Eye Movement Analysis for Activity Recognition Using Electrooculography

In this work, we investigate eye movement analysis as a new sensing modality for activity recognition. Eye movement data were recorded using an electrooculography (EOG) system. We first describe and evaluate algorithms for detecting three eye movement characteristics from EOG signals-saccades, fixat...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on pattern analysis and machine intelligence Vol. 33; no. 4; pp. 741 - 753
Main Authors: Bulling, Andreas, Ward, Jamie A, Gellersen, Hans, Tröster, Gerhard
Format: Journal Article
Language:English
Published: Los Alamitos, CA IEEE 01.04.2011
IEEE Computer Society
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0162-8828, 1939-3539, 1939-3539
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this work, we investigate eye movement analysis as a new sensing modality for activity recognition. Eye movement data were recorded using an electrooculography (EOG) system. We first describe and evaluate algorithms for detecting three eye movement characteristics from EOG signals-saccades, fixations, and blinks-and propose a method for assessing repetitive patterns of eye movements. We then devise 90 different features based on these characteristics and select a subset of them using minimum redundancy maximum relevance (mRMR) feature selection. We validate the method using an eight participant study in an office environment using an example set of five activity classes: copying a text, reading a printed paper, taking handwritten notes, watching a video, and browsing the Web. We also include periods with no specific activity (the NULL class). Using a support vector machine (SVM) classifier and person-independent (leave-one-person-out) training, we obtain an average precision of 76.1 percent and recall of 70.5 percent over all classes and participants. The work demonstrates the promise of eye-based activity recognition (EAR) and opens up discussion on the wider applicability of EAR to other activities that are difficult, or even impossible, to detect using common sensing modalities.
AbstractList In this work, we investigate eye movement analysis as a new sensing modality for activity recognition. Eye movement data were recorded using an electrooculography (EOG) system. We first describe and evaluate algorithms for detecting three eye movement characteristics from EOG signals--saccades, fixations, and blinks--and propose a method for assessing repetitive patterns of eye movements. We then devise 90 different features based on these characteristics and select a subset of them using minimum redundancy maximum relevance (mRMR) feature selection. We validate the method using an eight participant study in an office environment using an example set of five activity classes: copying a text, reading a printed paper, taking handwritten notes, watching a video, and browsing the Web. We also include periods with no specific activity (the NULL class). Using a support vector machine (SVM) classifier and person-independent (leave-one-person-out) training, we obtain an average precision of 76.1 percent and recall of 70.5 percent over all classes and participants. The work demonstrates the promise of eye-based activity recognition (EAR) and opens up discussion on the wider applicability of EAR to other activities that are difficult, or even impossible, to detect using common sensing modalities.
In this work, we investigate eye movement analysis as a new sensing modality for activity recognition. Eye movement data were recorded using an electrooculography (EOG) system. We first describe and evaluate algorithms for detecting three eye movement characteristics from EOG signals-saccades, fixations, and blinks-and propose a method for assessing repetitive patterns of eye movements. We then devise 90 different features based on these characteristics and select a subset of them using minimum redundancy maximum relevance (mRMR) feature selection. We validate the method using an eight participant study in an office environment using an example set of five activity classes: copying a text, reading a printed paper, taking handwritten notes, watching a video, and browsing the Web. We also include periods with no specific activity (the NULL class). Using a support vector machine (SVM) classifier and person-independent (leave-one-person-out) training, we obtain an average precision of 76.1 percent and recall of 70.5 percent over all classes and participants. The work demonstrates the promise of eye-based activity recognition (EAR) and opens up discussion on the wider applicability of EAR to other activities that are difficult, or even impossible, to detect using common sensing modalities.In this work, we investigate eye movement analysis as a new sensing modality for activity recognition. Eye movement data were recorded using an electrooculography (EOG) system. We first describe and evaluate algorithms for detecting three eye movement characteristics from EOG signals-saccades, fixations, and blinks-and propose a method for assessing repetitive patterns of eye movements. We then devise 90 different features based on these characteristics and select a subset of them using minimum redundancy maximum relevance (mRMR) feature selection. We validate the method using an eight participant study in an office environment using an example set of five activity classes: copying a text, reading a printed paper, taking handwritten notes, watching a video, and browsing the Web. We also include periods with no specific activity (the NULL class). Using a support vector machine (SVM) classifier and person-independent (leave-one-person-out) training, we obtain an average precision of 76.1 percent and recall of 70.5 percent over all classes and participants. The work demonstrates the promise of eye-based activity recognition (EAR) and opens up discussion on the wider applicability of EAR to other activities that are difficult, or even impossible, to detect using common sensing modalities.
