Graphene bilayers with a twist
Near a magic twist angle, bilayer graphene transforms from a weakly correlated Fermi liquid to a strongly correlated two-dimensional electron system with properties that are extraordinarily sensitive to carrier density and to controllable environmental factors such as the proximity of nearby gates a...
Uložené v:
| Vydané v: | Nature materials Ročník 19; číslo 12; s. 1265 - 1275 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
London
Nature Publishing Group UK
01.12.2020
Nature Publishing Group Springer Nature - Nature Publishing Group |
| Predmet: | |
| ISSN: | 1476-1122, 1476-4660, 1476-4660 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | Near a magic twist angle, bilayer graphene transforms from a weakly correlated Fermi liquid to a strongly correlated two-dimensional electron system with properties that are extraordinarily sensitive to carrier density and to controllable environmental factors such as the proximity of nearby gates and twist-angle variation. Among other phenomena, magic-angle twisted bilayer graphene hosts superconductivity, interaction-induced insulating states, magnetism, electronic nematicity, linear-in-temperature low-temperature resistivity and quantized anomalous Hall states. We highlight some key research results in this field, point to important questions that remain open and comment on the place of magic-angle twisted bilayer graphene in the strongly correlated quantum matter world.
Magic-angle twisted bilayer graphene plays host to many interesting phenomena, including superconductivity. This Review highlights key research results in the field, points toward important open questions, and comments on the place of magic-angle twisted bilayer graphene in the strongly correlated quantum matter world. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 USDOE Office of Science (SC), Basic Energy Sciences (BES) FG02-99ER45742; FG02-02ER45958; TBF1473 Welch Foundation |
| ISSN: | 1476-1122 1476-4660 1476-4660 |
| DOI: | 10.1038/s41563-020-00840-0 |