Unsupervised stochastic learning and reduced order modeling for global sensitivity analysis in cardiac electrophysiology models
Numerical simulations in electrocardiology are often affected by various uncertainties inherited from the lack of precise knowledge regarding input values including those related to the cardiac cell model, domain geometry, and boundary or initial conditions used in the mathematical modeling. Convent...
Uložené v:
| Vydané v: | Computer methods and programs in biomedicine Ročník 255; s. 108311 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Ireland
Elsevier B.V
01.10.2024
|
| Predmet: | |
| ISSN: | 0169-2607, 1872-7565, 1872-7565 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Numerical simulations in electrocardiology are often affected by various uncertainties inherited from the lack of precise knowledge regarding input values including those related to the cardiac cell model, domain geometry, and boundary or initial conditions used in the mathematical modeling. Conventional techniques for uncertainty quantification in modeling electrical activities of the heart encounter significant challenges, primarily due to the high computational costs associated with fine temporal and spatial scales. Additionally, the need for numerous model evaluations to quantify ubiquitous uncertainties increases the computational challenges even further.
In the present study, we propose a non-intrusive surrogate model to perform uncertainty quantification and global sensitivity analysis in cardiac electrophysiology models. The proposed method combines an unsupervised machine learning technique with the polynomial chaos expansion to reconstruct a surrogate model for the propagation and quantification of uncertainties in the electrical activity of the heart. The proposed methodology not only accurately quantifies uncertainties at a very low computational cost but more importantly, it captures the targeted quantity of interest as either the whole spatial field or the whole temporal period. In order to perform sensitivity analysis, aggregated Sobol indices are estimated directly from the spectral mode of the polynomial chaos expansion.
We conduct Uncertainty Quantification (UQ) and global Sensitivity Analysis (SA) considering both spatial and temporal variations, rather than limiting the analysis to specific Quantities of Interest (QoIs). To assess the comprehensive performance of our methodology in simulating cardiac electrical activity, we utilize the monodomain model. Additionally, sensitivity analysis is performed on the parameters of the Mitchell-Schaeffer cell model.
Unlike conventional techniques for uncertainty quantification in modeling electrical activities, the proposed methodology performs at a low computational cost the sensitivity analysis on the cardiac electrical activity parameters. The results are fully reproducible and easily accessible, while the proposed reduced-order model represents a significant contribution to enhancing global sensitivity analysis in cardiac electrophysiology.
•Non-intrusive surrogate model is introduced for cardiac electrophysiology models.•Spatial and temporal evolution of solutions are deemed as quantities of interest.•Uncertainty quantification is performed on stochastic processes.•Sensitivity analysis is conducted on monodomain-Mitchell-Schaeffer model parameters. |
|---|---|
| AbstractList | Numerical simulations in electrocardiology are often affected by various uncertainties inherited from the lack of precise knowledge regarding input values including those related to the cardiac cell model, domain geometry, and boundary or initial conditions used in the mathematical modeling. Conventional techniques for uncertainty quantification in modeling electrical activities of the heart encounter significant challenges, primarily due to the high computational costs associated with fine temporal and spatial scales. Additionally, the need for numerous model evaluations to quantify ubiquitous uncertainties increases the computational challenges even further.
In the present study, we propose a non-intrusive surrogate model to perform uncertainty quantification and global sensitivity analysis in cardiac electrophysiology models. The proposed method combines an unsupervised machine learning technique with the polynomial chaos expansion to reconstruct a surrogate model for the propagation and quantification of uncertainties in the electrical activity of the heart. The proposed methodology not only accurately quantifies uncertainties at a very low computational cost but more importantly, it captures the targeted quantity of interest as either the whole spatial field or the whole temporal period. In order to perform sensitivity analysis, aggregated Sobol indices are estimated directly from the spectral mode of the polynomial chaos expansion.
We conduct Uncertainty Quantification (UQ) and global Sensitivity Analysis (SA) considering both spatial and temporal variations, rather than limiting the analysis to specific Quantities of Interest (QoIs). To assess the comprehensive performance of our methodology in simulating cardiac electrical activity, we utilize the monodomain model. Additionally, sensitivity analysis is performed on the parameters of the Mitchell-Schaeffer cell model.
Unlike conventional techniques for uncertainty quantification in modeling electrical activities, the proposed methodology performs at a low computational cost the sensitivity analysis on the cardiac electrical activity parameters. The results are fully reproducible and easily accessible, while the proposed reduced-order model represents a significant contribution to enhancing global sensitivity analysis in cardiac electrophysiology.
•Non-intrusive surrogate model is introduced for cardiac electrophysiology models.•Spatial and temporal evolution of solutions are deemed as quantities of interest.•Uncertainty quantification is performed on stochastic processes.