Author Ward, Jamie A
Bulling, Andreas
Tröster, Gerhard
Gellersen, Hans
Author_xml – sequence: 1
  givenname: Andreas
  surname: Bulling
  fullname: Bulling, Andreas
  email: andreas.bulling@acm.org
  organization: Comput. Lab., Univ. of Cambridge, Cambridge, UK
– sequence: 2
  givenname: Jamie A
  surname: Ward
  fullname: Ward, Jamie A
  email: j.ward@comp.lancs.ac.uk
  organization: Sch. of Comput. & Commun., Lancaster Univ., Lancaster, UK
– sequence: 3
  givenname: Hans
  surname: Gellersen
  fullname: Gellersen, Hans
  email: hwg@comp.lancs.ac.uk
  organization: Sch. of Comput. & Commun., Lancaster Univ., Lancaster, UK
– sequence: 4
  givenname: Gerhard
  surname: Tröster
  fullname: Tröster, Gerhard
  email: troester@ife.ee.ethz.ch
  organization: Dept. of Inf. Technol. & Electr. Eng., ETH Zurich, Zurich, Switzerland
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24415969$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/20421675$$D View this record in MEDLINE/PubMed
BookMark eNp90c9rFDEUB_AgFbtdPXoSZBBEL1Pze5LjUtZaaFGkPQ-ZzMuaMjtZk0xh_nuz7lqhoKeQ8HkvvPc9QydjGAGh1wSfE4L1p9tvq5urc4rLXclnaEE00zUTTJ-gBSaS1kpRdYrOUrrHmHCB2Qt0SjGnRDZigS7XM1Q34QG2MOZqNZphTj5VLsRqZbN_8HmuvoMNm9FnH8bqLvlxU60HsDmGYKchbKLZ_ZhfoufODAleHc8luvu8vr34Ul9_vby6WF3XlmOaa0Y6qQGUVaa3wlHVS9IZLZqOuQYcNeWx4xJzKXsKTmNpJO2VlIpy7IxiS_Th0HcXw88JUm63PlkYBjNCmFKrJG8U14wU-fG_ssxPqCCi7GqJ3j2h92GKZReln6ANVZrxgt4e0dRtoW930W9NnNs_uyzg_RGYZM3gohmtT38d50RoqYurD87GkFIE90gIbveZtr8zbfeZlnmKZ0-89dns08jR-OGfVW8OVR4AHn8QnHPVaPYLliiruA
CODEN ITPIDJ
CitedBy_id crossref_primary_10_1016_j_bios_2019_111336
crossref_primary_10_1109_TNSRE_2022_3157768
crossref_primary_10_1016_j_bspc_2018_07_005
crossref_primary_10_1109_MSP_2015_2503881
crossref_primary_10_3390_electronics9060970
crossref_primary_10_1109_JIOT_2022_3215916
crossref_primary_10_3390_s22082949
crossref_primary_10_1016_j_neucom_2014_08_069
crossref_primary_10_1088_1741_2552_aa5a98
crossref_primary_10_1109_TIM_2025_3591857
crossref_primary_10_1016_j_cmpb_2021_106171
crossref_primary_10_1061_JCEMD4_COENG_13675
crossref_primary_10_1109_TNSRE_2023_3267114
crossref_primary_10_2478_jaiscr_2019_0007
crossref_primary_10_1109_TAFFC_2020_2979440
crossref_primary_10_1007_s13534_024_00426_8
crossref_primary_10_1145_2499621
crossref_primary_10_1109_TIM_2023_3307756
crossref_primary_10_1109_TVCG_2023_3247048
crossref_primary_10_1016_j_bspc_2025_108585
crossref_primary_10_1016_j_buildenv_2018_07_051
crossref_primary_10_1007_s12193_014_0171_2
crossref_primary_10_1145_3448105
crossref_primary_10_1109_TSMC_2013_2297398
crossref_primary_10_1088_1742_6596_2273_1_012025
crossref_primary_10_1016_j_cmpb_2015_10_011
crossref_primary_10_1016_j_neucom_2020_01_028
crossref_primary_10_1038_s41598_018_31425_2
crossref_primary_10_1155_2018_2389158
crossref_primary_10_3390_s19030626
crossref_primary_10_1007_s00500_013_1080_0
crossref_primary_10_7717_peerj_cs_2594
crossref_primary_10_1016_j_bbe_2019_12_002
crossref_primary_10_1515_bmt_2013_0137
crossref_primary_10_1039_C8RA08523D
crossref_primary_10_1016_j_neucom_2013_08_008
crossref_primary_10_1109_TCSII_2014_2368617
crossref_primary_10_1016_j_bspc_2019_101767
crossref_primary_10_1007_s00500_015_1598_4
crossref_primary_10_1038_s41598_024_73514_5
crossref_primary_10_1109_JSEN_2016_2628346
crossref_primary_10_1016_j_measurement_2018_06_017
crossref_primary_10_1080_13658816_2018_1482554
