Hölder Continuity and Boundedness Estimates for Nonlinear Fractional Equations in the Heisenberg Group
We extend the celebrate De Giorgi-Nash-Moser theory to a wide class of nonlinear equations driven by nonlocal, possibly degenerate, integro-differential operators, whose model is the fractional p -Laplacian operator on the Heisenberg-Weyl group H n . Among other results, we prove that the weak solut...
Uložené v:
| Vydané v: | The Journal of geometric analysis Ročník 33; číslo 3; s. 77 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
Springer US
01.03.2023
Springer Nature B.V |
| Predmet: | |
| ISSN: | 1050-6926, 1559-002X |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | We extend the celebrate De Giorgi-Nash-Moser theory to a wide class of nonlinear equations driven by nonlocal, possibly degenerate, integro-differential operators, whose model is the fractional
p
-Laplacian operator on the Heisenberg-Weyl group
H
n
. Among other results, we prove that the weak solutions to such a class of problems are bounded and Hölder continuous, by also establishing general estimates as fractional Caccioppoli-type estimates with tail and logarithmic-type estimates. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1050-6926 1559-002X |
| DOI: | 10.1007/s12220-022-01124-6 |