•Sensitivity analysis is conducted on monodomain-Mitchell-Schaeffer model parameters. Numerical simulations in electrocardiology are often affected by various uncertainties inherited from the lack of precise knowledge regarding input values including those related to the cardiac cell model, domain geometry, and boundary or initial conditions used in the mathematical modeling. Conventional techniques for uncertainty quantification in modeling electrical activities of the heart encounter significant challenges, primarily due to the high computational costs associated with fine temporal and spatial scales. Additionally, the need for numerous model evaluations to quantify ubiquitous uncertainties increases the computational challenges even further. In the present study, we propose a non-intrusive surrogate model to perform uncertainty quantification and global sensitivity analysis in cardiac electrophysiology models. The proposed method combines an unsupervised machine learning technique with the polynomial chaos expansion to reconstruct a surrogate model for the propagation and quantification of uncertainties in the electrical activity of the heart. The proposed methodology not only accurately quantifies uncertainties at a very low computational cost but more importantly, it captures the targeted quantity of interest as either the whole spatial field or the whole temporal period. In order to perform sensitivity analysis, aggregated Sobol indices are estimated directly from the spectral mode of the polynomial chaos expansion. We conduct Uncertainty Quantification (UQ) and global Sensitivity Analysis (SA) considering both spatial and temporal variations, rather than limiting the analysis to specific Quantities of Interest (QoIs). To assess the comprehensive performance of our methodology in simulating cardiac electrical activity, we utilize the monodomain model. Additionally, sensitivity analysis is performed on the parameters of the Mitchell-Schaeffer cell model. Unlike conventional techniques for uncertainty quantification in modeling electrical activities, the proposed methodology performs at a low computational cost the sensitivity analysis on the cardiac electrical activity parameters. The results are fully reproducible and easily accessible, while the proposed reduced-order model represents a significant contribution to enhancing global sensitivity analysis in cardiac electrophysiology. Numerical simulations in electrocardiology are often affected by various uncertainties inherited from the lack of precise knowledge regarding input values including those related to the cardiac cell model, domain geometry, and boundary or initial conditions used in the mathematical modeling. Conventional techniques for uncertainty quantification in modeling electrical activities of the heart encounter significant challenges, primarily due to the high computational costs associated with fine temporal and spatial scales. Additionally, the need for numerous model evaluations to quantify ubiquitous uncertainties increases the computational challenges even further.BACKGROUND AND OBJECTIVENumerical simulations in electrocardiology are often affected by various uncertainties inherited from the lack of precise knowledge regarding input values including those related to the cardiac cell model, domain geometry, and boundary or initial conditions used in the mathematical modeling. Conventional techniques for uncertainty quantification in modeling electrical activities of the heart encounter significant challenges, primarily due to the high computational costs associated with fine temporal and spatial scales. Additionally, the need for numerous model evaluations to quantify ubiquitous uncertainties increases the computational challenges even further.In the present study, we propose a non-intrusive surrogate model to perform uncertainty quantification and global sensitivity analysis in cardiac electrophysiology models. The proposed method combines an unsupervised machine learning technique with the polynomial chaos expansion to reconstruct a surrogate model for the propagation and quantification of uncertainties in the electrical activity of the heart. The proposed methodology not only accurately quantifies uncertainties at a very low computational cost but more importantly, it captures the targeted quantity of interest as either the whole spatial field or the whole temporal period. In order to perform sensitivity analysis, aggregated Sobol indices are estimated directly from the spectral mode of the polynomial chaos expansion.METHODSIn the present study, we propose a non-intrusive surrogate model to perform uncertainty quantification and global sensitivity analysis in cardiac electrophysiology models. The proposed method combines an unsupervised machine learning technique with the polynomial chaos expansion to reconstruct a surrogate model for the propagation and quantification of uncertainties in the electrical activity of the heart. The proposed methodology not only accurately quantifies uncertainties at a very low computational cost but more importantly, it captures the targeted quantity of interest as either the whole spatial field or the whole temporal period. In order to perform sensitivity analysis, aggregated Sobol indices are estimated directly from the spectral mode of the polynomial chaos expansion.We conduct Uncertainty Quantification (UQ) and global Sensitivity Analysis (SA) considering both spatial and temporal variations, rather than limiting the analysis to specific Quantities of Interest (QoIs). To assess the comprehensive performance of our methodology in simulating cardiac electrical activity, we utilize the monodomain model. Additionally, sensitivity analysis is performed on the parameters of the Mitchell-Schaeffer cell model.RESULTSWe conduct Uncertainty Quantification (UQ) and global Sensitivity Analysis (SA) considering both spatial and temporal variations, rather than limiting the analysis to specific Quantities of Interest (QoIs). To assess the comprehensive performance of our methodology in simulating cardiac electrical activity, we utilize the monodomain model. Additionally, sensitivity analysis is performed on the parameters of the Mitchell-Schaeffer cell model.Unlike conventional techniques for uncertainty quantification in modeling electrical activities, the proposed methodology performs at a low computational cost the sensitivity analysis on the cardiac electrical activity parameters. The results are fully reproducible and easily accessible, while the proposed reduced-order model represents a significant contribution to enhancing global sensitivity analysis in cardiac electrophysiology.CONCLUSIONSUnlike conventional techniques for uncertainty quantification in modeling electrical activities, the proposed methodology performs at a low computational cost the sensitivity analysis on the cardiac electrical activity parameters. The results are fully reproducible and easily accessible, while the proposed reduced-order model represents a significant contribution to enhancing global sensitivity analysis in cardiac electrophysiology. |
| ArticleNumber | 108311 |
| Author | El Moçayd, Nabil Seaid, Mohammed Belhamadia, Youssef |
| Author_xml | – sequence: 1 givenname: Nabil orcidid: 0000-0002-3258-8537 surname: El Moçayd fullname: El Moçayd, Nabil email: nabil.elmocayd@um6p.ma organization: College of Agriculture and Environmental Sciences, University Mohammed VI Polytechnique, Ben Guerir, Morocco – sequence: 2 givenname: Youssef orcidid: 0000-0003-2712-564X surname: Belhamadia fullname: Belhamadia, Youssef email: ybelhamadia@aus.edu organization: Department of Mathematics and Statistics, American University of Sharjah, United Arab Emirates – sequence: 3 givenname: Mohammed surname: Seaid fullname: Seaid, Mohammed email: m.seaid@durham.ac.uk organization: Department of Engineering, University of Durham, South Road, Durham DH1 3LE, United Kingdom |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39032242$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkc1u3CAURlGVqpmkfYEuIpbZeAoY_BNlE0VtEylSN80aYbieMMXggj2SV331MnLSRRbpCunec67E952hEx88IPSZki0ltPqy3-ph7LaMMJ4HTUnpO7ShTc2KWlTiBG0y1BasIvUpOktpTwhhQlQf0GnZkpIxzjboz6NP8wjxYBMYnKagn1SarMYOVPTW77DyBkcws877EA1EPAQD7rjqQ8Q7FzrlcAKf7GQPdlqyodySbMLWY62isUpjcKCnGManvAgu7Jb1SvqI3vfKJfj0_J6jx29ff97eFQ8_vt_f3jwUmhM2FdSIxlSGQ1ULxXkHouuhp1WvqTG1aGnLmsYQrolqVcVY2QhhuMpW12plaHmOLte7Ywy_Z0iTHGzS4JzyEOYky5wfo7zmLKMXz-jcDWDkGO2g4iJfQssAWwEdQ0oR-n8IJfLYjNzLYzPy2Ixcm8nS9SrlT8PBQpRJW_A5VRtzNNIE-7Z-9UrXuQKrlfsFy__kv8hcrPY |
| Cites_doi | 10.1103/PhysRevE.90.012706 10.1109/TSP.2007.914345 10.1016/j.jcp.2014.09.019 10.1016/j.cmpb.2023.107722 10.1051/m2an/2012055 10.1016/j.ress.2013.09.011 10.1016/j.cmpb.2018.04.006 10.1016/S0092-8240(03)00041-7 10.2514/1.2220 10.1016/j.cam.2014.04.006 10.3389/fphys.2019.00721 10.1109/TIT.2007.909108 10.1007/s10439-007-9337-3 10.1109/EMBC.2018.8513608 10.1113/JP271671 10.1016/j.ress.2019.106733 10.1016/j.camwa.2017.05.012 10.1016/j.ress.2007.04.002 10.1109/TBME.2011.2161580 10.1016/j.jocs.2022.101656 10.1016/j.cmpb.2021.106289 10.1109/TBME.2007.905415 10.1137/S1064827501387826 10.1016/j.cma.2021.114105 10.1016/j.jcp.2010.12.021 10.1214/009053604000000067 10.1016/j.jocs.2021.101344 10.1063/1.5095778 10.1016/j.jcp.2024.112926 10.1098/rsta.2019.0335 10.1016/j.envsoft.2021.105176 10.1016/j.yjmcc.2015.11.018 10.1016/j.compbiomed.2015.05.011 10.1016/j.bpj.2020.11.018 10.1063/5.0147817 10.1016/j.media.2018.05.007 10.2307/2371268 10.1016/j.jcp.2022.111313 10.3166/remn.15.81-92 10.1371/journal.pone.0216058 10.1137/S1064827503424505 10.1016/j.pbiomolbio.2010.05.008 10.1007/s10237-019-01153-1 10.1098/rsta.2019.0381 10.1002/nme.4900 10.3389/fphy.2019.00089 10.1142/S0219876221500730 10.1016/j.apm.2023.10.047 10.1016/j.compbiomed.2020.104187 10.1098/rsif.2020.0532 10.1002/cnm.3450 |
| ContentType | Journal Article |
| Copyright | 2024 Elsevier B.V. Copyright © 2024 Elsevier B.V. All rights reserved. |
| Copyright_xml | – notice: 2024 Elsevier B.V. – notice: Copyright © 2024 Elsevier B.V. All rights reserved. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1016/j.cmpb.2024.108311 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1872-7565 |
| ExternalDocumentID | 39032242 10_1016_j_cmpb_2024_108311 S0169260724003055 |
| Genre | Journal Article |
| GroupedDBID | --- --K --M -~X .1- .DC .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29F 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABFNM ABJNI ABMAC ABMZM ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACLOT ACNNM ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADJOM ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGHFR AGQPQ AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AOUOD APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HMK HMO HVGLF HZ~ IHE J1W KOM LG9 M29 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SBC SDF SDG SEL SES SEW SPC SPCBC SSH SSV SSZ T5K UHS WUQ XPP Z5R ZGI ZY4 ~G- ~HD AACTN ABTAH AFCTW AFKWA AJOXV AMFUW RIG 9DU AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
| ID | FETCH-LOGICAL-c402t-1d58d6d4e675a44be5bfef16fc1dd75919288d04c0a9a6223855d4ad58b9cad13 |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001275548400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0169-2607 1872-7565 |
| IngestDate | Sun Nov 09 10:08:09 EST 2025 Wed Feb 19 02:09:37 EST 2025 Sat Nov 29 03:58:28 EST 2025 Sat Sep 07 15:51:02 EDT 2024 Tue Oct 14 19:36:36 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Uncertainty quantification Polynomial Chaos expansion Cardiac simulation Unsupervised stochastic learning Cardiac electrophysiology |
| Language | English |
| License | Copyright © 2024 Elsevier B.V. All rights reserved. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c402t-1d58d6d4e675a44be5bfef16fc1dd75919288d04c0a9a6223855d4ad58b9cad13 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-3258-8537 0000-0003-2712-564X |
| OpenAccessLink | https://durham-repository.worktribe.com/output/2528874 |
| PMID | 39032242 |
| PQID | 3083214742 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_3083214742 pubmed_primary_39032242 crossref_primary_10_1016_j_cmpb_2024_108311 elsevier_sciencedirect_doi_10_1016_j_cmpb_2024_108311 elsevier_clinicalkey_doi_10_1016_j_cmpb_2024_108311 |
| PublicationCentury | 2000 |
| PublicationDate | October 2024 2024-10-00 2024-Oct 20241001 |
| PublicationDateYYYYMMDD | 2024-10-01 |
| PublicationDate_xml | – month: 10 year: 2024 text: October 2024 |
| PublicationDecade | 2020 |
| PublicationPlace | Ireland |
| PublicationPlace_xml | – name: Ireland |
| PublicationTitle | Computer methods and programs in biomedicine |
| PublicationTitleAlternate | Comput Methods Programs Biomed |
| PublicationYear | 2024 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Alagoz, Cohen, Frisch, Tunç, Phatharodom, Guez (b6) 2018; 161 Tropp, Gilbert (b31) 2007; 53 Vidal, Ma, Sastry (b51) 2016 Kontolati, Loukrezis, Giovanis, Vandanapu, Shields (b59) 2022; 464 Del Corso, Verzicco, Viola (b26) 2020; 17 Pathmanathan, Cordeiro, Gray (b23) 2019; 10 Clayton, Aboelkassem, Cantwell, Corrado, Delhaas, Huberts, Lei, Ni, Panfilov, Roney, dos Santos (b16) 2020; 378 Al-Ghosoun, El Moçayd, Seaid (b29) 2021; 144 Bi, Zhang, Jiang, Wei (b4) 2021; 208 Alqasemi, Belhamadia (b36) 2021 Hazim, Belhamadia, Dubljevic (b2) 2021; 120 Belhamadia, Rammal (b12) 2021; 130 Berveiller, Sudret, Lemaire (b45) 2006; 15 Pagani, Manzoni (b27) 2021; 37 Soize, Ghanem (b39) 2004; 26 Novák, Vořechovskỳ, Sadílek, Shields (b60) 2021; 386 Chen, Huang (b62) 2024; 126 Marelli, Sudret (b54) 2014 J. Son, Y. Du, D. Du, Propagation of Parametric Uncertainty in Aliev-Panfilov Model of Cardiac Excitation, in: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC, 2018, pp. 5450–5453. Elkarii, Boukharfane, Benjelloun, Bouallou, El Moçayd (b30) 2023; 35 Le Maitre, Knio (b43) 2010 Colli Franzone, Pavarino, Scacchi (b10) 2013; 47 Ji, Xue, Carin (b32) 2008; 56 Ngoma, Bourgault, Nkounkou (b56) 2015; 9 El Moçayd, Mohamed, Ouazar, Seaid (b28) 2020; 195 Johnstone, Chang, Bardenet, de Boer, Gavaghan, Pathmanathan, Clayton, Mirams (b20) 2016; 96 Goutal, Goeury, Ata, Ricci, El Mocayd, Rochoux, Oubanas, Gejadze, Malaterre (b37) 2018 Raisee, Kumar, Lacor (b49) 2015; 103 Clayton, Bernus, Cherry, Dierckx, Fenton, Mirabella, Panfilov, Sachse, Seemann, Zhang (b7) 2011; 104 Xiu (b42) 2010 Hazim, Belhamadia, Dubljevic (b57) 2015; 63 Mitchell, Schaeffer (b34) 2003; 65 Coudière, Turpault (b15) 2017; 74 Belhamadia, Grenier (b55) 2019; 14 Novák, Sharma, Shields (b63) 2024; 506 Xiu, Karniadakis (b41) 2002; 24 Belhamadia (b35) 2008; 55 Reumann, Fitch, Rayshubskiy, Keller, Seemann, Dossel, Pitman, Rice (b14) 2009 El Mocayd, Mohamed, Seaid (b19) 2021; 53 Yapari, Deshpande, Belhamadia, Dubljevic (b58) 2014; 90 Hampton, Doostan (b61) 2015; 280 Pope, Fitch, Pitman, Rice, Reumann (b13) 2011; 58 Hazim, Belhamadia, Dubljevic (b5) 2019; 29 Wiener (b40) 1938; 60 Choi, Grandhi, Canfield, Pettit (b44) 2004; 42 Whiteley (b11) 2007; 35 Efron, Hastie, Johnstone, Tibshirani (b47) 2004; 32 Tsumoto, Shimamoto, Aoji, Himeno, Kuda, Tanida, Amano, Kurata (b1) 2023; 240 El Moçayd, Ricci, Goutal, Rochoux, Boyaval, Goeury, Lucor, Thual (b38) 2017 Blatman (b53) 2009 Dhamala, Arevalo, Sapp, Horácek, Wu, Trayanova, Wang (b22) 2018; 48 Roy, El Moçayd, Ricci, Jouhaud, Goutal, De Lozzo, Rochoux (b33) 2017 Belhamadia, Fortin, Bourgault (b9) 2014; 271 Blatman, Sudret (b50) 2013 Dubreuil, Berveiller, Petitjean, Salaün (b48) 2014; 121 Campos, Sundnes, dos Santos, Rocha (b25) 2020; 378 Alghosoun, Mocayd, Seaid (b18) 2022; 19 Sudret (b52) 2008; 93 Dierckx, Fenton, Filippi, Pumir, Sridhar (b3) 2019; 7 Belhamadia, Briffard, Fortin (b8) 2022; 61 Campos, Sundnes, dos Santos, Rocha (b24) 2019; 18 Blatman, Sudret (b46) 2011; 230 Mirams, Pathmanathan, Gray, Challenor, Clayton (b17) 2016; 594 Johnstone (10.1016/j.cmpb.2024.108311_b20) 2016; 96 Pope (10.1016/j.cmpb.2024.108311_b13) 2011; 58 Blatman (10.1016/j.cmpb.2024.108311_b46) 2011; 230 Mirams (10.1016/j.cmpb.2024.108311_b17) 2016; 594 Hazim (10.1016/j.cmpb.2024.108311_b2) 2021; 120 Blatman (10.1016/j.cmpb.2024.108311_b50) 2013 Colli Franzone (10.1016/j.cmpb.2024.108311_b10) 2013; 47 Belhamadia (10.1016/j.cmpb.2024.108311_b35) 2008; 55 Tsumoto (10.1016/j.cmpb.2024.108311_b1) 2023; 240 Del Corso (10.1016/j.cmpb.2024.108311_b26) 2020; 17 Raisee (10.1016/j.cmpb.2024.108311_b49) 2015; 103 El Moçayd (10.1016/j.cmpb.2024.108311_b38) 2017 Choi (10.1016/j.cmpb.2024.108311_b44) 2004; 42 Berveiller (10.1016/j.cmpb.2024.108311_b45) 2006; 15 Pagani (10.1016/j.cmpb.2024.108311_b27) 2021; 37 Clayton (10.1016/j.cmpb.2024.108311_b16) 2020; 378 Belhamadia (10.1016/j.cmpb.2024.108311_b9) 2014; 271 Hazim (10.1016/j.cmpb.2024.108311_b57) 2015; 63 Xiu (10.1016/j.cmpb.2024.108311_b41) 2002; 24 Elkarii (10.1016/j.cmpb.2024.108311_b30) 2023; 35 Goutal (10.1016/j.cmpb.2024.108311_b37) 2018 El Mocayd (10.1016/j.cmpb.2024.108311_b19) 2021; 53 Campos (10.1016/j.cmpb.2024.108311_b25) 2020; 378 El Moçayd (10.1016/j.cmpb.2024.108311_b28) 2020; 195 Clayton (10.1016/j.cmpb.2024.108311_b7) 2011; 104 Mitchell (10.1016/j.cmpb.2024.108311_b34) 2003; 65 Coudière (10.1016/j.cmpb.2024.108311_b15) 2017; 74 Dhamala (10.1016/j.cmpb.2024.108311_b22) 2018; 48 Alagoz (10.1016/j.cmpb.2024.108311_b6) 2018; 161 Tropp (10.1016/j.cmpb.2024.108311_b31) 2007; 53 Ngoma (10.1016/j.cmpb.2024.108311_b56) 2015; 9 Kontolati (10.1016/j.cmpb.2024.108311_b59) 2022; 464 Novák (10.1016/j.cmpb.2024.108311_b60) 2021; 386 Sudret (10.1016/j.cmpb.2024.108311_b52) 2008; 93 Bi (10.1016/j.cmpb.2024.108311_b4) 2021; 208 Dierckx (10.1016/j.cmpb.2024.108311_b3) 2019; 7 Whiteley (10.1016/j.cmpb.2024.108311_b11) 2007; 35 Dubreuil (10.1016/j.cmpb.2024.108311_b48) 2014; 121 10.1016/j.cmpb.2024.108311_b21 Xiu (10.1016/j.cmpb.2024.108311_b42) 2010 Belhamadia (10.1016/j.cmpb.2024.108311_b55) 2019; 14 Le Maitre (10.1016/j.cmpb.2024.108311_b43) 2010 Reumann (10.1016/j.cmpb.2024.108311_b14) 2009 Efron (10.1016/j.cmpb.2024.108311_b47) 2004; 32 Vidal (10.1016/j.cmpb.2024.108311_b51) 2016 Pathmanathan (10.1016/j.cmpb.2024.108311_b23) 2019; 10 Ji (10.1016/j.cmpb.2024.108311_b32) 2008; 56 Marelli (10.1016/j.cmpb.2024.108311_b54) 2014 Wiener (10.1016/j.cmpb.2024.108311_b40) 1938; 60 Novák (10.1016/j.cmpb.2024.108311_b63) 2024; 506 Hampton (10.1016/j.cmpb.2024.108311_b61) 2015; 280 Campos (10.1016/j.cmpb.2024.108311_b24) 2019; 18 Belhamadia (10.1016/j.cmpb.2024.108311_b12) 2021; 130 Hazim (10.1016/j.cmpb.2024.108311_b5) 2019; 29 Alqasemi (10.1016/j.cmpb.2024.108311_b36) 2021 Blatman (10.1016/j.cmpb.2024.108311_b53) 2009 Chen (10.1016/j.cmpb.2024.108311_b62) 2024; 126 Soize (10.1016/j.cmpb.2024.108311_b39) 2004; 26 Yapari (10.1016/j.cmpb.2024.108311_b58) 2014; 90 Roy (10.1016/j.cmpb.2024.108311_b33) 2017 Belhamadia (10.1016/j.cmpb.2024.108311_b8) 2022; 61 Alghosoun (10.1016/j.cmpb.2024.108311_b18) 2022; 19 Al-Ghosoun (10.1016/j.cmpb.2024.108311_b29) 2021; 144 |
| References_xml | – year: 2009 ident: b53 article-title: Adaptive Sparse Polynomial Chaos Expansions for Uncertainty Propagation and Sensitivity Analysis – volume: 271 start-page: 233 year: 2014 end-page: 246 ident: b9 article-title: On the performance of anisotropic mesh adaptation for scroll wave turbulence dynamics in reaction–diffusion systems publication-title: J. Comput. Appl. Math. – volume: 53 start-page: 4655 year: 2007 end-page: 4666 ident: b31 article-title: Signal recovery from random measurements via orthogonal matching pursuit publication-title: IEEE Trans. Inform. Theory – volume: 56 start-page: 2346 year: 2008 end-page: 2356 ident: b32 article-title: Bayesian compressive sensing publication-title: IEEE Trans. Signal Process. – volume: 280 start-page: 363 year: 2015 end-page: 386 ident: b61 article-title: Compressive sampling of polynomial chaos expansions: Convergence analysis and sampling strategies publication-title: J. Comput. Phys. – volume: 53 year: 2021 ident: b19 article-title: Non-intrusive polynomial chaos methods for uncertainty quantification in wave problems at high frequencies publication-title: J. Comput. Sci. – volume: 9 start-page: 7483 year: 2015 end-page: 7507 ident: b56 article-title: Parameter identification for a non-differentiable ionic model used in cardiac electrophysiology publication-title: Appl. Math. Sci. – volume: 26 start-page: 395 year: 2004 end-page: 410 ident: b39 article-title: Physical systems with random uncertainties: Chaos representations with arbitrary probability measure publication-title: SIAM J. Sci. Comput. – volume: 17 year: 2020 ident: b26 article-title: Sensitivity analysis of an electrophysiology model for the left ventricle publication-title: J. R. Soc. Interface – volume: 65 start-page: 767 year: 2003 end-page: 793 ident: b34 article-title: A two-current model for the dynamics of cardiac membrane publication-title: Bull. Math. Biol. – volume: 195 year: 2020 ident: b28 article-title: Stochastic model reduction for polynomial chaos expansion of acoustic waves using proper orthogonal decomposition publication-title: Reliab. Eng. Syst. Saf. – volume: 103 start-page: 293 year: 2015 end-page: 312 ident: b49 article-title: A non-intrusive model reduction approach for polynomial chaos expansion using proper orthogonal decomposition publication-title: Internat. J. Numer. Methods Engrg. – volume: 18 start-page: 1415 year: 2019 end-page: 1427 ident: b24 article-title: Effects of left ventricle wall thickness uncertainties on cardiac mechanics publication-title: Biomech. Model Mechanobiol. – year: 2010 ident: b43 article-title: Spectral Methods for Uncertainty Quantification – volume: 240 year: 2023 ident: b1 article-title: Theoretical prediction of early afterdepolarization-evoked triggered activity formation initiating ventricular reentrant arrhythmias publication-title: Comput. Methods Programs Biomed. – volume: 10 start-page: 721 year: 2019 ident: b23 article-title: Comprehensive uncertainty quantification and sensitivity analysis for cardiac action potential models publication-title: Front. Physiol. – volume: 47 start-page: 1017 year: 2013 end-page: 1035 ident: b10 article-title: A comparison of coupled and uncoupled solvers for the cardiac bidomain model publication-title: ESAIM: Mathematical Modelling and Numerical Analysis-Modélisation Mathématique et Analyse Numérique – volume: 464 year: 2022 ident: b59 article-title: A survey of unsupervised learning methods for high-dimensional uncertainty quantification in black-box-type problems publication-title: J. Comput. Phys. – volume: 594 start-page: 6833 year: 2016 end-page: 6847 ident: b17 article-title: Uncertainty and variability in computational and mathematical models of cardiac physiology publication-title: J. Physiol. – volume: 37 year: 2021 ident: b27 article-title: Enabling forward uncertainty quantification and sensitivity analysis in cardiac electrophysiology by reduced order modeling and machine learning publication-title: Int. J. Numer. Methods Biomed. Eng. – volume: 230 start-page: 2345 year: 2011 end-page: 2367 ident: b46 article-title: Adaptative sparse polynomial chaos expansion based on Least Angle Regression publication-title: J. Comput. Phys. – volume: 90 year: 2014 ident: b58 article-title: Control of cardiac alternans by mechanical and electrical feedback publication-title: Phys. Rev. E – volume: 42 start-page: 1191 year: 2004 end-page: 1198 ident: b44 article-title: Polynomial Chaos expansion with Latin Hypercube Sampling for estimating response variability publication-title: AIAA J. – volume: 29 year: 2019 ident: b5 article-title: Effects of mechano-electrical feedback on the onset of alternans: A computational study publication-title: Chaos – volume: 7 start-page: 89 year: 2019 ident: b3 article-title: Simulating normal and arrhythmic dynamics: From sub-cellular to tissue and organ level publication-title: Front. Phys. – volume: 15 start-page: 81 year: 2006 end-page: 92 ident: b45 article-title: Stochastic finite element: a non intrusive approach by regression publication-title: Eur. J. Comput. Mech./Revue Européenne de Mécanique Numérique – volume: 63 start-page: 108 year: 2015 end-page: 117 ident: b57 article-title: Control of cardiac alternans in an electromechanical model of cardiac tissue publication-title: Comput. Biol. Med. – volume: 121 start-page: 263 year: 2014 end-page: 275 ident: b48 article-title: Construction of bootstrap confidence intervals on sensitivity indices computed by polynomial chaos expansion publication-title: Reliab. Eng. Syst. Saf. – volume: 126 start-page: 381 year: 2024 end-page: 404 ident: b62 article-title: Global sensitivity analysis for multivariate outputs using generalized RBF-PCE metamodel enhanced by variance-based sequential sampling publication-title: Appl. Math. Model. – year: 2013 ident: b50 article-title: Sparse Polynomial Chaos Expansions of Vector-Valued Response Quantities – volume: 48 start-page: 43 year: 2018 end-page: 57 ident: b22 article-title: Quantifying the uncertainty in model parameters using Gaussian process-based Markov chain Monte Carlo in cardiac electrophysiology publication-title: Med. Image Anal. – volume: 208 year: 2021 ident: b4 article-title: A multi-scale computational model for the rat ventricle: Construction, parallelization, and applications publication-title: Comput. Methods Programs Biomed. – volume: 144 year: 2021 ident: b29 article-title: A surrogate model for efficient quantification of uncertainties in multilayer shallow water flows publication-title: Environ. Model. Softw. – volume: 378 year: 2020 ident: b25 article-title: Uncertainty quantification and sensitivity analysis of left ventricular function during the full cardiac cycle publication-title: Phil. Trans. R. Soc. A – volume: 32 start-page: 407 year: 2004 end-page: 499 ident: b47 article-title: Least angle regression publication-title: Ann. Statist. – volume: 96 start-page: 49 year: 2016 end-page: 62 ident: b20 article-title: Uncertainty and variability in models of the cardiac action potential: Can we build trustworthy models? publication-title: J. Mol. Cellular Cardiol. – volume: 60 start-page: 897 year: 1938 end-page: 936 ident: b40 article-title: The homogeneous chaos publication-title: Am. J. Math. – volume: 93 start-page: 964 year: 2008 end-page: 979 ident: b52 article-title: Global sensitivity analysis using polynomial chaos expansion publication-title: Reliabil. Eng. Syst. Saf. – volume: 120 start-page: 109 year: 2021 end-page: 121 ident: b2 article-title: A simulation study of the role of mechanical stretch in arrhythmogenesis during cardiac alternans publication-title: Biophys. J. – start-page: 1 year: 2017 end-page: 23 ident: b38 article-title: Polynomial surrogates for open-channel flows in random steady state publication-title: Environ. Model. Assess. – start-page: 2795 year: 2009 end-page: 2798 ident: b14 article-title: Strong scaling and speedup to 16,384 processors in cardiac electro—Mechanical simulations publication-title: 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society – volume: 19 year: 2022 ident: b18 article-title: A nonintrusive reduced-order model for uncertainty quantification in numerical solution of one-dimensional free-surface water flows over stochastic beds publication-title: Int. J. Comput. Methods – volume: 14 start-page: 1 year: 2019 end-page: 23 ident: b55 article-title: Modeling and simulation of hypothermia effects on cardiac electrical dynamics publication-title: PLoS One – volume: 55 start-page: 443 year: 2008 end-page: 452 ident: b35 article-title: A time-dependent adaptive remeshing for electrical waves of the heart publication-title: IEEE Trans. Biomed. Eng. – reference: J. Son, Y. Du, D. Du, Propagation of Parametric Uncertainty in Aliev-Panfilov Model of Cardiac Excitation, in: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC, 2018, pp. 5450–5453. – volume: 61 year: 2022 ident: b8 article-title: Efficiency of parallel anisotropic mesh adaptation for the solution of the bidomain model in cardiac tissue publication-title: J. Comput. Sci. – start-page: 169 year: 2018 end-page: 187 ident: b37 article-title: Uncertainty quantification for river flow simulation applied to a real test case: The garonne valley publication-title: Advances in Hydroinformatics – volume: 74 start-page: 684 year: 2017 end-page: 700 ident: b15 article-title: Very high order finite volume methods for cardiac electrophysiology publication-title: Comput. Math. Appl. – volume: 130 year: 2021 ident: b12 article-title: Efficiency of semi-implicit alternating direction implicit methods for solving cardiac monodomain model publication-title: Comput. Biol. Med. – volume: 378 year: 2020 ident: b16 article-title: An audit of uncertainty in multi-scale cardiac electrophysiology models publication-title: Phil. Trans. R. Soc. A – start-page: 1 year: 2017 end-page: 19 ident: b33 article-title: Comparison of polynomial chaos and Gaussian process surrogates for uncertainty quantification and correlation estimation of spatially distributed open-channel steady flows publication-title: Stoch. Environ. Res. Risk Assess. – volume: 104 start-page: 22 year: 2011 end-page: 48 ident: b7 article-title: Models of cardiac tissue electrophysiology: progress, challenges and open questions publication-title: Progr. Biophys. Mol. Biol. – year: 2010 ident: b42 article-title: Numerical Methods for Stochastic Computations: A Spectral Method Approach – volume: 161 start-page: 15 year: 2018 end-page: 24 ident: b6 article-title: Spiral waves characterization: Implications for an automated cardiodynamic tissue characterization publication-title: Comput. Methods Programs Biomed. – start-page: 2554 year: 2014 end-page: 2563 ident: b54 article-title: UQLab: A framework for uncertainty quantification in matlab publication-title: Vulnerability, Uncertainty, and Risk: Quantification, Mitigation, and Management – start-page: 541 year: 2021 end-page: 548 ident: b36 article-title: A semi-implicit backward differentiation ADI method for solving monodomain model publication-title: Computational Science – ICCS 2021 – volume: 35 start-page: 1510 year: 2007 end-page: 1520 ident: b11 article-title: Physiology driven adaptivity for the numerical solution of the bidomain equations publication-title: Ann. Biomed. Eng. – volume: 58 start-page: 2965 year: 2011 end-page: 2969 ident: b13 article-title: Performance of hybrid programming models for multiscale cardiac simulations: Preparing for petascale computation publication-title: IEEE Trans. Biomed. Eng. – start-page: 25 year: 2016 end-page: 62 ident: b51 article-title: Principal component analysis publication-title: Generalized Principal Component Analysis – volume: 24 start-page: 619 year: 2002 end-page: 644 ident: b41 article-title: The Wiener–Askey polynomial Chaos for stochastic differential equations publication-title: SIAM J. Sci. Comput. – volume: 35 year: 2023 ident: b30 article-title: Global sensitivity analysis for phosphate slurry flow in pipelines using generalized polynomial chaos publication-title: Phys. Fluids – volume: 506 year: 2024 ident: b63 article-title: Physics-informed polynomial chaos expansions publication-title: J. Comput. Phys. – volume: 386 year: 2021 ident: b60 article-title: Variance-based adaptive sequential sampling for polynomial chaos expansion publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 90 issue: 1 year: 2014 ident: 10.1016/j.cmpb.2024.108311_b58 article-title: Control of cardiac alternans by mechanical and electrical feedback publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.90.012706 – volume: 56 start-page: 2346 issue: 6 year: 2008 ident: 10.1016/j.cmpb.2024.108311_b32 article-title: Bayesian compressive sensing publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2007.914345 – start-page: 25 year: 2016 ident: 10.1016/j.cmpb.2024.108311_b51 article-title: Principal component analysis – volume: 280 start-page: 363 year: 2015 ident: 10.1016/j.cmpb.2024.108311_b61 article-title: Compressive sampling of polynomial chaos expansions: Convergence analysis and sampling strategies publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2014.09.019 – year: 2009 ident: 10.1016/j.cmpb.2024.108311_b53 – volume: 240 year: 2023 ident: 10.1016/j.cmpb.2024.108311_b1 article-title: Theoretical prediction of early afterdepolarization-evoked triggered activity formation initiating ventricular reentrant arrhythmias publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2023.107722 – volume: 47 start-page: 1017 issue: 4 year: 2013 ident: 10.1016/j.cmpb.2024.108311_b10 article-title: A comparison of coupled and uncoupled solvers for the cardiac bidomain model publication-title: ESAIM: Mathematical Modelling and Numerical Analysis-Modélisation Mathématique et Analyse Numérique doi: 10.1051/m2an/2012055 – volume: 121 start-page: 263 year: 2014 ident: 10.1016/j.cmpb.2024.108311_b48 article-title: Construction of bootstrap confidence intervals on sensitivity indices computed by polynomial chaos expansion publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2013.09.011 – volume: 161 start-page: 15 year: 2018 ident: 10.1016/j.cmpb.2024.108311_b6 article-title: Spiral waves characterization: Implications for an automated cardiodynamic tissue characterization publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2018.04.006 – volume: 65 start-page: 767 issue: 5 year: 2003 ident: 10.1016/j.cmpb.2024.108311_b34 article-title: A two-current model for the dynamics of cardiac membrane publication-title: Bull. Math. Biol. doi: 10.1016/S0092-8240(03)00041-7 – volume: 42 start-page: 1191 issue: 6 year: 2004 ident: 10.1016/j.cmpb.2024.108311_b44 article-title: Polynomial Chaos expansion with Latin Hypercube Sampling for estimating response variability publication-title: AIAA J. doi: 10.2514/1.2220 – volume: 271 start-page: 233 year: 2014 ident: 10.1016/j.cmpb.2024.108311_b9 article-title: On the performance of anisotropic mesh adaptation for scroll wave turbulence dynamics in reaction–diffusion systems publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2014.04.006 – volume: 10 start-page: 721 year: 2019 ident: 10.1016/j.cmpb.2024.108311_b23 article-title: Comprehensive uncertainty quantification and sensitivity analysis for cardiac action potential models publication-title: Front. Physiol. doi: 10.3389/fphys.2019.00721 – volume: 53 start-page: 4655 issue: 12 year: 2007 ident: 10.1016/j.cmpb.2024.108311_b31 article-title: Signal recovery from random measurements via orthogonal matching pursuit publication-title: IEEE Trans. Inform. Theory doi: 10.1109/TIT.2007.909108 – volume: 35 start-page: 1510 year: 2007 ident: 10.1016/j.cmpb.2024.108311_b11 article-title: Physiology driven adaptivity for the numerical solution of the bidomain equations publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-007-9337-3 – ident: 10.1016/j.cmpb.2024.108311_b21 doi: 10.1109/EMBC.2018.8513608 – volume: 594 start-page: 6833 issue: 23 year: 2016 ident: 10.1016/j.cmpb.2024.108311_b17 article-title: Uncertainty and variability in computational and mathematical models of cardiac physiology publication-title: J. Physiol. doi: 10.1113/JP271671 – volume: 195 year: 2020 ident: 10.1016/j.cmpb.2024.108311_b28 article-title: Stochastic model reduction for polynomial chaos expansion of acoustic waves using proper orthogonal decomposition publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2019.106733 – start-page: 2554 year: 2014 ident: 10.1016/j.cmpb.2024.108311_b54 article-title: UQLab: A framework for uncertainty quantification in matlab – volume: 74 start-page: 684 issue: 4 year: 2017 ident: 10.1016/j.cmpb.2024.108311_b15 article-title: Very high order finite volume methods for cardiac electrophysiology publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2017.05.012 – volume: 93 start-page: 964 year: 2008 ident: 10.1016/j.cmpb.2024.108311_b52 article-title: Global sensitivity analysis using polynomial chaos expansion publication-title: Reliabil. Eng. Syst. Saf. doi: 10.1016/j.ress.2007.04.002 – volume: 58 start-page: 2965 issue: 10 year: 2011 ident: 10.1016/j.cmpb.2024.108311_b13 article-title: Performance of hybrid programming models for multiscale cardiac simulations: Preparing for petascale computation publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2011.2161580 – year: 2010 ident: 10.1016/j.cmpb.2024.108311_b43 – volume: 61 year: 2022 ident: 10.1016/j.cmpb.2024.108311_b8 article-title: Efficiency of parallel anisotropic mesh adaptation for the solution of the bidomain model in cardiac tissue publication-title: J. Comput. Sci. doi: 10.1016/j.jocs.2022.101656 – volume: 208 year: 2021 ident: 10.1016/j.cmpb.2024.108311_b4 article-title: A multi-scale computational model for the rat ventricle: Construction, parallelization, and applications publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2021.106289 – volume: 55 start-page: 443 issue: 2 year: 2008 ident: 10.1016/j.cmpb.2024.108311_b35 article-title: A time-dependent adaptive remeshing for electrical waves of the heart publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2007.905415 – volume: 24 start-page: 619 issue: 2 year: 2002 ident: 10.1016/j.cmpb.2024.108311_b41 article-title: The Wiener–Askey polynomial Chaos for stochastic differential equations publication-title: SIAM J. Sci. Comput. doi: 10.1137/S1064827501387826 – year: 2013 ident: 10.1016/j.cmpb.2024.108311_b50 – volume: 386 year: 2021 ident: 10.1016/j.cmpb.2024.108311_b60 article-title: Variance-based adaptive sequential sampling for polynomial chaos expansion publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2021.114105 – start-page: 1 year: 2017 ident: 10.1016/j.cmpb.2024.108311_b38 article-title: Polynomial surrogates for open-channel flows in random steady state publication-title: Environ. Model. Assess. – volume: 230 start-page: 2345 year: 2011 ident: 10.1016/j.cmpb.2024.108311_b46 article-title: Adaptative sparse polynomial chaos expansion based on Least Angle Regression publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2010.12.021 – year: 2010 ident: 10.1016/j.cmpb.2024.108311_b42 – volume: 32 start-page: 407 year: 2004 ident: 10.1016/j.cmpb.2024.108311_b47 article-title: Least angle regression publication-title: Ann. Statist. doi: 10.1214/009053604000000067 – volume: 53 year: 2021 ident: 10.1016/j.cmpb.2024.108311_b19 article-title: Non-intrusive polynomial chaos methods for uncertainty quantification in wave problems at high frequencies publication-title: J. Comput. Sci. doi: 10.1016/j.jocs.2021.101344 – volume: 29 issue: 6 year: 2019 ident: 10.1016/j.cmpb.2024.108311_b5 article-title: Effects of mechano-electrical feedback on the onset of alternans: A computational study publication-title: Chaos doi: 10.1063/1.5095778 – volume: 506 year: 2024 ident: 10.1016/j.cmpb.2024.108311_b63 article-title: Physics-informed polynomial chaos expansions publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2024.112926 – volume: 378 issue: 2173 year: 2020 ident: 10.1016/j.cmpb.2024.108311_b16 article-title: An audit of uncertainty in multi-scale cardiac electrophysiology models publication-title: Phil. Trans. R. Soc. A doi: 10.1098/rsta.2019.0335 – volume: 144 year: 2021 ident: 10.1016/j.cmpb.2024.108311_b29 article-title: A surrogate model for efficient quantification of uncertainties in multilayer shallow water flows publication-title: Environ. Model. Softw. doi: 10.1016/j.envsoft.2021.105176 – volume: 96 start-page: 49 year: 2016 ident: 10.1016/j.cmpb.2024.108311_b20 article-title: Uncertainty and variability in models of the cardiac action potential: Can we build trustworthy models? publication-title: J. Mol. Cellular Cardiol. doi: 10.1016/j.yjmcc.2015.11.018 – volume: 63 start-page: 108 year: 2015 ident: 10.1016/j.cmpb.2024.108311_b57 article-title: Control of cardiac alternans in an electromechanical model of cardiac tissue publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2015.05.011 – volume: 120 start-page: 109 issue: 1 year: 2021 ident: 10.1016/j.cmpb.2024.108311_b2 article-title: A simulation study of the role of mechanical stretch in arrhythmogenesis during cardiac alternans publication-title: Biophys. J. doi: 10.1016/j.bpj.2020.11.018 – volume: 35 issue: 6 year: 2023 ident: 10.1016/j.cmpb.2024.108311_b30 article-title: Global sensitivity analysis for phosphate slurry flow in pipelines using generalized polynomial chaos publication-title: Phys. Fluids doi: 10.1063/5.0147817 – volume: 48 start-page: 43 year: 2018 ident: 10.1016/j.cmpb.2024.108311_b22 article-title: Quantifying the uncertainty in model parameters using Gaussian process-based Markov chain Monte Carlo in cardiac electrophysiology publication-title: Med. Image Anal. doi: 10.1016/j.media.2018.05.007 – volume: 60 start-page: 897 year: 1938 ident: 10.1016/j.cmpb.2024.108311_b40 article-title: The homogeneous chaos publication-title: Am. J. Math. doi: 10.2307/2371268 – volume: 464 year: 2022 ident: 10.1016/j.cmpb.2024.108311_b59 article-title: A survey of unsupervised learning methods for high-dimensional uncertainty quantification in black-box-type problems publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2022.111313 – start-page: 1 year: 2017 ident: 10.1016/j.cmpb.2024.108311_b33 article-title: Comparison of polynomial chaos and Gaussian process surrogates for uncertainty quantification and correlation estimation of spatially distributed open-channel steady flows publication-title: Stoch. Environ. Res. Risk Assess. – volume: 15 start-page: 81 year: 2006 ident: 10.1016/j.cmpb.2024.108311_b45 article-title: Stochastic finite element: a non intrusive approach by regression publication-title: Eur. J. Comput. Mech./Revue Européenne de Mécanique Numérique doi: 10.3166/remn.15.81-92 – volume: 14 start-page: 1 issue: 5 year: 2019 ident: 10.1016/j.cmpb.2024.108311_b55 article-title: Modeling and simulation of hypothermia effects on cardiac electrical dynamics publication-title: PLoS One doi: 10.1371/journal.pone.0216058 – volume: 9 start-page: 7483 year: 2015 ident: 10.1016/j.cmpb.2024.108311_b56 article-title: Parameter identification for a non-differentiable ionic model used in cardiac electrophysiology publication-title: Appl. Math. Sci. – volume: 26 start-page: 395 issue: 2 year: 2004 ident: 10.1016/j.cmpb.2024.108311_b39 article-title: Physical systems with random uncertainties: Chaos representations with arbitrary probability measure publication-title: SIAM J. Sci. Comput. doi: 10.1137/S1064827503424505 – volume: 104 start-page: 22 issue: 1–3 year: 2011 ident: 10.1016/j.cmpb.2024.108311_b7 article-title: Models of cardiac tissue electrophysiology: progress, challenges and open questions publication-title: Progr. Biophys. Mol. Biol. doi: 10.1016/j.pbiomolbio.2010.05.008 – volume: 18 start-page: 1415 year: 2019 ident: 10.1016/j.cmpb.2024.108311_b24 article-title: Effects of left ventricle wall thickness uncertainties on cardiac mechanics publication-title: Biomech. Model Mechanobiol. doi: 10.1007/s10237-019-01153-1 – volume: 378 issue: 2173 year: 2020 ident: 10.1016/j.cmpb.2024.108311_b25 article-title: Uncertainty quantification and sensitivity analysis of left ventricular function during the full cardiac cycle publication-title: Phil. Trans. R. Soc. A doi: 10.1098/rsta.2019.0381 – volume: 103 start-page: 293 year: 2015 ident: 10.1016/j.cmpb.2024.108311_b49 article-title: A non-intrusive model reduction approach for polynomial chaos expansion using proper orthogonal decomposition publication-title: Internat. J. Numer. Methods Engrg. doi: 10.1002/nme.4900 – volume: 7 start-page: 89 year: 2019 ident: 10.1016/j.cmpb.2024.108311_b3 article-title: Simulating normal and arrhythmic dynamics: From sub-cellular to tissue and organ level publication-title: Front. Phys. doi: 10.3389/fphy.2019.00089 – start-page: 169 year: 2018 ident: 10.1016/j.cmpb.2024.108311_b37 article-title: Uncertainty quantification for river flow simulation applied to a real test case: The garonne valley – volume: 19 issue: 04 year: 2022 ident: 10.1016/j.cmpb.2024.108311_b18 article-title: A nonintrusive reduced-order model for uncertainty quantification in numerical solution of one-dimensional free-surface water flows over stochastic beds publication-title: Int. J. Comput. Methods doi: 10.1142/S0219876221500730 – volume: 126 start-page: 381 year: 2024 ident: 10.1016/j.cmpb.2024.108311_b62 article-title: Global sensitivity analysis for multivariate outputs using generalized RBF-PCE metamodel enhanced by variance-based sequential sampling publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2023.10.047 – start-page: 541 year: 2021 ident: 10.1016/j.cmpb.2024.108311_b36 article-title: A semi-implicit backward differentiation ADI method for solving monodomain model – volume: 130 year: 2021 ident: 10.1016/j.cmpb.2024.108311_b12 article-title: Efficiency of semi-implicit alternating direction implicit methods for solving cardiac monodomain model publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2020.104187 – volume: 17 year: 2020 ident: 10.1016/j.cmpb.2024.108311_b26 article-title: Sensitivity analysis of an electrophysiology model for the left ventricle publication-title: J. R. Soc. Interface doi: 10.1098/rsif.2020.0532 – volume: 37 issue: 6 year: 2021 ident: 10.1016/j.cmpb.2024.108311_b27 article-title: Enabling forward uncertainty quantification and sensitivity analysis in cardiac electrophysiology by reduced order modeling and machine learning publication-title: Int. J. Numer. Methods Biomed. Eng. doi: 10.1002/cnm.3450 – start-page: 2795 year: 2009 ident: 10.1016/j.cmpb.2024.108311_b14 article-title: Strong scaling and speedup to 16,384 processors in cardiac electro—Mechanical simulations |
| SSID | ssj0002556 |
| Score | 2.40157 |
| Snippet | Numerical simulations in electrocardiology are often affected by various uncertainties inherited from the lack of precise knowledge regarding input values... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 108311 |
| SubjectTerms | Algorithms Cardiac electrophysiology Cardiac simulation Computer Simulation Electrophysiological Phenomena Heart - physiology Humans Models, Cardiovascular Polynomial Chaos expansion Stochastic Processes Uncertainty Uncertainty quantification Unsupervised Machine Learning Unsupervised stochastic learning |
| Title | Unsupervised stochastic learning and reduced order modeling for global sensitivity analysis in cardiac electrophysiology models |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0169260724003055 https://dx.doi.org/10.1016/j.cmpb.2024.108311 https://www.ncbi.nlm.nih.gov/pubmed/39032242 https://www.proquest.com/docview/3083214742 |
| Volume | 255 |
| WOSCitedRecordID | wos001275548400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-7565 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002556 issn: 0169-2607 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6lLUJcEG9SoFokbpUjr-21vceCUhUkKg6tlJu1L6upWieKk6qc-Dv8zM6-HLcQoAcuVuJkR-udzzuzs7PfIPSB6JQXORMRISqNDOVbJGjOIzAOlOdFHgta22ITxfFxOZmwb4PBz3AW5uqiaJry-prN_6uq4R4o2xydvYe6O6FwAz6D0uEKaofrPyn-tGlXczMDtOBLgmsnz7jhYg71IdyRxIVhbIXfLfOmK4cTUio9RUhrMtt9aQkemEtM0rqFlNz39XNsZMTxOFkpbd_bDSUjfJ3q1rMS2IwwK8wd_r-1uT--gHnGbt8X_LtyBkCs80A-mh3-S0OoYI3HbNW2uu7CRJpPXZHk2ZmJyKt-TAPwEbLjujBnziJYaRX9eTqhtDfTElMijfzWCLh4xPlIXs7FyIgfrf98m3H7jiXs8hND6tt5ZWRURkblZGyhnaSgDEzAzsHn8eRLZ_UNlZvjkXc99we0XC7h3Z5scoI2LXKss3PyBD32qxR84ND1FA108ww9_OpV9Rz96IMMr0GGA8gwaBp7kGELMhxAhgFk2IEM90CGA8jwtMEeZPgXkDkp7Qt0ejg--XQU-VIekcziZBkRRUuVq0zD-pRnmdBU1LomeS2JUmY8WVKWKs5kzBnPwWUtKVUZh1aCSa5I-hJtN7NGv0Y4E0poIkpWSAa-fsxKTqmAL1zmdU3rIdoPY1vNHWNLtVmfQ5SG4a_CWWSwnhVg6Y-taNfKe6rOA_1ru_dBwxVM42ZvjjcaXpUqjV3JsCwZoldO9V3vUxaD2c2S3Xs92Rv0aP1qvUXby8VKv0MP5NVy2i720FYxKfc8iG8Ao0XQaQ |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unsupervised+stochastic+learning+and+reduced+order+modeling+for+global+sensitivity+analysis+in+cardiac+electrophysiology+models&rft.jtitle=Computer+methods+and+programs+in+biomedicine&rft.au=El+Mo%C3%A7ayd%2C+Nabil&rft.au=Belhamadia%2C+Youssef&rft.au=Seaid%2C+Mohammed&rft.date=2024-10-01&rft.issn=0169-2607&rft.volume=255&rft.spage=108311&rft_id=info:doi/10.1016%2Fj.cmpb.2024.108311&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cmpb_2024_108311 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-2607&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-2607&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-2607&client=summon |