crossref_primary_10_3389_fnbot_2017_00035
crossref_primary_10_1111_ejn_15095
crossref_primary_10_1016_j_bios_2016_12_001
crossref_primary_10_1016_j_bspc_2021_102945
crossref_primary_10_3390_s17071534
crossref_primary_10_3390_s21062220
crossref_primary_10_1109_TBME_2014_2369483
crossref_primary_10_1155_2014_973063
crossref_primary_10_3390_s22030916
crossref_primary_10_1145_3053330
crossref_primary_10_1145_3130971
crossref_primary_10_1109_TCYB_2020_3022647
crossref_primary_10_1109_TAFFC_2025_3558141
crossref_primary_10_1016_j_compbiomed_2017_10_026
crossref_primary_10_1109_MPRV_2010_86
crossref_primary_10_1109_TBME_2015_2394409
crossref_primary_10_1109_TNSRE_2018_2839116
crossref_primary_10_3389_fphys_2023_1196919
crossref_primary_10_1145_3161601
crossref_primary_10_1109_TIP_2015_2438540
crossref_primary_10_1007_s10115_012_0558_x
crossref_primary_10_1109_MPOT_2018_2850540
crossref_primary_10_1186_s13640_021_00575_1
crossref_primary_10_1007_s11042_022_12377_2
crossref_primary_10_1016_j_eswa_2023_120177
crossref_primary_10_1016_j_ins_2016_01_007
crossref_primary_10_1109_ACCESS_2023_3316032
crossref_primary_10_3390_s19173756
crossref_primary_10_3389_fninf_2022_758537
crossref_primary_10_1038_s41597_024_03729_8
crossref_primary_10_1109_ACCESS_2020_2978028
crossref_primary_10_1109_TIM_2022_3214265
crossref_primary_10_1016_j_bspc_2014_08_007
crossref_primary_10_1186_s12938_015_0046_0
crossref_primary_10_1109_LRA_2021_3097274
crossref_primary_10_1371_journal_pone_0138198
crossref_primary_10_1049_htl_2017_0020
crossref_primary_10_1007_s10586_017_0977_2
crossref_primary_10_1007_s10707_016_0282_x
crossref_primary_10_1007_s42979_021_00553_4
crossref_primary_10_1155_2014_713818
crossref_primary_10_3758_s13428_017_0876_8
crossref_primary_10_1145_3478088
crossref_primary_10_1038_s41467_018_05547_0
crossref_primary_10_3390_ijgi9020097
crossref_primary_10_1145_3372300_3372307
crossref_primary_10_1016_j_bspc_2016_08_012
crossref_primary_10_1145_3287067
crossref_primary_10_1088_1741_2552_aafc88
crossref_primary_10_1016_j_eswa_2012_03_007
crossref_primary_10_1016_j_compenvurbsys_2022_101758
crossref_primary_10_1515_icom_2021_0038
crossref_primary_10_2478_v10048_012_0010_0
crossref_primary_10_1038_s41598_022_05095_0
crossref_primary_10_1109_ACCESS_2017_2683199
crossref_primary_10_1088_1741_2552_ab933e
crossref_primary_10_1002_smsc_202300008
crossref_primary_10_3389_fnhum_2018_00105
crossref_primary_10_4108_eetpht_8_3432
crossref_primary_10_1080_03091902_2020_1853838
crossref_primary_10_1109_ACCESS_2017_2750701
crossref_primary_10_1109_TBCAS_2022_3168236
crossref_primary_10_1016_j_buildenv_2020_107519
crossref_primary_10_1016_j_neucom_2014_07_055
crossref_primary_10_1007_s13534_019_00095_y
crossref_primary_10_1145_3656376
crossref_primary_10_1109_ACCESS_2017_2754299
crossref_primary_10_3390_bios12121097
crossref_primary_10_3390_brainsci10100687
crossref_primary_10_1007_s10489_021_02309_2
crossref_primary_10_1109_JBHI_2020_3004686
crossref_primary_10_1016_j_ijinfomgt_2019_02_003
crossref_primary_10_1016_j_sigpro_2013_11_033
crossref_primary_10_1016_j_bspc_2014_10_005
crossref_primary_10_1016_j_compmedimag_2014_08_001
crossref_primary_10_1109_TIM_2025_3544371
crossref_primary_10_1155_2022_6894392
crossref_primary_10_1038_s41598_025_16839_z
crossref_primary_10_1016_j_neucom_2017_09_085
crossref_primary_10_1186_s12984_017_0303_5
crossref_primary_10_3389_fmed_2019_00287
