Unsupervised stochastic learning and reduced order modeling for global sensitivity analysis in cardiac electrophysiology models

Numerical simulations in electrocardiology are often affected by various uncertainties inherited from the lack of precise knowledge regarding input values including those related to the cardiac cell model, domain geometry, and boundary or initial conditions used in the mathematical modeling. Convent...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Computer methods and programs in biomedicine Ročník 255; s. 108311
Hlavní autori: El Moçayd, Nabil, Belhamadia, Youssef, Seaid, Mohammed
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Ireland Elsevier B.V 01.10.2024
Predmet:
ISSN:0169-2607, 1872-7565, 1872-7565
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Numerical simulations in electrocardiology are often affected by various uncertainties inherited from the lack of precise knowledge regarding input values including those related to the cardiac cell model, domain geometry, and boundary or initial conditions used in the mathematical modeling. Conventional techniques for uncertainty quantification in modeling electrical activities of the heart encounter significant challenges, primarily due to the high computational costs associated with fine temporal and spatial scales. Additionally, the need for numerous model evaluations to quantify ubiquitous uncertainties increases the computational challenges even further. In the present study, we propose a non-intrusive surrogate model to perform uncertainty quantification and global sensitivity analysis in cardiac electrophysiology models. The proposed method combines an unsupervised machine learning technique with the polynomial chaos expansion to reconstruct a surrogate model for the propagation and quantification of uncertainties in the electrical activity of the heart. The proposed methodology not only accurately quantifies uncertainties at a very low computational cost but more importantly, it captures the targeted quantity of interest as either the whole spatial field or the whole temporal period. In order to perform sensitivity analysis, aggregated Sobol indices are estimated directly from the spectral mode of the polynomial chaos expansion. We conduct Uncertainty Quantification (UQ) and global Sensitivity Analysis (SA) considering both spatial and temporal variations, rather than limiting the analysis to specific Quantities of Interest (QoIs). To assess the comprehensive performance of our methodology in simulating cardiac electrical activity, we utilize the monodomain model. Additionally, sensitivity analysis is performed on the parameters of the Mitchell-Schaeffer cell model. Unlike conventional techniques for uncertainty quantification in modeling electrical activities, the proposed methodology performs at a low computational cost the sensitivity analysis on the cardiac electrical activity parameters. The results are fully reproducible and easily accessible, while the proposed reduced-order model represents a significant contribution to enhancing global sensitivity analysis in cardiac electrophysiology. •Non-intrusive surrogate model is introduced for cardiac electrophysiology models.•Spatial and temporal evolution of solutions are deemed as quantities of interest.•Uncertainty quantification is performed on stochastic processes.•Sensitivity analysis is conducted on monodomain-Mitchell-Schaeffer model parameters.
AbstractList Numerical simulations in electrocardiology are often affected by various uncertainties inherited from the lack of precise knowledge regarding input values including those related to the cardiac cell model, domain geometry, and boundary or initial conditions used in the mathematical modeling. Conventional techniques for uncertainty quantification in modeling electrical activities of the heart encounter significant challenges, primarily due to the high computational costs associated with fine temporal and spatial scales. Additionally, the need for numerous model evaluations to quantify ubiquitous uncertainties increases the computational challenges even further. In the present study, we propose a non-intrusive surrogate model to perform uncertainty quantification and global sensitivity analysis in cardiac electrophysiology models. The proposed method combines an unsupervised machine learning technique with the polynomial chaos expansion to reconstruct a surrogate model for the propagation and quantification of uncertainties in the electrical activity of the heart. The proposed methodology not only accurately quantifies uncertainties at a very low computational cost but more importantly, it captures the targeted quantity of interest as either the whole spatial field or the whole temporal period. In order to perform sensitivity analysis, aggregated Sobol indices are estimated directly from the spectral mode of the polynomial chaos expansion. We conduct Uncertainty Quantification (UQ) and global Sensitivity Analysis (SA) considering both spatial and temporal variations, rather than limiting the analysis to specific Quantities of Interest (QoIs). To assess the comprehensive performance of our methodology in simulating cardiac electrical activity, we utilize the monodomain model. Additionally, sensitivity analysis is performed on the parameters of the Mitchell-Schaeffer cell model. Unlike conventional techniques for uncertainty quantification in modeling electrical activities, the proposed methodology performs at a low computational cost the sensitivity analysis on the cardiac electrical activity parameters. The results are fully reproducible and easily accessible, while the proposed reduced-order model represents a significant contribution to enhancing global sensitivity analysis in cardiac electrophysiology. •Non-intrusive surrogate model is introduced for cardiac electrophysiology models.•Spatial and temporal evolution of solutions are deemed as quantities of interest.•Uncertainty quantification is performed on stochastic processes.•Sensitivity analysis is conducted on monodomain-Mitchell-Schaeffer model parameters.
Numerical simulations in electrocardiology are often affected by various uncertainties inherited from the lack of precise knowledge regarding input values including those related to the cardiac cell model, domain geometry, and boundary or initial conditions used in the mathematical modeling. Conventional techniques for uncertainty quantification in modeling electrical activities of the heart encounter significant challenges, primarily due to the high computational costs associated with fine temporal and spatial scales. Additionally, the need for numerous model evaluations to quantify ubiquitous uncertainties increases the computational challenges even further. In the present study, we propose a non-intrusive surrogate model to perform uncertainty quantification and global sensitivity analysis in cardiac electrophysiology models. The proposed method combines an unsupervised machine learning technique with the polynomial chaos expansion to reconstruct a surrogate model for the propagation and quantification of uncertainties in the electrical activity of the heart. The proposed methodology not only accurately quantifies uncertainties at a very low computational cost but more importantly, it captures the targeted quantity of interest as either the whole spatial field or the whole temporal period. In order to perform sensitivity analysis, aggregated Sobol indices are estimated directly from the spectral mode of the polynomial chaos expansion. We conduct Uncertainty Quantification (UQ) and global Sensitivity Analysis (SA) considering both spatial and temporal variations, rather than limiting the analysis to specific Quantities of Interest (QoIs). To assess the comprehensive performance of our methodology in simulating cardiac electrical activity, we utilize the monodomain model. Additionally, sensitivity analysis is performed on the parameters of the Mitchell-Schaeffer cell model. Unlike conventional techniques for uncertainty quantification in modeling electrical activities, the proposed methodology performs at a low computational cost the sensitivity analysis on the cardiac electrical activity parameters. The results are fully reproducible and easily accessible, while the proposed reduced-order model represents a significant contribution to enhancing global sensitivity analysis in cardiac electrophysiology.
Numerical simulations in electrocardiology are often affected by various uncertainties inherited from the lack of precise knowledge regarding input values including those related to the cardiac cell model, domain geometry, and boundary or initial conditions used in the mathematical modeling. Conventional techniques for uncertainty quantification in modeling electrical activities of the heart encounter significant challenges, primarily due to the high computational costs associated with fine temporal and spatial scales. Additionally, the need for numerous model evaluations to quantify ubiquitous uncertainties increases the computational challenges even further.BACKGROUND AND OBJECTIVENumerical simulations in electrocardiology are often affected by various uncertainties inherited from the lack of precise knowledge regarding input values including those related to the cardiac cell model, domain geometry, and boundary or initial conditions used in the mathematical modeling. Conventional techniques for uncertainty quantification in modeling electrical activities of the heart encounter significant challenges, primarily due to the high computational costs associated with fine temporal and spatial scales. Additionally, the need for numerous model evaluations to quantify ubiquitous uncertainties increases the computational challenges even further.In the present study, we propose a non-intrusive surrogate model to perform uncertainty quantification and global sensitivity analysis in cardiac electrophysiology models. The proposed method combines an unsupervised machine learning technique with the polynomial chaos expansion to reconstruct a surrogate model for the propagation and quantification of uncertainties in the electrical activity of the heart. The proposed methodology not only accurately quantifies uncertainties at a very low computational cost but more importantly, it captures the targeted quantity of interest as either the whole spatial field or the whole temporal period. In order to perform sensitivity analysis, aggregated Sobol indices are estimated directly from the spectral mode of the polynomial chaos expansion.METHODSIn the present study, we propose a non-intrusive surrogate model to perform uncertainty quantification and global sensitivity analysis in cardiac electrophysiology models. The proposed method combines an unsupervised machine learning technique with the polynomial chaos expansion to reconstruct a surrogate model for the propagation and quantification of uncertainties in the electrical activity of the heart. The proposed methodology not only accurately quantifies uncertainties at a very low computational cost but more importantly, it captures the targeted quantity of interest as either the whole spatial field or the whole temporal period. In order to perform sensitivity analysis, aggregated Sobol indices are estimated directly from the spectral mode of the polynomial chaos expansion.We conduct Uncertainty Quantification (UQ) and global Sensitivity Analysis (SA) considering both spatial and temporal variations, rather than limiting the analysis to specific Quantities of Interest (QoIs). To assess the comprehensive performance of our methodology in simulating cardiac electrical activity, we utilize the monodomain model. Additionally, sensitivity analysis is performed on the parameters of the Mitchell-Schaeffer cell model.RESULTSWe conduct Uncertainty Quantification (UQ) and global Sensitivity Analysis (SA) considering both spatial and temporal variations, rather than limiting the analysis to specific Quantities of Interest (QoIs). To assess the comprehensive performance of our methodology in simulating cardiac electrical activity, we utilize the monodomain model. Additionally, sensitivity analysis is performed on the parameters of the Mitchell-Schaeffer cell model.Unlike conventional techniques for uncertainty quantification in modeling electrical activities, the proposed methodology performs at a low computational cost the sensitivity analysis on the cardiac electrical activity parameters. The results are fully reproducible and easily accessible, while the proposed reduced-order model represents a significant contribution to enhancing global sensitivity analysis in cardiac electrophysiology.CONCLUSIONSUnlike conventional techniques for uncertainty quantification in modeling electrical activities, the proposed methodology performs at a low computational cost the sensitivity analysis on the cardiac electrical activity parameters. The results are fully reproducible and easily accessible, while the proposed reduced-order model represents a significant contribution to enhancing global sensitivity analysis in cardiac electrophysiology.
ArticleNumber 108311
Author El Moçayd, Nabil
Seaid, Mohammed
Belhamadia, Youssef
Author_xml – sequence: 1
  givenname: Nabil
  orcidid: 0000-0002-3258-8537
  surname: El Moçayd
  fullname: El Moçayd, Nabil
  email: nabil.elmocayd@um6p.ma
  organization: College of Agriculture and Environmental Sciences, University Mohammed VI Polytechnique, Ben Guerir, Morocco
– sequence: 2
  givenname: Youssef
  orcidid: 0000-0003-2712-564X
  surname: Belhamadia
  fullname: Belhamadia, Youssef
  email: ybelhamadia@aus.edu
  organization: Department of Mathematics and Statistics, American University of Sharjah, United Arab Emirates
– sequence: 3
  givenname: Mohammed
  surname: Seaid
  fullname: Seaid, Mohammed
  email: m.seaid@durham.ac.uk
  organization: Department of Engineering, University of Durham, South Road, Durham DH1 3LE, United Kingdom
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39032242$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1u3CAURlGVqpmkfYEuIpbZeAoY_BNlE0VtEylSN80aYbieMMXggj2SV331MnLSRRbpCunec67E952hEx88IPSZki0ltPqy3-ph7LaMMJ4HTUnpO7ShTc2KWlTiBG0y1BasIvUpOktpTwhhQlQf0GnZkpIxzjboz6NP8wjxYBMYnKagn1SarMYOVPTW77DyBkcws877EA1EPAQD7rjqQ8Q7FzrlcAKf7GQPdlqyodySbMLWY62isUpjcKCnGManvAgu7Jb1SvqI3vfKJfj0_J6jx29ff97eFQ8_vt_f3jwUmhM2FdSIxlSGQ1ULxXkHouuhp1WvqTG1aGnLmsYQrolqVcVY2QhhuMpW12plaHmOLte7Ywy_Z0iTHGzS4JzyEOYky5wfo7zmLKMXz-jcDWDkGO2g4iJfQssAWwEdQ0oR-n8IJfLYjNzLYzPy2Ixcm8nS9SrlT8PBQpRJW_A5VRtzNNIE-7Z-9UrXuQKrlfsFy__kv8hcrPY
Cites_doi 10.1103/PhysRevE.90.012706
10.1109/TSP.2007.914345
10.1016/j.jcp.2014.09.019
10.1016/j.cmpb.2023.107722
10.1051/m2an/2012055
10.1016/j.ress.2013.09.011
10.1016/j.cmpb.2018.04.006
10.1016/S0092-8240(03)00041-7
10.2514/1.2220
10.1016/j.cam.2014.04.006
10.3389/fphys.2019.00721
10.1109/TIT.2007.909108
10.1007/s10439-007-9337-3
10.1109/EMBC.2018.8513608
10.1113/JP271671
10.1016/j.ress.2019.106733
10.1016/j.camwa.2017.05.012
10.1016/j.ress.2007.04.002
10.1109/TBME.2011.2161580
10.1016/j.jocs.2022.101656
10.1016/j.cmpb.2021.106289
10.1109/TBME.2007.905415
10.1137/S1064827501387826
10.1016/j.cma.2021.114105
10.1016/j.jcp.2010.12.021
10.1214/009053604000000067
10.1016/j.jocs.2021.101344
10.1063/1.5095778
10.1016/j.jcp.2024.112926
10.1098/rsta.2019.0335
10.1016/j.envsoft.2021.105176
10.1016/j.yjmcc.2015.11.018
10.1016/j.compbiomed.2015.05.011
10.1016/j.bpj.2020.11.018
10.1063/5.0147817
10.1016/j.media.2018.05.007
10.2307/2371268
10.1016/j.jcp.2022.111313
10.3166/remn.15.81-92
10.1371/journal.pone.0216058
10.1137/S1064827503424505
10.1016/j.pbiomolbio.2010.05.008
10.1007/s10237-019-01153-1
10.1098/rsta.2019.0381
10.1002/nme.4900
10.3389/fphy.2019.00089
10.1142/S0219876221500730
10.1016/j.apm.2023.10.047
10.1016/j.compbiomed.2020.104187
10.1098/rsif.2020.0532
10.1002/cnm.3450
ContentType Journal Article
Copyright 2024 Elsevier B.V.
Copyright © 2024 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2024 Elsevier B.V.
– notice: Copyright © 2024 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.cmpb.2024.108311
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1872-7565
ExternalDocumentID 39032242
10_1016_j_cmpb_2024_108311
S0169260724003055
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.1-
.DC
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACLOT
ACNNM
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HMK
HMO
HVGLF
HZ~
IHE
J1W
KOM
LG9
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SBC
SDF
SDG
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
T5K
UHS
WUQ
XPP
Z5R
ZGI
ZY4
~G-
~HD
AACTN
ABTAH
AFCTW
AFKWA
AJOXV
AMFUW
RIG
9DU
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c402t-1d58d6d4e675a44be5bfef16fc1dd75919288d04c0a9a6223855d4ad58b9cad13
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001275548400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0169-2607
1872-7565
IngestDate Sun Nov 09 10:08:09 EST 2025
Wed Feb 19 02:09:37 EST 2025
Sat Nov 29 03:58:28 EST 2025
Sat Sep 07 15:51:02 EDT 2024
Tue Oct 14 19:36:36 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Uncertainty quantification
Polynomial Chaos expansion
Cardiac simulation
Unsupervised stochastic learning
Cardiac electrophysiology
Language English
License Copyright © 2024 Elsevier B.V. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c402t-1d58d6d4e675a44be5bfef16fc1dd75919288d04c0a9a6223855d4ad58b9cad13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-3258-8537
0000-0003-2712-564X
OpenAccessLink https://durham-repository.worktribe.com/output/2528874
PMID 39032242
PQID 3083214742
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3083214742
pubmed_primary_39032242
crossref_primary_10_1016_j_cmpb_2024_108311
elsevier_sciencedirect_doi_10_1016_j_cmpb_2024_108311
elsevier_clinicalkey_doi_10_1016_j_cmpb_2024_108311
PublicationCentury 2000
PublicationDate October 2024
2024-10-00
2024-Oct
20241001
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: October 2024
PublicationDecade 2020
PublicationPlace Ireland
PublicationPlace_xml – name: Ireland
PublicationTitle Computer methods and programs in biomedicine
PublicationTitleAlternate Comput Methods Programs Biomed
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Alagoz, Cohen, Frisch, Tunç, Phatharodom, Guez (b6) 2018; 161
Tropp, Gilbert (b31) 2007; 53
Vidal, Ma, Sastry (b51) 2016
Kontolati, Loukrezis, Giovanis, Vandanapu, Shields (b59) 2022; 464
Del Corso, Verzicco, Viola (b26) 2020; 17
Pathmanathan, Cordeiro, Gray (b23) 2019; 10
Clayton, Aboelkassem, Cantwell, Corrado, Delhaas, Huberts, Lei, Ni, Panfilov, Roney, dos Santos (b16) 2020; 378
Al-Ghosoun, El Moçayd, Seaid (b29) 2021; 144
Bi, Zhang, Jiang, Wei (b4) 2021; 208
Alqasemi, Belhamadia (b36) 2021
Hazim, Belhamadia, Dubljevic (b2) 2021; 120
Belhamadia, Rammal (b12) 2021; 130
Berveiller, Sudret, Lemaire (b45) 2006; 15
Pagani, Manzoni (b27) 2021; 37
Soize, Ghanem (b39) 2004; 26
Novák, Vořechovskỳ, Sadílek, Shields (b60) 2021; 386
Chen, Huang (b62) 2024; 126
Marelli, Sudret (b54) 2014
J. Son, Y. Du, D. Du, Propagation of Parametric Uncertainty in Aliev-Panfilov Model of Cardiac Excitation, in: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC, 2018, pp. 5450–5453.
Elkarii, Boukharfane, Benjelloun, Bouallou, El Moçayd (b30) 2023; 35
Le Maitre, Knio (b43) 2010
Colli Franzone, Pavarino, Scacchi (b10) 2013; 47
Ji, Xue, Carin (b32) 2008; 56
Ngoma, Bourgault, Nkounkou (b56) 2015; 9
El Moçayd, Mohamed, Ouazar, Seaid (b28) 2020; 195
Johnstone, Chang, Bardenet, de Boer, Gavaghan, Pathmanathan, Clayton, Mirams (b20) 2016; 96
Goutal, Goeury, Ata, Ricci, El Mocayd, Rochoux, Oubanas, Gejadze, Malaterre (b37) 2018
Raisee, Kumar, Lacor (b49) 2015; 103
Clayton, Bernus, Cherry, Dierckx, Fenton, Mirabella, Panfilov, Sachse, Seemann, Zhang (b7) 2011; 104
Xiu (b42) 2010
Hazim, Belhamadia, Dubljevic (b57) 2015; 63
Mitchell, Schaeffer (b34) 2003; 65
Coudière, Turpault (b15) 2017; 74
Belhamadia, Grenier (b55) 2019; 14
Novák, Sharma, Shields (b63) 2024; 506
Xiu, Karniadakis (b41) 2002; 24
Belhamadia (b35) 2008; 55
Reumann, Fitch, Rayshubskiy, Keller, Seemann, Dossel, Pitman, Rice (b14) 2009
El Mocayd, Mohamed, Seaid (b19) 2021; 53
Yapari, Deshpande, Belhamadia, Dubljevic (b58) 2014; 90
Hampton, Doostan (b61) 2015; 280
Pope, Fitch, Pitman, Rice, Reumann (b13) 2011; 58
Hazim, Belhamadia, Dubljevic (b5) 2019; 29
Wiener (b40) 1938; 60
Choi, Grandhi, Canfield, Pettit (b44) 2004; 42
Whiteley (b11) 2007; 35
Efron, Hastie, Johnstone, Tibshirani (b47) 2004; 32
Tsumoto, Shimamoto, Aoji, Himeno, Kuda, Tanida, Amano, Kurata (b1) 2023; 240
El Moçayd, Ricci, Goutal, Rochoux, Boyaval, Goeury, Lucor, Thual (b38) 2017
Blatman (b53) 2009
Dhamala, Arevalo, Sapp, Horácek, Wu, Trayanova, Wang (b22) 2018; 48
Roy, El Moçayd, Ricci, Jouhaud, Goutal, De Lozzo, Rochoux (b33) 2017
Belhamadia, Fortin, Bourgault (b9) 2014; 271
Blatman, Sudret (b50) 2013
Dubreuil, Berveiller, Petitjean, Salaün (b48) 2014; 121
Campos, Sundnes, dos Santos, Rocha (b25) 2020; 378
Alghosoun, Mocayd, Seaid (b18) 2022; 19
Sudret (b52) 2008; 93
Dierckx, Fenton, Filippi, Pumir, Sridhar (b3) 2019; 7
Belhamadia, Briffard, Fortin (b8) 2022; 61
Campos, Sundnes, dos Santos, Rocha (b24) 2019; 18
Blatman, Sudret (b46) 2011; 230
Mirams, Pathmanathan, Gray, Challenor, Clayton (b17) 2016; 594
Johnstone (10.1016/j.cmpb.2024.108311_b20) 2016; 96
Pope (10.1016/j.cmpb.2024.108311_b13) 2011; 58
Blatman (10.1016/j.cmpb.2024.108311_b46) 2011; 230
Mirams (10.1016/j.cmpb.2024.108311_b17) 2016; 594
Hazim (10.1016/j.cmpb.2024.108311_b2) 2021; 120
Blatman (10.1016/j.cmpb.2024.108311_b50) 2013
Colli Franzone (10.1016/j.cmpb.2024.108311_b10) 2013; 47
Belhamadia (10.1016/j.cmpb.2024.108311_b35) 2008; 55
Tsumoto (10.1016/j.cmpb.2024.108311_b1) 2023; 240
Del Corso (10.1016/j.cmpb.2024.108311_b26) 2020; 17
Raisee (10.1016/j.cmpb.2024.108311_b49) 2015; 103
El Moçayd (10.1016/j.cmpb.2024.108311_b38) 2017
Choi (10.1016/j.cmpb.2024.108311_b44) 2004; 42
Berveiller (10.1016/j.cmpb.2024.108311_b45) 2006; 15
Pagani (10.1016/j.cmpb.2024.108311_b27) 2021; 37
Clayton (10.1016/j.cmpb.2024.108311_b16) 2020; 378
Belhamadia (10.1016/j.cmpb.2024.108311_b9) 2014; 271
Hazim (10.1016/j.cmpb.2024.108311_b57) 2015; 63
Xiu (10.1016/j.cmpb.2024.108311_b41) 2002; 24
Elkarii (10.1016/j.cmpb.2024.108311_b30) 2023; 35
Goutal (10.1016/j.cmpb.2024.108311_b37) 2018
El Mocayd (10.1016/j.cmpb.2024.108311_b19) 2021; 53
Campos (10.1016/j.cmpb.2024.108311_b25) 2020; 378
El Moçayd (10.1016/j.cmpb.2024.108311_b28) 2020; 195
Clayton (10.1016/j.cmpb.2024.108311_b7) 2011; 104
Mitchell (10.1016/j.cmpb.2024.108311_b34) 2003; 65
Coudière (10.1016/j.cmpb.2024.108311_b15) 2017; 74
Dhamala (10.1016/j.cmpb.2024.108311_b22) 2018; 48
Alagoz (10.1016/j.cmpb.2024.108311_b6) 2018; 161
Tropp (10.1016/j.cmpb.2024.108311_b31) 2007; 53
Ngoma (10.1016/j.cmpb.2024.108311_b56) 2015; 9
Kontolati (10.1016/j.cmpb.2024.108311_b59) 2022; 464
Novák (10.1016/j.cmpb.2024.108311_b60) 2021; 386
Sudret (10.1016/j.cmpb.2024.108311_b52) 2008; 93
Bi (10.1016/j.cmpb.2024.108311_b4) 2021; 208
Dierckx (10.1016/j.cmpb.2024.108311_b3) 2019; 7
Whiteley (10.1016/j.cmpb.2024.108311_b11) 2007; 35
Dubreuil (10.1016/j.cmpb.2024.108311_b48) 2014; 121
10.1016/j.cmpb.2024.108311_b21
Xiu (10.1016/j.cmpb.2024.108311_b42) 2010
Belhamadia (10.1016/j.cmpb.2024.108311_b55) 2019; 14
Le Maitre (10.1016/j.cmpb.2024.108311_b43) 2010
Reumann (10.1016/j.cmpb.2024.108311_b14) 2009
Efron (10.1016/j.cmpb.2024.108311_b47) 2004; 32
Vidal (10.1016/j.cmpb.2024.108311_b51) 2016
Pathmanathan (10.1016/j.cmpb.2024.108311_b23) 2019; 10
Ji (10.1016/j.cmpb.2024.108311_b32) 2008; 56
Marelli (10.1016/j.cmpb.2024.108311_b54) 2014
Wiener (10.1016/j.cmpb.2024.108311_b40) 1938; 60
Novák (10.1016/j.cmpb.2024.108311_b63) 2024; 506
Hampton (10.1016/j.cmpb.2024.108311_b61) 2015; 280
Campos (10.1016/j.cmpb.2024.108311_b24) 2019; 18
Belhamadia (10.1016/j.cmpb.2024.108311_b12) 2021; 130
Hazim (10.1016/j.cmpb.2024.108311_b5) 2019; 29
Alqasemi (10.1016/j.cmpb.2024.108311_b36) 2021
Blatman (10.1016/j.cmpb.2024.108311_b53) 2009
Chen (10.1016/j.cmpb.2024.108311_b62) 2024; 126
Soize (10.1016/j.cmpb.2024.108311_b39) 2004; 26
Yapari (10.1016/j.cmpb.2024.108311_b58) 2014; 90
Roy (10.1016/j.cmpb.2024.108311_b33) 2017
Belhamadia (10.1016/j.cmpb.2024.108311_b8) 2022; 61
Alghosoun (10.1016/j.cmpb.2024.108311_b18) 2022; 19
Al-Ghosoun (10.1016/j.cmpb.2024.108311_b29) 2021; 144
References_xml – year: 2009
  ident: b53
  article-title: Adaptive Sparse Polynomial Chaos Expansions for Uncertainty Propagation and Sensitivity Analysis
– volume: 271
  start-page: 233
  year: 2014
  end-page: 246
  ident: b9
  article-title: On the performance of anisotropic mesh adaptation for scroll wave turbulence dynamics in reaction–diffusion systems
  publication-title: J. Comput. Appl. Math.
– volume: 53
  start-page: 4655
  year: 2007
  end-page: 4666
  ident: b31
  article-title: Signal recovery from random measurements via orthogonal matching pursuit
  publication-title: IEEE Trans. Inform. Theory
– volume: 56
  start-page: 2346
  year: 2008
  end-page: 2356
  ident: b32
  article-title: Bayesian compressive sensing
  publication-title: IEEE Trans. Signal Process.
– volume: 280
  start-page: 363
  year: 2015
  end-page: 386
  ident: b61
  article-title: Compressive sampling of polynomial chaos expansions: Convergence analysis and sampling strategies
  publication-title: J. Comput. Phys.
– volume: 53
  year: 2021
  ident: b19
  article-title: Non-intrusive polynomial chaos methods for uncertainty quantification in wave problems at high frequencies
  publication-title: J. Comput. Sci.
– volume: 9
  start-page: 7483
  year: 2015
  end-page: 7507
  ident: b56
  article-title: Parameter identification for a non-differentiable ionic model used in cardiac electrophysiology
  publication-title: Appl. Math. Sci.
– volume: 26
  start-page: 395
  year: 2004
  end-page: 410
  ident: b39
  article-title: Physical systems with random uncertainties: Chaos representations with arbitrary probability measure
  publication-title: SIAM J. Sci. Comput.
– volume: 17
  year: 2020
  ident: b26
  article-title: Sensitivity analysis of an electrophysiology model for the left ventricle
  publication-title: J. R. Soc. Interface
– volume: 65
  start-page: 767
  year: 2003
  end-page: 793
  ident: b34
  article-title: A two-current model for the dynamics of cardiac membrane
  publication-title: Bull. Math. Biol.
– volume: 195
  year: 2020
  ident: b28
  article-title: Stochastic model reduction for polynomial chaos expansion of acoustic waves using proper orthogonal decomposition
  publication-title: Reliab. Eng. Syst. Saf.
– volume: 103
  start-page: 293
  year: 2015
  end-page: 312
  ident: b49
  article-title: A non-intrusive model reduction approach for polynomial chaos expansion using proper orthogonal decomposition
  publication-title: Internat. J. Numer. Methods Engrg.
– volume: 18
  start-page: 1415
  year: 2019
  end-page: 1427
  ident: b24
  article-title: Effects of left ventricle wall thickness uncertainties on cardiac mechanics
  publication-title: Biomech. Model Mechanobiol.
– year: 2010
  ident: b43
  article-title: Spectral Methods for Uncertainty Quantification
– volume: 240
  year: 2023
  ident: b1
  article-title: Theoretical prediction of early afterdepolarization-evoked triggered activity formation initiating ventricular reentrant arrhythmias
  publication-title: Comput. Methods Programs Biomed.
– volume: 10
  start-page: 721
  year: 2019
  ident: b23
  article-title: Comprehensive uncertainty quantification and sensitivity analysis for cardiac action potential models
  publication-title: Front. Physiol.
– volume: 47
  start-page: 1017
  year: 2013
  end-page: 1035
  ident: b10
  article-title: A comparison of coupled and uncoupled solvers for the cardiac bidomain model
  publication-title: ESAIM: Mathematical Modelling and Numerical Analysis-Modélisation Mathématique et Analyse Numérique
– volume: 464
  year: 2022
  ident: b59
  article-title: A survey of unsupervised learning methods for high-dimensional uncertainty quantification in black-box-type problems
  publication-title: J. Comput. Phys.
– volume: 594
  start-page: 6833
  year: 2016
  end-page: 6847
  ident: b17
  article-title: Uncertainty and variability in computational and mathematical models of cardiac physiology
  publication-title: J. Physiol.
– volume: 37
  year: 2021
  ident: b27
  article-title: Enabling forward uncertainty quantification and sensitivity analysis in cardiac electrophysiology by reduced order modeling and machine learning
  publication-title: Int. J. Numer. Methods Biomed. Eng.
– volume: 230
  start-page: 2345
  year: 2011
  end-page: 2367
  ident: b46
  article-title: Adaptative sparse polynomial chaos expansion based on Least Angle Regression
  publication-title: J. Comput. Phys.
– volume: 90
  year: 2014
  ident: b58
  article-title: Control of cardiac alternans by mechanical and electrical feedback
  publication-title: Phys. Rev. E
– volume: 42
  start-page: 1191
  year: 2004
  end-page: 1198
  ident: b44
  article-title: Polynomial Chaos expansion with Latin Hypercube Sampling for estimating response variability
  publication-title: AIAA J.
– volume: 29
  year: 2019
  ident: b5
  article-title: Effects of mechano-electrical feedback on the onset of alternans: A computational study
  publication-title: Chaos
– volume: 7
  start-page: 89
  year: 2019
  ident: b3
  article-title: Simulating normal and arrhythmic dynamics: From sub-cellular to tissue and organ level
  publication-title: Front. Phys.
– volume: 15
  start-page: 81
  year: 2006
  end-page: 92
  ident: b45
  article-title: Stochastic finite element: a non intrusive approach by regression
  publication-title: Eur. J. Comput. Mech./Revue Européenne de Mécanique Numérique
– volume: 63
  start-page: 108
  year: 2015
  end-page: 117
  ident: b57
  article-title: Control of cardiac alternans in an electromechanical model of cardiac tissue
  publication-title: Comput. Biol. Med.
– volume: 121
  start-page: 263
  year: 2014
  end-page: 275
  ident: b48
  article-title: Construction of bootstrap confidence intervals on sensitivity indices computed by polynomial chaos expansion
  publication-title: Reliab. Eng. Syst. Saf.
– volume: 126
  start-page: 381
  year: 2024
  end-page: 404
  ident: b62
  article-title: Global sensitivity analysis for multivariate outputs using generalized RBF-PCE metamodel enhanced by variance-based sequential sampling
  publication-title: Appl. Math. Model.
– year: 2013
  ident: b50
  article-title: Sparse Polynomial Chaos Expansions of Vector-Valued Response Quantities
– volume: 48
  start-page: 43
  year: 2018
  end-page: 57
  ident: b22
  article-title: Quantifying the uncertainty in model parameters using Gaussian process-based Markov chain Monte Carlo in cardiac electrophysiology
  publication-title: Med. Image Anal.
– volume: 208
  year: 2021
  ident: b4
  article-title: A multi-scale computational model for the rat ventricle: Construction, parallelization, and applications
  publication-title: Comput. Methods Programs Biomed.
– volume: 144
  year: 2021
  ident: b29
  article-title: A surrogate model for efficient quantification of uncertainties in multilayer shallow water flows
  publication-title: Environ. Model. Softw.
– volume: 378
  year: 2020
  ident: b25
  article-title: Uncertainty quantification and sensitivity analysis of left ventricular function during the full cardiac cycle
  publication-title: Phil. Trans. R. Soc. A
– volume: 32
  start-page: 407
  year: 2004
  end-page: 499
  ident: b47
  article-title: Least angle regression
  publication-title: Ann. Statist.
– volume: 96
  start-page: 49
  year: 2016
  end-page: 62
  ident: b20
  article-title: Uncertainty and variability in models of the cardiac action potential: Can we build trustworthy models?
  publication-title: J. Mol. Cellular Cardiol.
– volume: 60
  start-page: 897
  year: 1938
  end-page: 936
  ident: b40
  article-title: The homogeneous chaos
  publication-title: Am. J. Math.
– volume: 93
  start-page: 964
  year: 2008
  end-page: 979
  ident: b52
  article-title: Global sensitivity analysis using polynomial chaos expansion
  publication-title: Reliabil. Eng. Syst. Saf.
– volume: 120
  start-page: 109
  year: 2021
  end-page: 121
  ident: b2
  article-title: A simulation study of the role of mechanical stretch in arrhythmogenesis during cardiac alternans
  publication-title: Biophys. J.
– start-page: 1
  year: 2017
  end-page: 23
  ident: b38
  article-title: Polynomial surrogates for open-channel flows in random steady state
  publication-title: Environ. Model. Assess.
– start-page: 2795
  year: 2009
  end-page: 2798
  ident: b14
  article-title: Strong scaling and speedup to 16,384 processors in cardiac electro—Mechanical simulations
  publication-title: 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society
– volume: 19
  year: 2022
  ident: b18
  article-title: A nonintrusive reduced-order model for uncertainty quantification in numerical solution of one-dimensional free-surface water flows over stochastic beds
  publication-title: Int. J. Comput. Methods
– volume: 14
  start-page: 1
  year: 2019
  end-page: 23
  ident: b55
  article-title: Modeling and simulation of hypothermia effects on cardiac electrical dynamics
  publication-title: PLoS One
– volume: 55
  start-page: 443
  year: 2008
  end-page: 452
  ident: b35
  article-title: A time-dependent adaptive remeshing for electrical waves of the heart
  publication-title: IEEE Trans. Biomed. Eng.
– reference: J. Son, Y. Du, D. Du, Propagation of Parametric Uncertainty in Aliev-Panfilov Model of Cardiac Excitation, in: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC, 2018, pp. 5450–5453.
– volume: 61
  year: 2022
  ident: b8
  article-title: Efficiency of parallel anisotropic mesh adaptation for the solution of the bidomain model in cardiac tissue
  publication-title: J. Comput. Sci.
– start-page: 169
  year: 2018
  end-page: 187
  ident: b37
  article-title: Uncertainty quantification for river flow simulation applied to a real test case: The garonne valley
  publication-title: Advances in Hydroinformatics
– volume: 74
  start-page: 684
  year: 2017
  end-page: 700
  ident: b15
  article-title: Very high order finite volume methods for cardiac electrophysiology
  publication-title: Comput. Math. Appl.
– volume: 130
  year: 2021
  ident: b12
  article-title: Efficiency of semi-implicit alternating direction implicit methods for solving cardiac monodomain model
  publication-title: Comput. Biol. Med.
– volume: 378
  year: 2020
  ident: b16
  article-title: An audit of uncertainty in multi-scale cardiac electrophysiology models
  publication-title: Phil. Trans. R. Soc. A
– start-page: 1
  year: 2017
  end-page: 19
  ident: b33
  article-title: Comparison of polynomial chaos and Gaussian process surrogates for uncertainty quantification and correlation estimation of spatially distributed open-channel steady flows
  publication-title: Stoch. Environ. Res. Risk Assess.
– volume: 104
  start-page: 22
  year: 2011
  end-page: 48
  ident: b7
  article-title: Models of cardiac tissue electrophysiology: progress, challenges and open questions
  publication-title: Progr. Biophys. Mol. Biol.
– year: 2010
  ident: b42
  article-title: Numerical Methods for Stochastic Computations: A Spectral Method Approach
– volume: 161
  start-page: 15
  year: 2018
  end-page: 24
  ident: b6
  article-title: Spiral waves characterization: Implications for an automated cardiodynamic tissue characterization
  publication-title: Comput. Methods Programs Biomed.
– start-page: 2554
  year: 2014
  end-page: 2563
  ident: b54
  article-title: UQLab: A framework for uncertainty quantification in matlab
  publication-title: Vulnerability, Uncertainty, and Risk: Quantification, Mitigation, and Management
– start-page: 541
  year: 2021
  end-page: 548
  ident: b36
  article-title: A semi-implicit backward differentiation ADI method for solving monodomain model
  publication-title: Computational Science – ICCS 2021
– volume: 35
  start-page: 1510
  year: 2007
  end-page: 1520
  ident: b11
  article-title: Physiology driven adaptivity for the numerical solution of the bidomain equations
  publication-title: Ann. Biomed. Eng.
– volume: 58
  start-page: 2965
  year: 2011
  end-page: 2969
  ident: b13
  article-title: Performance of hybrid programming models for multiscale cardiac simulations: Preparing for petascale computation
  publication-title: IEEE Trans. Biomed. Eng.
– start-page: 25
  year: 2016
  end-page: 62
  ident: b51
  article-title: Principal component analysis
  publication-title: Generalized Principal Component Analysis
– volume: 24
  start-page: 619
  year: 2002
  end-page: 644
  ident: b41
  article-title: The Wiener–Askey polynomial Chaos for stochastic differential equations
  publication-title: SIAM J. Sci. Comput.
– volume: 35
  year: 2023
  ident: b30
  article-title: Global sensitivity analysis for phosphate slurry flow in pipelines using generalized polynomial chaos
  publication-title: Phys. Fluids
– volume: 506
  year: 2024
  ident: b63
  article-title: Physics-informed polynomial chaos expansions
  publication-title: J. Comput. Phys.
– volume: 386
  year: 2021
  ident: b60
  article-title: Variance-based adaptive sequential sampling for polynomial chaos expansion
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 90
  issue: 1
  year: 2014
  ident: 10.1016/j.cmpb.2024.108311_b58
  article-title: Control of cardiac alternans by mechanical and electrical feedback
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.90.012706
– volume: 56
  start-page: 2346
  issue: 6
  year: 2008
  ident: 10.1016/j.cmpb.2024.108311_b32
  article-title: Bayesian compressive sensing
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2007.914345
– start-page: 25
  year: 2016
  ident: 10.1016/j.cmpb.2024.108311_b51
  article-title: Principal component analysis
– volume: 280
  start-page: 363
  year: 2015
  ident: 10.1016/j.cmpb.2024.108311_b61
  article-title: Compressive sampling of polynomial chaos expansions: Convergence analysis and sampling strategies
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2014.09.019
– year: 2009
  ident: 10.1016/j.cmpb.2024.108311_b53
– volume: 240
  year: 2023
  ident: 10.1016/j.cmpb.2024.108311_b1
  article-title: Theoretical prediction of early afterdepolarization-evoked triggered activity formation initiating ventricular reentrant arrhythmias
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2023.107722
– volume: 47
  start-page: 1017
  issue: 4
  year: 2013
  ident: 10.1016/j.cmpb.2024.108311_b10
  article-title: A comparison of coupled and uncoupled solvers for the cardiac bidomain model
  publication-title: ESAIM: Mathematical Modelling and Numerical Analysis-Modélisation Mathématique et Analyse Numérique
  doi: 10.1051/m2an/2012055
– volume: 121
  start-page: 263
  year: 2014
  ident: 10.1016/j.cmpb.2024.108311_b48
  article-title: Construction of bootstrap confidence intervals on sensitivity indices computed by polynomial chaos expansion
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2013.09.011
– volume: 161
  start-page: 15
  year: 2018
  ident: 10.1016/j.cmpb.2024.108311_b6
  article-title: Spiral waves characterization: Implications for an automated cardiodynamic tissue characterization
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2018.04.006
– volume: 65
  start-page: 767
  issue: 5
  year: 2003
  ident: 10.1016/j.cmpb.2024.108311_b34
  article-title: A two-current model for the dynamics of cardiac membrane
  publication-title: Bull. Math. Biol.
  doi: 10.1016/S0092-8240(03)00041-7
– volume: 42
  start-page: 1191
  issue: 6
  year: 2004
  ident: 10.1016/j.cmpb.2024.108311_b44
  article-title: Polynomial Chaos expansion with Latin Hypercube Sampling for estimating response variability
  publication-title: AIAA J.
  doi: 10.2514/1.2220
– volume: 271
  start-page: 233
  year: 2014
  ident: 10.1016/j.cmpb.2024.108311_b9
  article-title: On the performance of anisotropic mesh adaptation for scroll wave turbulence dynamics in reaction–diffusion systems
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2014.04.006
– volume: 10
  start-page: 721
  year: 2019
  ident: 10.1016/j.cmpb.2024.108311_b23
  article-title: Comprehensive uncertainty quantification and sensitivity analysis for cardiac action potential models
  publication-title: Front. Physiol.
  doi: 10.3389/fphys.2019.00721
– volume: 53
  start-page: 4655
  issue: 12
  year: 2007
  ident: 10.1016/j.cmpb.2024.108311_b31
  article-title: Signal recovery from random measurements via orthogonal matching pursuit
  publication-title: IEEE Trans. Inform. Theory
  doi: 10.1109/TIT.2007.909108
– volume: 35
  start-page: 1510
  year: 2007
  ident: 10.1016/j.cmpb.2024.108311_b11
  article-title: Physiology driven adaptivity for the numerical solution of the bidomain equations
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-007-9337-3
– ident: 10.1016/j.cmpb.2024.108311_b21
  doi: 10.1109/EMBC.2018.8513608
– volume: 594
  start-page: 6833
  issue: 23
  year: 2016
  ident: 10.1016/j.cmpb.2024.108311_b17
  article-title: Uncertainty and variability in computational and mathematical models of cardiac physiology
  publication-title: J. Physiol.
  doi: 10.1113/JP271671
– volume: 195
  year: 2020
  ident: 10.1016/j.cmpb.2024.108311_b28
  article-title: Stochastic model reduction for polynomial chaos expansion of acoustic waves using proper orthogonal decomposition
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2019.106733
– start-page: 2554
  year: 2014
  ident: 10.1016/j.cmpb.2024.108311_b54
  article-title: UQLab: A framework for uncertainty quantification in matlab
– volume: 74
  start-page: 684
  issue: 4
  year: 2017
  ident: 10.1016/j.cmpb.2024.108311_b15
  article-title: Very high order finite volume methods for cardiac electrophysiology
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2017.05.012
– volume: 93
  start-page: 964
  year: 2008
  ident: 10.1016/j.cmpb.2024.108311_b52
  article-title: Global sensitivity analysis using polynomial chaos expansion
  publication-title: Reliabil. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2007.04.002
– volume: 58
  start-page: 2965
  issue: 10
  year: 2011
  ident: 10.1016/j.cmpb.2024.108311_b13
  article-title: Performance of hybrid programming models for multiscale cardiac simulations: Preparing for petascale computation
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2011.2161580
– year: 2010
  ident: 10.1016/j.cmpb.2024.108311_b43
– volume: 61
  year: 2022
  ident: 10.1016/j.cmpb.2024.108311_b8
  article-title: Efficiency of parallel anisotropic mesh adaptation for the solution of the bidomain model in cardiac tissue
  publication-title: J. Comput. Sci.
  doi: 10.1016/j.jocs.2022.101656
– volume: 208
  year: 2021
  ident: 10.1016/j.cmpb.2024.108311_b4
  article-title: A multi-scale computational model for the rat ventricle: Construction, parallelization, and applications
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2021.106289
– volume: 55
  start-page: 443
  issue: 2
  year: 2008
  ident: 10.1016/j.cmpb.2024.108311_b35
  article-title: A time-dependent adaptive remeshing for electrical waves of the heart
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2007.905415
– volume: 24
  start-page: 619
  issue: 2
  year: 2002
  ident: 10.1016/j.cmpb.2024.108311_b41
  article-title: The Wiener–Askey polynomial Chaos for stochastic differential equations
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/S1064827501387826
– year: 2013
  ident: 10.1016/j.cmpb.2024.108311_b50
– volume: 386
  year: 2021
  ident: 10.1016/j.cmpb.2024.108311_b60
  article-title: Variance-based adaptive sequential sampling for polynomial chaos expansion
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2021.114105
– start-page: 1
  year: 2017
  ident: 10.1016/j.cmpb.2024.108311_b38
  article-title: Polynomial surrogates for open-channel flows in random steady state
  publication-title: Environ. Model. Assess.
– volume: 230
  start-page: 2345
  year: 2011
  ident: 10.1016/j.cmpb.2024.108311_b46
  article-title: Adaptative sparse polynomial chaos expansion based on Least Angle Regression
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2010.12.021
– year: 2010
  ident: 10.1016/j.cmpb.2024.108311_b42
– volume: 32
  start-page: 407
  year: 2004
  ident: 10.1016/j.cmpb.2024.108311_b47
  article-title: Least angle regression
  publication-title: Ann. Statist.
  doi: 10.1214/009053604000000067
– volume: 53
  year: 2021
  ident: 10.1016/j.cmpb.2024.108311_b19
  article-title: Non-intrusive polynomial chaos methods for uncertainty quantification in wave problems at high frequencies
  publication-title: J. Comput. Sci.
  doi: 10.1016/j.jocs.2021.101344
– volume: 29
  issue: 6
  year: 2019
  ident: 10.1016/j.cmpb.2024.108311_b5
  article-title: Effects of mechano-electrical feedback on the onset of alternans: A computational study
  publication-title: Chaos
  doi: 10.1063/1.5095778
– volume: 506
  year: 2024
  ident: 10.1016/j.cmpb.2024.108311_b63
  article-title: Physics-informed polynomial chaos expansions
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2024.112926
– volume: 378
  issue: 2173
  year: 2020
  ident: 10.1016/j.cmpb.2024.108311_b16
  article-title: An audit of uncertainty in multi-scale cardiac electrophysiology models
  publication-title: Phil. Trans. R. Soc. A
  doi: 10.1098/rsta.2019.0335
– volume: 144
  year: 2021
  ident: 10.1016/j.cmpb.2024.108311_b29
  article-title: A surrogate model for efficient quantification of uncertainties in multilayer shallow water flows
  publication-title: Environ. Model. Softw.
  doi: 10.1016/j.envsoft.2021.105176
– volume: 96
  start-page: 49
  year: 2016
  ident: 10.1016/j.cmpb.2024.108311_b20
  article-title: Uncertainty and variability in models of the cardiac action potential: Can we build trustworthy models?
  publication-title: J. Mol. Cellular Cardiol.
  doi: 10.1016/j.yjmcc.2015.11.018
– volume: 63
  start-page: 108
  year: 2015
  ident: 10.1016/j.cmpb.2024.108311_b57
  article-title: Control of cardiac alternans in an electromechanical model of cardiac tissue
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2015.05.011
– volume: 120
  start-page: 109
  issue: 1
  year: 2021
  ident: 10.1016/j.cmpb.2024.108311_b2
  article-title: A simulation study of the role of mechanical stretch in arrhythmogenesis during cardiac alternans
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2020.11.018
– volume: 35
  issue: 6
  year: 2023
  ident: 10.1016/j.cmpb.2024.108311_b30
  article-title: Global sensitivity analysis for phosphate slurry flow in pipelines using generalized polynomial chaos
  publication-title: Phys. Fluids
  doi: 10.1063/5.0147817
– volume: 48
  start-page: 43
  year: 2018
  ident: 10.1016/j.cmpb.2024.108311_b22
  article-title: Quantifying the uncertainty in model parameters using Gaussian process-based Markov chain Monte Carlo in cardiac electrophysiology
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2018.05.007
– volume: 60
  start-page: 897
  year: 1938
  ident: 10.1016/j.cmpb.2024.108311_b40
  article-title: The homogeneous chaos
  publication-title: Am. J. Math.
  doi: 10.2307/2371268
– volume: 464
  year: 2022
  ident: 10.1016/j.cmpb.2024.108311_b59
  article-title: A survey of unsupervised learning methods for high-dimensional uncertainty quantification in black-box-type problems
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2022.111313
– start-page: 1
  year: 2017
  ident: 10.1016/j.cmpb.2024.108311_b33
  article-title: Comparison of polynomial chaos and Gaussian process surrogates for uncertainty quantification and correlation estimation of spatially distributed open-channel steady flows
  publication-title: Stoch. Environ. Res. Risk Assess.
– volume: 15
  start-page: 81
  year: 2006
  ident: 10.1016/j.cmpb.2024.108311_b45
  article-title: Stochastic finite element: a non intrusive approach by regression
  publication-title: Eur. J. Comput. Mech./Revue Européenne de Mécanique Numérique
  doi: 10.3166/remn.15.81-92
– volume: 14
  start-page: 1
  issue: 5
  year: 2019
  ident: 10.1016/j.cmpb.2024.108311_b55
  article-title: Modeling and simulation of hypothermia effects on cardiac electrical dynamics
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0216058
– volume: 9
  start-page: 7483
  year: 2015
  ident: 10.1016/j.cmpb.2024.108311_b56
  article-title: Parameter identification for a non-differentiable ionic model used in cardiac electrophysiology
  publication-title: Appl. Math. Sci.
– volume: 26
  start-page: 395
  issue: 2
  year: 2004
  ident: 10.1016/j.cmpb.2024.108311_b39
  article-title: Physical systems with random uncertainties: Chaos representations with arbitrary probability measure
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/S1064827503424505
– volume: 104
  start-page: 22
  issue: 1–3
  year: 2011
  ident: 10.1016/j.cmpb.2024.108311_b7
  article-title: Models of cardiac tissue electrophysiology: progress, challenges and open questions
  publication-title: Progr. Biophys. Mol. Biol.
  doi: 10.1016/j.pbiomolbio.2010.05.008
– volume: 18
  start-page: 1415
  year: 2019
  ident: 10.1016/j.cmpb.2024.108311_b24
  article-title: Effects of left ventricle wall thickness uncertainties on cardiac mechanics
  publication-title: Biomech. Model Mechanobiol.
  doi: 10.1007/s10237-019-01153-1
– volume: 378
  issue: 2173
  year: 2020
  ident: 10.1016/j.cmpb.2024.108311_b25
  article-title: Uncertainty quantification and sensitivity analysis of left ventricular function during the full cardiac cycle
  publication-title: Phil. Trans. R. Soc. A
  doi: 10.1098/rsta.2019.0381
– volume: 103
  start-page: 293
  year: 2015
  ident: 10.1016/j.cmpb.2024.108311_b49
  article-title: A non-intrusive model reduction approach for polynomial chaos expansion using proper orthogonal decomposition
  publication-title: Internat. J. Numer. Methods Engrg.
  doi: 10.1002/nme.4900
– volume: 7
  start-page: 89
  year: 2019
  ident: 10.1016/j.cmpb.2024.108311_b3
  article-title: Simulating normal and arrhythmic dynamics: From sub-cellular to tissue and organ level
  publication-title: Front. Phys.
  doi: 10.3389/fphy.2019.00089
– start-page: 169
  year: 2018
  ident: 10.1016/j.cmpb.2024.108311_b37
  article-title: Uncertainty quantification for river flow simulation applied to a real test case: The garonne valley
– volume: 19
  issue: 04
  year: 2022
  ident: 10.1016/j.cmpb.2024.108311_b18
  article-title: A nonintrusive reduced-order model for uncertainty quantification in numerical solution of one-dimensional free-surface water flows over stochastic beds
  publication-title: Int. J. Comput. Methods
  doi: 10.1142/S0219876221500730
– volume: 126
  start-page: 381
  year: 2024
  ident: 10.1016/j.cmpb.2024.108311_b62
  article-title: Global sensitivity analysis for multivariate outputs using generalized RBF-PCE metamodel enhanced by variance-based sequential sampling
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2023.10.047
– start-page: 541
  year: 2021
  ident: 10.1016/j.cmpb.2024.108311_b36
  article-title: A semi-implicit backward differentiation ADI method for solving monodomain model
– volume: 130
  year: 2021
  ident: 10.1016/j.cmpb.2024.108311_b12
  article-title: Efficiency of semi-implicit alternating direction implicit methods for solving cardiac monodomain model
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2020.104187
– volume: 17
  year: 2020
  ident: 10.1016/j.cmpb.2024.108311_b26
  article-title: Sensitivity analysis of an electrophysiology model for the left ventricle
  publication-title: J. R. Soc. Interface
  doi: 10.1098/rsif.2020.0532
– volume: 37
  issue: 6
  year: 2021
  ident: 10.1016/j.cmpb.2024.108311_b27
  article-title: Enabling forward uncertainty quantification and sensitivity analysis in cardiac electrophysiology by reduced order modeling and machine learning
  publication-title: Int. J. Numer. Methods Biomed. Eng.
  doi: 10.1002/cnm.3450
– start-page: 2795
  year: 2009
  ident: 10.1016/j.cmpb.2024.108311_b14
  article-title: Strong scaling and speedup to 16,384 processors in cardiac electro—Mechanical simulations
SSID ssj0002556
Score 2.40157
Snippet Numerical simulations in electrocardiology are often affected by various uncertainties inherited from the lack of precise knowledge regarding input values...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 108311
SubjectTerms Algorithms
Cardiac electrophysiology
Cardiac simulation
Computer Simulation
Electrophysiological Phenomena
Heart - physiology
Humans
Models, Cardiovascular
Polynomial Chaos expansion
Stochastic Processes
Uncertainty
Uncertainty quantification
Unsupervised Machine Learning
Unsupervised stochastic learning
Title Unsupervised stochastic learning and reduced order modeling for global sensitivity analysis in cardiac electrophysiology models
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0169260724003055
https://dx.doi.org/10.1016/j.cmpb.2024.108311
https://www.ncbi.nlm.nih.gov/pubmed/39032242
https://www.proquest.com/docview/3083214742
Volume 255
WOSCitedRecordID wos001275548400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-7565
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002556
  issn: 0169-2607
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6lLUJcEG9SoFokbpUjr-21vceCUhUkKg6tlJu1L6upWieKk6qc-Dv8zM6-HLcQoAcuVuJkR-udzzuzs7PfIPSB6JQXORMRISqNDOVbJGjOIzAOlOdFHgta22ITxfFxOZmwb4PBz3AW5uqiaJry-prN_6uq4R4o2xydvYe6O6FwAz6D0uEKaofrPyn-tGlXczMDtOBLgmsnz7jhYg71IdyRxIVhbIXfLfOmK4cTUio9RUhrMtt9aQkemEtM0rqFlNz39XNsZMTxOFkpbd_bDSUjfJ3q1rMS2IwwK8wd_r-1uT--gHnGbt8X_LtyBkCs80A-mh3-S0OoYI3HbNW2uu7CRJpPXZHk2ZmJyKt-TAPwEbLjujBnziJYaRX9eTqhtDfTElMijfzWCLh4xPlIXs7FyIgfrf98m3H7jiXs8hND6tt5ZWRURkblZGyhnaSgDEzAzsHn8eRLZ_UNlZvjkXc99we0XC7h3Z5scoI2LXKss3PyBD32qxR84ND1FA108ww9_OpV9Rz96IMMr0GGA8gwaBp7kGELMhxAhgFk2IEM90CGA8jwtMEeZPgXkDkp7Qt0ejg--XQU-VIekcziZBkRRUuVq0zD-pRnmdBU1LomeS2JUmY8WVKWKs5kzBnPwWUtKVUZh1aCSa5I-hJtN7NGv0Y4E0poIkpWSAa-fsxKTqmAL1zmdU3rIdoPY1vNHWNLtVmfQ5SG4a_CWWSwnhVg6Y-taNfKe6rOA_1ru_dBwxVM42ZvjjcaXpUqjV3JsCwZoldO9V3vUxaD2c2S3Xs92Rv0aP1qvUXby8VKv0MP5NVy2i720FYxKfc8iG8Ao0XQaQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unsupervised+stochastic+learning+and+reduced+order+modeling+for+global+sensitivity+analysis+in+cardiac+electrophysiology+models&rft.jtitle=Computer+methods+and+programs+in+biomedicine&rft.au=El+Mo%C3%A7ayd%2C+Nabil&rft.au=Belhamadia%2C+Youssef&rft.au=Seaid%2C+Mohammed&rft.date=2024-10-01&rft.issn=0169-2607&rft.volume=255&rft.spage=108311&rft_id=info:doi/10.1016%2Fj.cmpb.2024.108311&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cmpb_2024_108311
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-2607&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-2607&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-2607&client=summon