Hölder Continuity and Boundedness Estimates for Nonlinear Fractional Equations in the Heisenberg Group

We extend the celebrate De Giorgi-Nash-Moser theory to a wide class of nonlinear equations driven by nonlocal, possibly degenerate, integro-differential operators, whose model is the fractional p -Laplacian operator on the Heisenberg-Weyl group H n . Among other results, we prove that the weak solut...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:The Journal of geometric analysis Ročník 33; číslo 3; s. 77
Hlavní autoři: Manfredini, Maria, Palatucci, Giampiero, Piccinini, Mirco, Polidoro, Sergio
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.03.2023
Springer Nature B.V
Témata:
ISSN:1050-6926, 1559-002X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We extend the celebrate De Giorgi-Nash-Moser theory to a wide class of nonlinear equations driven by nonlocal, possibly degenerate, integro-differential operators, whose model is the fractional p -Laplacian operator on the Heisenberg-Weyl group H n . Among other results, we prove that the weak solutions to such a class of problems are bounded and Hölder continuous, by also establishing general estimates as fractional Caccioppoli-type estimates with tail and logarithmic-type estimates.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1050-6926
1559-002X
DOI:10.1007/s12220-022-01124-6