crossref_primary_10_3390_s150511312
crossref_primary_10_1016_j_bspc_2022_104263
crossref_primary_10_1002_aisy_202000117
crossref_primary_10_1016_j_heliyon_2023_e23611
crossref_primary_10_1109_ACCESS_2019_2915533
crossref_primary_10_3390_jlpea13040061
crossref_primary_10_3390_s25103015
crossref_primary_10_1007_s12652_023_04622_9
crossref_primary_10_1109_TVCG_2021_3138902
crossref_primary_10_1109_TCSVT_2021_3071621
crossref_primary_10_3390_s17071505
crossref_primary_10_1016_j_patrec_2016_11_002
crossref_primary_10_1016_j_bspc_2022_103608
crossref_primary_10_1002_smm2_1068
crossref_primary_10_1109_ACCESS_2023_3263045
crossref_primary_10_3390_s18092892
crossref_primary_10_1016_j_artmed_2015_10_002
crossref_primary_10_3389_fpsyg_2025_1509569
crossref_primary_10_3233_JIFS_189849
crossref_primary_10_1016_j_cag_2024_103909
crossref_primary_10_1016_j_artint_2020_103275
crossref_primary_10_1109_TBME_2017_2732479
crossref_primary_10_1145_3448074
crossref_primary_10_3390_s19122690
crossref_primary_10_1109_JSEN_2023_3282171
crossref_primary_10_3390_s19173808
crossref_primary_10_1016_j_compbiomed_2019_03_025
crossref_primary_10_1016_j_compbiomed_2016_01_012
crossref_primary_10_3390_electronics6020044
crossref_primary_10_1016_j_comcom_2011_11_002
crossref_primary_10_2478_ngoe_2024_0006
crossref_primary_10_1007_s40843_024_3115_x
crossref_primary_10_1007_s13218_017_0502_z
crossref_primary_10_3390_s20247140
crossref_primary_10_1109_TSMCC_2013_2258337
crossref_primary_10_1016_j_compbiomed_2014_08_007
crossref_primary_10_1007_s00138_016_0776_4
crossref_primary_10_1016_j_compbiomed_2015_03_002
crossref_primary_10_1016_j_proeng_2012_01_1264
crossref_primary_10_3390_bios12111039
crossref_primary_10_3390_s20030592
crossref_primary_10_1016_j_comnet_2021_107859
crossref_primary_10_1371_journal_pone_0309832
crossref_primary_10_1155_2018_8528176
crossref_primary_10_1016_j_bios_2017_01_044
crossref_primary_10_1177_1550147719864883
crossref_primary_10_1016_j_engappai_2013_01_003
crossref_primary_10_1088_1741_2552_ab909f
crossref_primary_10_1145_3295748
crossref_primary_10_1080_15230406_2021_1980435
crossref_primary_10_1016_j_neucom_2021_11_081
crossref_primary_10_3390_electronics9122002
crossref_primary_10_1145_3494998
crossref_primary_10_1109_THMS_2023_3238113
crossref_primary_10_3389_fpsyg_2018_00936
crossref_primary_10_1016_j_bspc_2018_01_003
crossref_primary_10_1007_s40593_022_00316_z
crossref_primary_10_1109_TCYB_2018_2797176
crossref_primary_10_1016_j_knosys_2021_106970
crossref_primary_10_4018_jaci_2011070102
crossref_primary_10_1515_bmt_2018_0018
crossref_primary_10_1016_j_bspc_2018_05_011
crossref_primary_10_1002_int_21833
crossref_primary_10_3390_s22186736
crossref_primary_10_1007_s11042_012_1162_5
crossref_primary_10_1002_adfm_202007428
crossref_primary_10_1016_j_visres_2014_08_014
crossref_primary_10_3390_app11115051
crossref_primary_10_3390_electronics14030420
crossref_primary_10_1016_j_neucom_2016_10_077
crossref_primary_10_1109_TBME_2020_2972747
crossref_primary_10_1016_j_bspc_2024_107377
crossref_primary_10_1109_TVCG_2024_3412190
crossref_primary_10_3390_s131012852
crossref_primary_10_1109_MPRV_2014_42
crossref_primary_10_1109_TNSRE_2017_2716109
crossref_primary_10_1016_j_iot_2019_100124
crossref_primary_10_1111_tgis_12067
crossref_primary_10_1109_TNSRE_2021_3054733
crossref_primary_10_3389_fpsyg_2023_1144048
crossref_primary_10_3758_s13428_021_01763_7
crossref_primary_10_1007_s40279_016_0585_y
crossref_primary_10_1016_j_jneumeth_2023_109939
crossref_primary_10_1109_ACCESS_2014_2315523
crossref_primary_10_1016_j_bspc_2023_105282
crossref_primary_10_1111_jsr_12962
crossref_primary_10_1109_JIOT_2023_3308654
crossref_primary_10_1145_3314410
crossref_primary_10_1007_s12652_020_02683_8
crossref_primary_10_1016_j_cviu_2024_104105
crossref_primary_10_4018_ijdet_2014100105
crossref_primary_10_3390_s16020227
crossref_primary_10_1109_MITS_2017_2743171
crossref_primary_10_1016_j_compbiomed_2017_12_025
crossref_primary_10_3390_s18092826
crossref_primary_10_1016_j_bspc_2019_101738
crossref_primary_10_1088_1757_899X_1130_1_012079
crossref_primary_10_1007_s11042_016_3723_5
crossref_primary_10_1109_TCYB_2021_3123842
crossref_primary_10_3390_s21103439
crossref_primary_10_1080_13658816_2021_1946542
crossref_primary_10_3389_fict_2019_00018
crossref_primary_10_3390_bios11090343
crossref_primary_10_1145_2134203_2134205
crossref_primary_10_1080_13658816_2024_2309188
crossref_primary_10_1155_2016_4069790
crossref_primary_10_1109_TFUZZ_2018_2809691
crossref_primary_10_1371_journal_pone_0190420
crossref_primary_10_1007_s11517_023_02976_y
crossref_primary_10_3390_electronics11101637
crossref_primary_10_1109_JTEHM_2023_3320713
crossref_primary_10_3390_s18113691
crossref_primary_10_1038_s41598_017_13153_1
crossref_primary_10_1109_TIM_2024_3472779
crossref_primary_10_1109_MITS_2017_2743165
crossref_primary_10_1109_ACCESS_2021_3068055
crossref_primary_10_3233_ICA_160520
crossref_primary_10_1109_JBHI_2023_3330192
crossref_primary_10_3390_s24082548
crossref_primary_10_3390_s24010080
crossref_primary_10_1016_j_cmpb_2018_04_005
crossref_primary_10_1016_j_bspc_2025_108211
crossref_primary_10_1371_journal_pone_0164627
crossref_primary_10_1016_j_eswa_2019_04_039
crossref_primary_10_1016_j_eswa_2020_114037
crossref_primary_10_1145_3090088
crossref_primary_10_1016_j_neuroimage_2021_118616
crossref_primary_10_3390_s20082384
crossref_primary_10_20965_jrm_2017_p0728
crossref_primary_10_1145_3491207
crossref_primary_10_1089_brain_2020_0885
crossref_primary_10_1109_ACCESS_2018_2884411
crossref_primary_10_3390_s130810561
crossref_primary_10_1016_j_eswa_2017_09_017
crossref_primary_10_1007_s00500_018_3670_3
crossref_primary_10_3233_AIS_160402
crossref_primary_10_1002_admt_202201677
crossref_primary_10_1016_j_eswa_2024_123153
crossref_primary_10_1016_j_iswa_2025_200578
crossref_primary_10_1145_3557887
crossref_primary_10_1016_j_procs_2018_08_037
crossref_primary_10_1109_MPRV_2010_49
crossref_primary_10_3390_jemr18020008
crossref_primary_10_1109_TBME_2012_2228645
crossref_primary_10_1145_3550331
crossref_primary_10_1109_JSEN_2021_3095423
crossref_primary_10_1016_j_asoc_2015_02_038
crossref_primary_10_1016_j_measurement_2023_113767
crossref_primary_10_1007_s11265_024_01936_5
crossref_primary_10_1016_j_apmt_2020_100651
crossref_primary_10_1007_s12555_024_0555_3
crossref_primary_10_1038_s41699_018_0064_4
crossref_primary_10_1109_TIM_2015_2433652
crossref_primary_10_1109_JSEN_2018_2868879
crossref_primary_10_3390_a16020086
crossref_primary_10_1109_TNSRE_2016_2542524
crossref_primary_10_1109_TNSRE_2023_3299350
Cites_doi 10.1145/1409635.1409647
10.1109/TPAMI.2005.159
10.1109/18.382009
10.1145/1620545.1620552
10.1109/NFSI-ICFBI.2007.4387719
10.1109/ROBOT.2004.1307158
10.1109/TNSRE.2002.806829
10.1080/00140130701817062
10.1007/s10633-006-9030-0
10.1016/S0167-8760(99)00099-9
10.1016/j.tics.2003.09.006
10.1016/0165-1781(81)90070-6
10.1109/TCSVT.2008.2005594
10.1016/S1364-6613(99)01418-7
10.1109/21.155948
10.1109/MPRV.2010.49
10.3233/AIS-2009-0020
10.1145/1498700.1498705
10.1109/MPRV.2008.36
10.1109/ROBIO.2005.246316
10.1007/978-3-540-24646-6_1
10.1109/TBME.2005.856296
10.1007/978-3-540-74853-3_28
10.1109/TSMCC.2007.893280
10.1007/BF01408562
10.1007/s00779-006-0086-3
10.1109/TENCON.2003.1273294
10.1155/IJBI/2006/97157
10.1016/S0165-0270(03)00151-1
10.1109/TBME.2003.812189
10.1109/ICCTA.2007.126
10.1145/1279640.1279643
10.1145/1409635.1409638
10.1007/978-3-540-79576-6_2
10.1007/3-540-44581-1_7
10.1016/j.tics.2005.02.009
10.1109/TMI.2002.801153
10.1109/ROBOT.2001.932832
10.1145/355017.355028
10.1207/S15327051HCI1601_2
10.1109/TPAMI.2006.197
10.1007/978-1-84628-609-4
ContentType Journal Article
Copyright 2015 INIST-CNRS
Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Apr 2011
Copyright_xml – notice: 2015 INIST-CNRS
– notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Apr 2011
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
7X8
DOI 10.1109/TPAMI.2010.86
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList Technology Research Database

MEDLINE
Technology Research Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Applied Sciences
EISSN 1939-3539
EndPage 753
ExternalDocumentID 2270936401
20421675
24415969
10_1109_TPAMI_2010_86
5444879
Genre orig-research
Journal Article
GroupedDBID ---
-DZ
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
9M8
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ADRHT
AENEX
AETEA
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
FA8
HZ~
H~9
IBMZZ
ICLAB
IEDLZ
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNI
RNS
RXW
RZB
TAE
TN5
UHB
VH1
XJT
~02
AAYXX
CITATION
IQODW
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
7X8
ID FETCH-LOGICAL-c402t-31b69ee8c8adc5f28d61ba957b3f7ef2ac5fb460466d2ef906a62d8668240fa83
IEDL.DBID RIE
ISICitedReferencesCount 379
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000287370400007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0162-8828
1939-3539
IngestDate Sun Sep 28 07:35:18 EDT 2025
Wed Oct 01 14:41:06 EDT 2025
Mon Jun 30 05:40:11 EDT 2025
Mon Jul 21 06:03:01 EDT 2025
Mon Jul 21 09:15:11 EDT 2025
Sat Nov 29 08:07:39 EST 2025
Tue Nov 18 22:41:42 EST 2025
Wed Aug 27 02:47:50 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Pervasive computing
Electrooculography
feature evaluation and selection
Redundancy
Ubiquitous computing
Eye movement
Specific activity
Relevance
Dimension reduction
Human activity
Scene analysis
Database
Vector support machine
Signal processing
Pattern analysis
Mobile computing
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c402t-31b69ee8c8adc5f28d61ba957b3f7ef2ac5fb460466d2ef906a62d8668240fa83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 20421675
PQID 852728934
PQPubID 85458
PageCount 13
ParticipantIDs pascalfrancis_primary_24415969
pubmed_primary_20421675
proquest_miscellaneous_1671251535
crossref_citationtrail_10_1109_TPAMI_2010_86
ieee_primary_5444879
proquest_miscellaneous_864784931
crossref_primary_10_1109_TPAMI_2010_86
proquest_journals_852728934
PublicationCentury 2000
PublicationDate 2011-04-01
PublicationDateYYYYMMDD 2011-04-01
PublicationDate_xml – month: 04
  year: 2011
  text: 2011-04-01
  day: 01
PublicationDecade 2010
PublicationPlace Los Alamitos, CA
PublicationPlace_xml – name: Los Alamitos, CA
– name: United States
– name: New York
PublicationTitle IEEE transactions on pattern analysis and machine intelligence
PublicationTitleAbbrev TPAMI
PublicationTitleAlternate IEEE Trans Pattern Anal Mach Intell
PublicationYear 2011
Publisher IEEE
IEEE Computer Society
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: IEEE Computer Society
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
Ding (ref11)
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref19
ref18
Peng (ref38) 2008
Lin (ref40) 2008
ref24
ref46
ref23
ref45
ref26
ref25
ref20
ref42
ref41
ref22
ref44
ref21
ref43
ref28
ref27
ref8
ref7
ref9
ref4
ref3
ref6
ref5
Schiffman (ref29) 2001
References_xml – ident: ref44
  doi: 10.1145/1409635.1409647
– ident: ref37
  doi: 10.1109/TPAMI.2005.159
– ident: ref35
  doi: 10.1109/18.382009
– volume-title: LIBLINEAR—A Library for Large Linear Classification
  year: 2008
  ident: ref40
– ident: ref10
  doi: 10.1145/1620545.1620552
– ident: ref31
  doi: 10.1109/NFSI-ICFBI.2007.4387719
– ident: ref12
  doi: 10.1109/ROBOT.2004.1307158
– ident: ref14
  doi: 10.1109/TNSRE.2002.806829
– ident: ref28
  doi: 10.1080/00140130701817062
– ident: ref24
  doi: 10.1007/s10633-006-9030-0
– ident: ref43
  doi: 10.1016/S0167-8760(99)00099-9
– ident: ref8
  doi: 10.1016/j.tics.2003.09.006
– ident: ref27
  doi: 10.1016/0165-1781(81)90070-6
– ident: ref2
  doi: 10.1109/TCSVT.2008.2005594
– ident: ref7
  doi: 10.1016/S1364-6613(99)01418-7
– ident: ref16
  doi: 10.1109/21.155948
– ident: ref46
  doi: 10.1109/MPRV.2010.49
– ident: ref9
  doi: 10.3233/AIS-2009-0020
– ident: ref42
  doi: 10.1145/1498700.1498705
– ident: ref41
  doi: 10.1109/MPRV.2008.36
– ident: ref13
  doi: 10.1109/ROBIO.2005.246316
– ident: ref21
  doi: 10.1007/978-3-540-24646-6_1
– volume-title: mRMR Feature Selection Toolbox for MATLAB
  year: 2008
  ident: ref38
– ident: ref33
  doi: 10.1109/TBME.2005.856296
– ident: ref22
  doi: 10.1007/978-3-540-74853-3_28
– ident: ref1
  doi: 10.1109/TSMCC.2007.893280
– ident: ref20
  doi: 10.1007/BF01408562
– ident: ref5
  doi: 10.1007/s00779-006-0086-3
– ident: ref23
  doi: 10.1109/TENCON.2003.1273294
– ident: ref34
  doi: 10.1155/IJBI/2006/97157
– ident: ref26
  doi: 10.1016/S0165-0270(03)00151-1
– volume-title: Sensation and Perception: An Integrated Approach
  year: 2001
  ident: ref29
– ident: ref3
  doi: 10.1109/TBME.2003.812189
– start-page: 6829
  volume-title: Proc. 27th Int’l Conf. Eng. in Medicine and Biology Soc.
  ident: ref11
  article-title: Development of an EOG (Electro-Oculography) Based Human-Computer Interface
– ident: ref32
  doi: 10.1109/ICCTA.2007.126
– ident: ref17
  doi: 10.1145/1279640.1279643
– ident: ref45
  doi: 10.1145/1409635.1409638
– ident: ref6
  doi: 10.1007/978-3-540-79576-6_2
– ident: ref39
  doi: 10.1007/3-540-44581-1_7
– ident: ref15
  doi: 10.1016/j.tics.2005.02.009
– ident: ref18
  doi: 10.1109/TMI.2002.801153
– ident: ref30
  doi: 10.1109/ROBOT.2001.932832
– ident: ref36
  doi: 10.1145/355017.355028
– ident: ref19
  doi: 10.1207/S15327051HCI1601_2
– ident: ref4
  doi: 10.1109/TPAMI.2006.197
– ident: ref25
  doi: 10.1007/978-1-84628-609-4
SSID ssj0014503
Score 2.579385
Snippet In this work, we investigate eye movement analysis as a new sensing modality for activity recognition. Eye movement data were recorded using an...
SourceID proquest
pubmed
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 741
SubjectTerms Acoustic sensors
Adult
Algorithms
Applied sciences
Artificial intelligence
Computer science; control theory; systems
Computer systems and distributed systems. User interface
Data processing. List processing. Character string processing
Detection
Ear
Electrooculography
Electrooculography - methods
Exact sciences and technology
Eye movements
Eye Movements - physiology
Eyes
feature evaluation and selection
Female
Humans
Male
Memory organisation. Data processing
Middle Aged
pattern analysis
Pattern recognition
Pattern recognition. Digital image processing. Computational geometry
Recognition
Reproduction
signal processing
Signal processing algorithms
Software
Support vector machine classification
Support vector machines
Ubiquitous computing
Visual Perception - physiology
Wearable computers
Title Eye Movement Analysis for Activity Recognition Using Electrooculography
URI https://ieeexplore.ieee.org/document/5444879
https://www.ncbi.nlm.nih.gov/pubmed/20421675
https://www.proquest.com/docview/852728934
https://www.proquest.com/docview/1671251535
https://www.proquest.com/docview/864784931
Volume 33
WOSCitedRecordID wos000287370400007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1939-3539
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014503
  issn: 0162-8828
  databaseCode: RIE
  dateStart: 19790101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Na9wwEB2S0EN7aNqkTZy0iwqlp7jZlawPH5eyaXtICCWFvRlZGkOh2CW7W8i_z0iynRSyh96MNVhi5smakUbzAD4ap52VyufeoMgLzYu89trntXCELks-vreRbEJfXZnlsrzegbPxLgwixuQz_Bwe41m-79wmbJWdy4KCCV3uwq7WOt3VGk8MChlZkMmDoRlOXTzU0zy_uZ5ffk9ZXCZQFnEC6kyFzMJHS1HkVgmZkXZFymkSq8V2tzMuPxf7_zfwV_CydzPZPOHiNexgewD7A4UD62f0Abx4VI_wEL4u7pBddrGE-JoN9UoY-bVs7hLNBPsxZBx1LYv5BmyRmHRoFEP96zfw82Jx8-Vb3jMt5I7ixzX9iGtVIhpnrHeyIQOpWW1LqWvRaGy4pZd1oSiWVp5jU06VVdwbpQw5BI014i3stV2Lx8A86lk91UrTVwrJ0XJtrdfKaeGFUJjB2aD0yvVlyAMbxu8qhiPTsormqoK5KqMy-DSK_0n1N7YJHga9j0K9yjOY_GPRsZ2HQLJUJHA6mLjqp--qMpJrikRFkcGHsZXmXThMsS12m1VFAAq-oRQyA7ZFxoSLvEUpZhkcJfA8dN9j8OTpYZ_C87R5HVKE3sHe-naD7-GZ-7v-tbqdEP6XZhLxfw-AOwE4
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEB9qFdQHq60fa7VGEJ-67W2y-djHQ6622DuKnNC3kE2yIMiu9O4E_3snye62gvfgW9gMSZiPzUwymR_AB2WlNVy43CnP8lLSMq-ddHnNLGqXQR_fmQg2IRcLdX1dXe3A8fgWxnsfk8_8SWjGu3zX2U04KjvlJQYTsroH97FFi_Raa7wzKHnEQUYfBm0cJ7mtqHm6vJrOL1IelwqgRRRVtRAht_DOZhTRVUJupFkhe5qEa7Hd8Ywb0Nne_y39KTzpHU0yTZrxDHZ8uw97A4gD6W16Hx7fqUh4AJ9nvz2Zd7GI-JoMFUsIerZkahPQBPk65Bx1LYkZB2SWsHRwFUMF7Ofw7Wy2_HSe91gLucUIco2_4lpU3iurjLO8QRGJojYVlzVrpG-owY91KTCaFo76ppoII6hTQih0CRqj2AvYbbvWvwLivCzqiRQSRyk59YZKY5wUVjLHmPAZHA9M17YvRB7wMH7oGJBMKh3FpYO4tBIZfBzJf6YKHNsIDwLfR6Ke5Rkc_SXRsZ-GULISSHA4iFj3BrzSilOJsSgrM3g_9qLlhesU0_pus9KoQME75IxnQLbQqPCUt6xYkcHLpDy30_c6-Prfy34HD8-X80t9ebH4cgiP0lF2SBh6A7vrm41_Cw_sr_X31c1RtII_8IsDlw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Eye+movement+analysis+for+activity+recognition+using+electrooculography&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Bulling%2C+Andreas&rft.au=Ward%2C+Jamie+A&rft.au=Gellersen%2C+Hans&rft.au=Tr%C3%B6ster%2C+Gerhard&rft.date=2011-04-01&rft.issn=1939-3539&rft.eissn=1939-3539&rft.volume=33&rft.issue=4&rft.spage=741&rft_id=info:doi/10.1109%2FTPAMI.2010.86&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon