Integrated Sensing and Communications: Toward Dual-Functional Wireless Networks for 6G and Beyond

As the standardization of 5G solidifies, researchers are speculating what 6G will be. The integration of sensing functionality is emerging as a key feature of the 6G Radio Access Network (RAN), allowing for the exploitation of dense cell infrastructures to construct a perceptive network. In this IEE...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE journal on selected areas in communications Ročník 40; číslo 6; s. 1728 - 1767
Hlavní autoři: Liu, Fan, Cui, Yuanhao, Masouros, Christos, Xu, Jie, Han, Tony Xiao, Eldar, Yonina C., Buzzi, Stefano
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.06.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0733-8716, 1558-0008
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:As the standardization of 5G solidifies, researchers are speculating what 6G will be. The integration of sensing functionality is emerging as a key feature of the 6G Radio Access Network (RAN), allowing for the exploitation of dense cell infrastructures to construct a perceptive network. In this IEEE Journal on Selected Areas in Communications (JSAC) Special Issue overview, we provide a comprehensive review on the background, range of key applications and state-of-the-art approaches of Integrated Sensing and Communications (ISAC). We commence by discussing the interplay between sensing and communications (S&C) from a historical point of view, and then consider the multiple facets of ISAC and the resulting performance gains. By introducing both ongoing and potential use cases, we shed light on the industrial progress and standardization activities related to ISAC. We analyze a number of performance tradeoffs between S&C, spanning from information theoretical limits to physical layer performance tradeoffs, and the cross-layer design tradeoffs. Next, we discuss the signal processing aspects of ISAC, namely ISAC waveform design and receive signal processing. As a step further, we provide our vision on the deeper integration between S&C within the framework of perceptive networks, where the two functionalities are expected to mutually assist each other, i.e., via communication-assisted sensing and sensing-assisted communications. Finally, we identify the potential integration of ISAC with other emerging communication technologies, and their positive impacts on the future of wireless networks.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0733-8716
1558-0008
DOI:10.1109/JSAC.2022.3156632