080/00140130701817062 10.1007/s10633-006-9030-0 10.1016/S0167-8760(99)00099-9 10.1016/j.tics.2003.09.006 10.1016/0165-1781(81)90070-6 10.1109/TCSVT.2008.2005594 10.1016/S1364-6613(99)01418-7 10.1109/21.155948 10.1109/MPRV.2010.49 10.3233/AIS-2009-0020 10.1145/1498700.1498705 10.1109/MPRV.2008.36 10.1109/ROBIO.2005.246316 10.1007/978-3-540-24646-6_1 10.1109/TBME.2005.856296 10.1007/978-3-540-74853-3_28 10.1109/TSMCC.2007.893280 10.1007/BF01408562 10.1007/s00779-006-0086-3 10.1109/TENCON.2003.1273294 10.1155/IJBI/2006/97157 10.1016/S0165-0270(03)00151-1 10.1109/TBME.2003.812189 10.1109/ICCTA.2007.126 10.1145/1279640.1279643 10.1145/1409635.1409638 10.1007/978-3-540-79576-6_2 10.1007/3-540-44581-1_7 10.1016/j.tics.2005.02.009 10.1109/TMI.2002.801153 10.1109/ROBOT.2001.932832 10.1145/355017.355028 10.1207/S15327051HCI1601_2 10.1109/TPAMI.2006.197 10.1007/978-1-84628-609-4 |
| ContentType | Journal Article |
| Copyright | 2015 INIST-CNRS Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Apr 2011 |
| Copyright_xml | – notice: 2015 INIST-CNRS – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Apr 2011 |
| DBID | 97E RIA RIE AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7SC 7SP 8FD JQ2 L7M L~C L~D F28 FR3 7X8 |
| DOI | 10.1109/TPAMI.2010.86 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ANTE: Abstracts in New Technology & Engineering Engineering Research Database MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional Engineering Research Database ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
| DatabaseTitleList | Technology Research Database MEDLINE Technology Research Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE/IET Electronic Library (IEL) (UW System Shared) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science Applied Sciences |
| EISSN | 1939-3539 |
| EndPage | 753 |
| ExternalDocumentID | 2270936401 20421675 24415969 10_1109_TPAMI_2010_86 5444879 |
| Genre | orig-research Journal Article |
| GroupedDBID | --- -DZ -~X .DC 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E 9M8 AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT ADRHT AENEX AETEA AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P FA8 HZ~ H~9 IBMZZ ICLAB IEDLZ IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNI RNS RXW RZB TAE TN5 UHB VH1 XJT ~02 AAYXX CITATION IQODW RIG CGR CUY CVF ECM EIF NPM 7SC 7SP 8FD JQ2 L7M L~C L~D F28 FR3 7X8 |
| ID | FETCH-LOGICAL-c402t-31b69ee8c8adc5f28d61ba957b3f7ef2ac5fb460466d2ef906a62d8668240fa83 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 379 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000287370400007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0162-8828 1939-3539 |
| IngestDate | Sun Sep 28 07:35:18 EDT 2025 Wed Oct 01 14:41:06 EDT 2025 Mon Jun 30 05:40:11 EDT 2025 Mon Jul 21 06:03:01 EDT 2025 Mon Jul 21 09:15:11 EDT 2025 Sat Nov 29 08:07:39 EST 2025 Tue Nov 18 22:41:42 EST 2025 Wed Aug 27 02:47:50 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Pervasive computing Electrooculography feature evaluation and selection Redundancy Ubiquitous computing Eye movement Specific activity Relevance Dimension reduction Human activity Scene analysis Database Vector support machine Signal processing Pattern analysis Mobile computing |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c402t-31b69ee8c8adc5f28d61ba957b3f7ef2ac5fb460466d2ef906a62d8668240fa83 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PMID | 20421675 |
| PQID | 852728934 |
| PQPubID | 85458 |
| PageCount | 13 |
| ParticipantIDs | pascalfrancis_primary_24415969 pubmed_primary_20421675 proquest_miscellaneous_1671251535 crossref_citationtrail_10_1109_TPAMI_2010_86 ieee_primary_5444879 proquest_miscellaneous_864784931 crossref_primary_10_1109_TPAMI_2010_86 proquest_journals_852728934 |
| PublicationCentury | 2000 |
| PublicationDate | 2011-04-01 |
| PublicationDateYYYYMMDD | 2011-04-01 |
| PublicationDate_xml | – month: 04 year: 2011 text: 2011-04-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Los Alamitos, CA |
| PublicationPlace_xml | – name: Los Alamitos, CA – name: United States – name: New York |
| PublicationTitle | IEEE transactions on pattern analysis and machine intelligence |
| PublicationTitleAbbrev | TPAMI |
| PublicationTitleAlternate | IEEE Trans Pattern Anal Mach Intell |
| PublicationYear | 2011 |
| Publisher | IEEE IEEE Computer Society The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: IEEE Computer Society – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 Ding (ref11) ref33 ref10 ref32 ref2 ref1 ref17 ref39 ref16 ref19 ref18 Peng (ref38) 2008 Lin (ref40) 2008 ref24 ref46 ref23 ref45 ref26 ref25 ref20 ref42 ref41 ref22 ref44 ref21 ref43 ref28 ref27 ref8 ref7 ref9 ref4 ref3 ref6 ref5 Schiffman (ref29) 2001 |
| References_xml | – ident: ref44 doi: 10.1145/1409635.1409647 – ident: ref37 doi: 10.1109/TPAMI.2005.159 – ident: ref35 doi: 10.1109/18.382009 – volume-title: LIBLINEAR—A Library for Large Linear Classification year: 2008 ident: ref40 – ident: ref10 doi: 10.1145/1620545.1620552 – ident: ref31 doi: 10.1109/NFSI-ICFBI.2007.4387719 – ident: ref12 doi: 10.1109/ROBOT.2004.1307158 – ident: ref14 doi: 10.1109/TNSRE.2002.806829 – ident: ref28 doi: 10.1080/00140130701817062 – ident: ref24 doi: 10.1007/s10633-006-9030-0 – ident: ref43 doi: 10.1016/S0167-8760(99)00099-9 – ident: ref8 doi: 10.1016/j.tics.2003.09.006 – ident: ref27 doi: 10.1016/0165-1781(81)90070-6 – ident: ref2 doi: 10.1109/TCSVT.2008.2005594 – ident: ref7 doi: 10.1016/S1364-6613(99)01418-7 – ident: ref16 doi: 10.1109/21.155948 – ident: ref46 doi: 10.1109/MPRV.2010.49 – ident: ref9 doi: 10.3233/AIS-2009-0020 – ident: ref42 doi: 10.1145/1498700.1498705 – ident: ref41 doi: 10.1109/MPRV.2008.36 – ident: ref13 doi: 10.1109/ROBIO.2005.246316 – ident: ref21 doi: 10.1007/978-3-540-24646-6_1 – volume-title: mRMR Feature Selection Toolbox for MATLAB year: 2008 ident: ref38 – ident: ref33 doi: 10.1109/TBME.2005.856296 – ident: ref22 doi: 10.1007/978-3-540-74853-3_28 – ident: ref1 doi: 10.1109/TSMCC.2007.893280 – ident: ref20 doi: 10.1007/BF01408562 – ident: ref5 doi: 10.1007/s00779-006-0086-3 – ident: ref23 doi: 10.1109/TENCON.2003.1273294 – ident: ref34 doi: 10.1155/IJBI/2006/97157 – ident: ref26 doi: 10.1016/S0165-0270(03)00151-1 – volume-title: Sensation and Perception: An Integrated Approach year: 2001 ident: ref29 – ident: ref3 doi: 10.1109/TBME.2003.812189 – start-page: 6829 volume-title: Proc. 27th Int’l Conf. Eng. in Medicine and Biology Soc. ident: ref11 article-title: Development of an EOG (Electro-Oculography) Based Human-Computer Interface – ident: ref32 doi: 10.1109/ICCTA.2007.126 – ident: ref17 doi: 10.1145/1279640.1279643 – ident: ref45 doi: 10.1145/1409635.1409638 – ident: ref6 doi: 10.1007/978-3-540-79576-6_2 – ident: ref39 doi: 10.1007/3-540-44581-1_7 – ident: ref15 doi: 10.1016/j.tics.2005.02.009 – ident: ref18 doi: 10.1109/TMI.2002.801153 – ident: ref30 doi: 10.1109/ROBOT.2001.932832 – ident: ref36 doi: 10.1145/355017.355028 – ident: ref19 doi: 10.1207/S15327051HCI1601_2 – ident: ref4 doi: 10.1109/TPAMI.2006.197 – ident: ref25 doi: 10.1007/978-1-84628-609-4 |
| SSID | ssj0014503 |
| Score | 2.579385 |
| Snippet | In this work, we investigate eye movement analysis as a new sensing modality for activity recognition. Eye movement data were recorded using an... |
| SourceID | proquest pubmed pascalfrancis crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 741 |
| SubjectTerms | Acoustic sensors Adult Algorithms Applied sciences Artificial intelligence Computer science; control theory; systems Computer systems and distributed systems. User interface Data processing. List processing. Character string processing Detection Ear Electrooculography Electrooculography - methods Exact sciences and technology Eye movements Eye Movements - physiology Eyes feature evaluation and selection Female Humans Male Memory organisation. Data processing Middle Aged pattern analysis Pattern recognition Pattern recognition. Digital image processing. Computational geometry Recognition Reproduction signal processing Signal processing algorithms Software Support vector machine classification Support vector machines Ubiquitous computing Visual Perception - physiology Wearable computers |
| Title | Eye Movement Analysis for Activity Recognition Using Electrooculography |
| URI | https://ieeexplore.ieee.org/document/5444879 https://www.ncbi.nlm.nih.gov/pubmed/20421675 https://www.proquest.com/docview/852728934 https://www.proquest.com/docview/1671251535 https://www.proquest.com/docview/864784931 |
| Volume | 33 |
| WOSCitedRecordID | wos000287370400007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared) customDbUrl: eissn: 1939-3539 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014503 issn: 0162-8828 databaseCode: RIE dateStart: 19790101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Na9RAFH-0pQc9tNqqjbXLCOKpsd1M5uu4yLYWbClSZW9hPkGQRLq7gv-9b2aStIJ78BYyDzK8j8z7zbx5P4B3VHPjDFWltdKWtZO0lKqypQ2BKeMEE6nK99tncXMjFwt1uwWn410Y730qPvMf4mM6y3edXcetsjNWI5gQahu2hRD5rtZ4YlCzxIKMGQxGOMKIh36aZ3e3s-urXMUlI2VRhY465bGy8NFSlLhVYmWkXqJyQma12Jx2puXnYv__Jv4M9vo0k8yyXzyHLd8ewP5A4UD6iD6Ap4_6ER7C5fy3J9ddaiG-IkO_EoJ5LZnZTDNBvgwVR11LUr0BmWcmHZzF0P_6BXy9mN99_FT2TAulRfy4wh-x4cp7aaV2loVKOj41WjFhaBA-VBpfmpojluau8kGdc80rJzmXmBAELelL2Gm71h8BcVJb5x3iNgy_oJWx1LAqmMB9wGSJFnA6KL2xfRvyyIbxo0lw5Fw1yVxNNFcjeQHvR_Gfuf_GJsHDqPdRqFd5AZO_LDqOVxFIKo4Cx4OJmz58l41klUAkSusC3o6jGHfxMEW3vlsvG3SgmBsyygogG2RkvMhbKzot4FV2nofP9z74-t_TPoYnefM6lgi9gZ3V_dqfwK79tfq-vJ-g_y_kJPn_H6y0AfU |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1baxQxFD7UKqgPVlsv02qNID51bDeZZJLHRba2uLsUWaVvQ64gyIx0dwX_fU8yl1boPvQtzByYcC6Tc5Iv5wP4yLQwzjCVWyttXjjJcqmozW0IXBlX8jKhfH9Oy_lcXl6qiy04Gu7CeO8T-Mx_jsN0lu8au45bZce8wGKiVA_gIY7oqL2tNZwZFDzxIGMOgzGOhcRNR83jxcV4dt7iuGQkLaLoqiMRsYW3FqPErhKxkXqJ6gktr8XmxDMtQKc795v6c3jWJZpk3HrGC9jy9S7s9CQOpIvpXXh6qyPhHnyd_PNk1qQm4ivSdywhmNmSsW2JJsj3HnPU1CQhDsik5dLBWfQdsF_Cj9PJ4stZ3nEt5BYryBX-io1Q3ksrtbM8UOnEyGjFS8NC6QPV-NAUAqtp4agP6kRoQZ0UQmJKELRkr2C7bmr_BoiT2jrvsHLDAAxaGcsMp8EE4QOmSyyDo17ple0akUc-jN9VKkhOVJXMVUVzVVJk8GkQ_9N24NgkuBf1Pgh1Ks_g8D-LDu9pLCWVQIGD3sRVF8DLSnJaYi3Kigw-DG8x8uJxiq59s15W6EAxO-SMZ0A2yMh4lbdQbJTB69Z5bj7f-eD-3dN-D4_PFrNpNT2ffzuAJ-1WdgQMvYXt1dXav4NH9u_q1_LqMEXBNSGhBFQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Eye+movement+analysis+for+activity+recognition+using+electrooculography&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Bulling%2C+Andreas&rft.au=Ward%2C+Jamie+A&rft.au=Gellersen%2C+Hans&rft.au=Tr%C3%B6ster%2C+Gerhard&rft.date=2011-04-01&rft.issn=1939-3539&rft.eissn=1939-3539&rft.volume=33&rft.issue=4&rft.spage=741&rft_id=info:doi/10.1109%2FTPAMI.2010.86&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon |