Partitional clustering algorithms for symbolic interval data based on single adaptive distances

This paper introduces dynamic clustering methods for partitioning symbolic interval data. These methods furnish a partition and a prototype for each cluster by optimizing an adequacy criterion that measures the fitting between clusters and their representatives. To compare symbolic interval data, th...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Pattern recognition Ročník 42; číslo 7; s. 1223 - 1236
Hlavní autoři: De Carvalho, Francisco de A.T., Lechevallier, Yves
Médium: Journal Article
Jazyk:angličtina
Vydáno: Kidlington Elsevier Ltd 01.07.2009
Elsevier
Témata:
ISSN:0031-3203, 1873-5142
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper introduces dynamic clustering methods for partitioning symbolic interval data. These methods furnish a partition and a prototype for each cluster by optimizing an adequacy criterion that measures the fitting between clusters and their representatives. To compare symbolic interval data, these methods use single adaptive (city-block and Hausdorff) distances that change at each iteration, but are the same for all clusters. Moreover, various tools for the partition and cluster interpretation of symbolic interval data furnished by these algorithms are also presented. Experiments with real and synthetic symbolic interval data sets demonstrate the usefulness of these adaptive clustering methods and the merit of the partition and cluster interpretation tools.
ISSN:0031-3203
1873-5142
DOI:10.1016/j.patcog.2008.11.016