Machine learning-based cache miss prediction

Integrating machine learning into computer architecture simulation offers a new approach to performance analysis, moving away from traditional algorithmic methods. While existing simulators accurately replicate hardware, they often suffer from slow execution, complex documentation, and require deep...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:International journal on software tools for technology transfer Ročník 27; číslo 1; s. 53 - 80
Hlavní autori: Jelačić, Edin, Seceleanu, Cristina, Xiong, Ning, Backeman, Peter, Yaghoobi, Sharifeh, Seceleanu, Tiberiu
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Berlin/Heidelberg Springer Berlin Heidelberg 01.02.2025
Springer Nature B.V
Predmet:
ISSN:1433-2779, 1433-2787, 1433-2787
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Integrating machine learning into computer architecture simulation offers a new approach to performance analysis, moving away from traditional algorithmic methods. While existing simulators accurately replicate hardware, they often suffer from slow execution, complex documentation, and require deep CPU knowledge, limiting their usability for quick insights. This paper presents a deep learning-based approach for simulating a key CPU component, cache memory. Our model “learns” cache characteristics by observing cache miss distributions, without needing detailed manual modeling. This method accelerates simulations and adapts to different program needs, demonstrating accuracy comparable to traditional simulators. Tested on Sysbench and image processing algorithms, it shows promise for faster, scalable, and hardware-independent simulations.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1433-2779
1433-2787
1433-2787
DOI:10.1007/s10009-025-00800-6