Hölder Continuity and Boundedness Estimates for Nonlinear Fractional Equations in the Heisenberg Group

We extend the celebrate De Giorgi-Nash-Moser theory to a wide class of nonlinear equations driven by nonlocal, possibly degenerate, integro-differential operators, whose model is the fractional p -Laplacian operator on the Heisenberg-Weyl group H n . Among other results, we prove that the weak solut...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:The Journal of geometric analysis Ročník 33; číslo 3; s. 77
Hlavní autoři: Manfredini, Maria, Palatucci, Giampiero, Piccinini, Mirco, Polidoro, Sergio
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.03.2023
Springer Nature B.V
Témata:
ISSN:1050-6926, 1559-002X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract We extend the celebrate De Giorgi-Nash-Moser theory to a wide class of nonlinear equations driven by nonlocal, possibly degenerate, integro-differential operators, whose model is the fractional p -Laplacian operator on the Heisenberg-Weyl group H n . Among other results, we prove that the weak solutions to such a class of problems are bounded and Hölder continuous, by also establishing general estimates as fractional Caccioppoli-type estimates with tail and logarithmic-type estimates.
AbstractList We extend the celebrate De Giorgi-Nash-Moser theory to a wide class of nonlinear equations driven by nonlocal, possibly degenerate, integro-differential operators, whose model is the fractional p-Laplacian operator on the Heisenberg-Weyl group Hn. Among other results, we prove that the weak solutions to such a class of problems are bounded and Hölder continuous, by also establishing general estimates as fractional Caccioppoli-type estimates with tail and logarithmic-type estimates.
We extend the celebrate De Giorgi-Nash-Moser theory to a wide class of nonlinear equations driven by nonlocal, possibly degenerate, integro-differential operators, whose model is the fractional p -Laplacian operator on the Heisenberg-Weyl group $$\mathbb {H}^n$$ H n . Among other results, we prove that the weak solutions to such a class of problems are bounded and Hölder continuous, by also establishing general estimates as fractional Caccioppoli-type estimates with tail and logarithmic-type estimates.
We extend the celebrate De Giorgi-Nash-Moser theory to a wide class of nonlinear equations driven by nonlocal, possibly degenerate, integro-differential operators, whose model is the fractional p -Laplacian operator on the Heisenberg-Weyl group H n . Among other results, we prove that the weak solutions to such a class of problems are bounded and Hölder continuous, by also establishing general estimates as fractional Caccioppoli-type estimates with tail and logarithmic-type estimates.
ArticleNumber 77
Author Manfredini, Maria
Polidoro, Sergio
Piccinini, Mirco
Palatucci, Giampiero
Author_xml – sequence: 1
  givenname: Maria
  surname: Manfredini
  fullname: Manfredini, Maria
  organization: Dipartimento di Scienze Fisiche, Informatiche e Matematiche, Università degli Studi di Modena e Reggio Emilia
– sequence: 2
  givenname: Giampiero
  orcidid: 0000-0002-3706-9349
  surname: Palatucci
  fullname: Palatucci, Giampiero
  email: giampiero.palatucci@unipr.it
  organization: Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università di Parma
– sequence: 3
  givenname: Mirco
  surname: Piccinini
  fullname: Piccinini, Mirco
  organization: Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università di Parma
– sequence: 4
  givenname: Sergio
  surname: Polidoro
  fullname: Polidoro, Sergio
  organization: Dipartimento di Scienze Fisiche, Informatiche e Matematiche, Università degli Studi di Modena e Reggio Emilia
BookMark eNp9kM1KAzEQx4NUsK2-gKeA59Ukm2R3j1r6IRS9KHgL6e5sTVmTNske-mK-gC9m2gqCBy_zAfOb-c9_hAbWWUDompJbSkhxFyhjjGSEsYxQyngmz9CQClFlhLC3QaqJIJmsmLxAoxA2hHCZ82KI1ouvz64BjyfORmN7E_dY2wY_uN420FgIAU9DNB86QsCt8_jJ2c5Y0B7PvK6jcVZ3eLrr9aEM2Fgc3wEvwASwK_BrPPeu316i81Z3Aa5-8hi9zqYvk0W2fJ4_Tu6XWc0JixmlkgihRSkqxqXgoOui1kzqulkJEO1KMCElKSRPbSNTqHgBIDnItKBq8jG6Oe3derfrIUS1cb1PEoPKD2hZ5kKmKXaaqr0LwUOrtj696PeKEnUwVJ0MVclQdTRUHaDyD1SbePw6em26_9H8hIZ0x67B_6r6h_oGU8KNpg
CitedBy_id crossref_primary_10_1112_blms_12869
crossref_primary_10_1007_s00526_022_02301_9
crossref_primary_10_1515_acv_2024_0044
crossref_primary_10_1007_s13540_025_00440_2
crossref_primary_10_1093_imrn_rnae072
crossref_primary_10_1007_s10958_025_07781_6
crossref_primary_10_1007_s13324_025_01018_0
crossref_primary_10_1016_j_na_2025_113922
crossref_primary_10_1080_17476933_2025_2549390
Cites_doi 10.1007/s11118-010-9190-0
10.1016/j.anihpc.2015.04.003
10.3934/cpaa.2021174
10.1016/j.jde.2013.09.008
10.1016/j.jmaa.2015.07.050
10.1007/s10231-011-0243-9
10.1090/S0894-0347-07-00582-6
10.1016/j.jde.2021.08.038
10.1016/j.aim.2014.09.026
10.1080/03605302.2011.618210
10.1186/s13661-020-01425-1
10.1007/s00526-022-02301-9
10.1007/s00208-015-1347-0
10.1016/j.aim.2014.12.040
10.1016/j.jfa.2014.05.023
10.1016/j.matpur.2017.10.004
10.1016/j.na.2018.05.004
10.1512/iumj.2006.55.2706
10.2140/apde.2015.8.57
10.1016/j.aim.2018.09.009
10.1007/s00208-016-1495-x
10.1016/j.na.2022.112966
10.1016/j.aim.2016.07.010
10.1090/S0002-9939-1981-0619983-8
10.1007/s00205-002-0231-8
10.1007/s12220-019-00275-3
10.1007/s00208-007-0121-3
10.1016/j.bulsci.2011.12.004
10.1007/s00526-013-0656-y
10.1512/iumj.2021.70.8635
10.1007/s00209-014-1376-5
10.1007/s12220-019-00225-z
10.4171/RMI/921
10.1016/j.matpur.2015.09.001
10.2422/2036-2145.201604_010
10.1142/S0219199721500218
10.1515/acv-2021-0069
10.1016/j.na.2020.112112
10.1007/s10711-017-0282-5
10.1016/j.aim.2016.03.039
10.1007/s43036-019-00037-6
10.1007/s00440-007-0070-5
10.1016/j.aim.2021.107635
10.1080/03605300600987306
10.1007/s00526-016-0999-2
10.2140/apde.2021.14.567
10.1016/j.jde.2019.01.017
ContentType Journal Article
Copyright The Author(s) 2022
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
7XB
8FE
8FG
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
M2P
M7S
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1007/s12220-022-01124-6
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Science Database
Engineering Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Computer Science Database
CrossRef

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
EISSN 1559-002X
ExternalDocumentID 10_1007_s12220_022_01124_6
GrantInformation_xml – fundername: Università degli Studi di Parma
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
199
1N0
2.D
203
29K
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
40D
40E
5GY
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYZH
ABAKF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BGNMA
C6C
CAG
COF
CS3
CSCUP
D-I
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
H13
HF~
HG5
HG6
HMJXF
HRMNR
HVGLF
HZ~
IAO
IGS
IJ-
IKXTQ
ITC
ITM
IWAJR
IXC
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
KOV
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
P19
P2P
P9R
PF0
PT4
PT5
QOK
QOS
R89
R9I
RHV
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SHX
SISQX
SJN
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
TWZ
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WH7
WK8
YLTOR
Z45
ZMTXR
ZWQNP
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ARAPS
ATHPR
AYFIA
AZQEC
BENPR
BGLVJ
CCPQU
CITATION
DWQXO
GNUQQ
HCIFZ
K7-
M2P
M7S
PHGZM
PHGZT
PQGLB
PTHSS
7XB
8FE
8FG
JQ2
L6V
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c402t-116055a585924654eac7ca26acdb5e5fb525660764b5ed6b5e947ee64e6c409d3
IEDL.DBID M2P
ISICitedReferencesCount 12
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000922005100017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1050-6926
IngestDate Sun Nov 30 04:23:51 EST 2025
Sat Nov 29 04:58:20 EST 2025
Tue Nov 18 22:10:37 EST 2025
Fri Feb 21 02:45:37 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Heisenberg group
Fractional sublaplacian
47G20
35B45
Quasilinear nonlocal operators
Primary 35D10
Hölder continuity
35H05
Secondary 35B05
35R05
Fractional Sobolev spaces
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c402t-116055a585924654eac7ca26acdb5e5fb525660764b5ed6b5e947ee64e6c409d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3706-9349
OpenAccessLink https://link.springer.com/10.1007/s12220-022-01124-6
PQID 3256688356
PQPubID 2043891
ParticipantIDs proquest_journals_3256688356
crossref_primary_10_1007_s12220_022_01124_6
crossref_citationtrail_10_1007_s12220_022_01124_6
springer_journals_10_1007_s12220_022_01124_6
PublicationCentury 2000
PublicationDate 20230300
2023-03-00
20230301
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 3
  year: 2023
  text: 20230300
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle The Journal of geometric analysis
PublicationTitleAbbrev J Geom Anal
PublicationYear 2023
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References CyganJSubadditivity of homogeneous norms on certain nilpotent Lie groupsProc. Am. Math. Soc.1981831697061998310.1090/S0002-9939-1981-0619983-80475.43010
Di Castro, A., Kuusi, T., Palatucci, G.: Local behavior of fractional p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document}-minimizers. Ann. Inst. H. Poincaré Anal. Non Linéaire 33, 1279–1299 (2016)
CaffarelliLSilvestreLAn extension problem related to the fractional LaplacianCommun. Partial Differ. Equ.20073212451260235449310.1080/036053006009873061143.26002
BrascoLLindgrenESchikorraAHigher Hölder regularity for the fractional p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document}-Laplacian in the superquadratic caseAdv. Math.2018338782846386171610.1016/j.aim.2018.09.0091400.35049
FrankRGonzalezMdMMonticelliDTanJAn extension problem for the CR fractional LaplacianJ. Adv. Math.201527097137328653210.1016/j.aim.2014.09.0261304.35747
FerrariFFranchiBHarnack inequality for fractional Laplacians in Carnot groupsMath. Z.2015279435458329986210.1007/s00209-014-1376-51314.26008
CiattiPCowlingMGRicciFHardy and uncertainty inequalities on stratified Lie groupsAdv. Math.2015277365387333609010.1016/j.aim.2014.12.0401322.22010
De FilippisCPalatucciGHölder regularity for nonlocal double phase equationsJ. Differ. Equ.2019267154758610.1016/j.jde.2019.01.0171412.35041
KassymovASurganDLyapunov-type inequalities for the fractional p-sub-LaplacianAdv. Oper. Theory20205435452409139510.1007/s43036-019-00037-61440.22016
RoncalLThangaveluSHardy’s inequality for fractional powers of the sublaplacian on the Heisenberg groupAdv. Math.2016302106158354592710.1016/j.aim.2016.07.0101348.43011
PalatucciGThe Dirichlet problem for the p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document}-fractional Laplace equationNonlinear Anal.2018177699732388659810.1016/j.na.2018.05.0041404.35212
Bucur, C., Dipierro, S., Valdinoci, E.: On the mean value property of fractional harmonic functions. Nonlinear Anal. 201, Art. 112112 (2020)
Bucur, C., Squassina, M.: An asymptotic expansion for the fractional p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document}-Laplacian and for gradient dependent nonlocal operators. Commun. Contemp. Math. 24, Art. 2150021 (2022)
MukherjeeSZhongXC1,α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^{1,\alpha }$$\end{document}-regularity for variational problems in the Heisenberg groupAnal. PDE2021142567594424180810.2140/apde.2021.14.5671473.35087
ChenZ-QKumagaiTHeat kernel estimates for jump processes of mixed types on metric measure spacesProbab. Theory Relat. Fields20081401–2277317235767810.1007/s00440-007-0070-51131.60076
SilvestreLHölder estimates for solutions of integro-differential equations like the fractional LaplaceIndiana Univ. Math. J.200655311551174224460210.1512/iumj.2006.55.27061101.45004
MingioneGThe singular set of solutions to non-differentiable elliptic systemsArch. Ration. Mech. Anal.2003166287301196144210.1007/s00205-002-0231-81142.35391
Di CastroAKuusiTPalatucciGNonlocal Harnack inequalitiesJ. Funct. Anal.2014267618071836323777410.1016/j.jfa.2014.05.0231302.35082
BaloghZMFässlerKSobrinoHIsometric embeddings into Heisenberg groupsGeom. Dedic.20171951163192382050010.1007/s10711-017-0282-51397.30042
CittiGManfrediniMPinamontiASerra CassanoFPoincaré-type inequality for Lipschitz continuous vector fields in the Heisenberg groupJ. Math. Pure Appl.201610326529210.1016/j.matpur.2015.09.0011337.43005
DanielliDGarofaloNPhucNCHardy-Sobolev type inequalities with sharp constants in Carnot-Carathéodory spacesPotential Anal.201134223242278297110.1007/s11118-010-9190-01221.35108
CintiETanJA nonlinear Liouville theorem for fractional equations in the Heisenberg groupJ. Math. Anal. Appl.2016433434454338880110.1016/j.jmaa.2015.07.0501332.35374
Di NezzaEPalatucciGValdinociEHitchhiker’s guide to the fractional Sobolev spacesBull. Sci. Math.2012136521573294436910.1016/j.bulsci.2011.12.0041252.46023
Korvenpää, J., Kuusi, T., Palatucci, G.: The obstacle problem for nonlinear integro-differential operators. Calc. Var. Partial Differ. Equ. 55, no. 3, Art. 63 (2016)
KuusiTMingioneGSireYNonlocal self-improving propertiesAnal. PDE20158157114333692210.2140/apde.2015.8.571317.35284
ScottJMMengeshaTSelf-improving Inequalities for bounded weak solutions to nonlocal double phase equationsCommun. Pure Appl. Anal.202221118321245073771481.35105
Kassymov, A., Surgan, D.: Some functional inequalities for the fractional p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document}-sub-Laplacian. arXiv:1804.01415 (2018)
BonfiglioliALanconelliEUguzzoniFStratified Lie Groups and their sub-Laplacians2007BerlinSpringer1128.43001
Garofalo, N., Tralli, G.: Feeling the heat in a group of Heisenberg type. Adv. Math. 381, Art. 107635 (2021)
KorvenpääJKuusiTPalatucciGFractional superharmonic functions and the Perron method for nonlinear integro-differential equationsMath. Ann.20173693–414431489371354710.1007/s00208-016-1495-x1386.35028
ManfrediJMingioneGRegularity results for quasilinear elliptic equations in the Heisenberg groupMath. Ann.2007339485544233605810.1007/s00208-007-0121-31128.35034
PalatucciGPisanteAImproved Sobolev embeddings, profile decomposition, and concentration-compactness for fractional Sobolev spacesCalc. Var. Partial Differ. Equ.2014503–4799829321683410.1007/s00526-013-0656-y1296.35064
FerrariFMirandaMJrPallaraDPinamontiASireYFractional Laplacians, perimeters and heat semigroups in Carnot groupsDiscrete Cont. Dyn. Syst. Ser. S201811347749137321781375.35610
BrascoLLindgrenEHigher Sobolev regularity for the fractional p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document}-Laplace equation in the superquadratic caseAdv. Math.2017304300354355821210.1016/j.aim.2016.03.0391364.35055
KorvenpääJKuusiTLindgrenEEquivalence of solutions to fractional p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document}-Laplace type equationsJ. Math. Pures Appl.2019132126403024710.1016/j.matpur.2017.10.0041426.35220
SchikorraANonlinear commutators for the fractional p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document}-Laplacian and applicationsMath. Ann.20163661695720355225410.1007/s00208-015-1347-01351.35255
GarofaloNTralliGA class of nonlocal hypoelliptic operators and their extensionsIndiana J. Math.202270517171744434047910.1512/iumj.2021.70.86351487.35195
TralliGA certain critical density property for invariant Harnack inequalities in H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H$$\end{document}-type groupsJ. Differ. Equ.20142562461474312170210.1016/j.jde.2013.09.0081318.35048
DydaBLehrbäckJVähäkangasAVFractional Poincaré and localized Hardy inequalities on metric spacesAdv. Calc. Var.202110.1515/acv-2021-00691394.35008
FrankRLiebEHSeiringerRHardy-Lieb-Thirring inequalities for fractional Schrödinger operatorsJ. Am. Math. Soc.20082192595010.1090/S0894-0347-07-00582-61202.35146
De FilippisCMingioneGOn the regularity of minima of non-autonomous functionalsJ. Geom. Anal.202030215841626408132510.1007/s12220-019-00225-z1437.35292
Wang, X., Du, G.: Properties of solutions to fractional p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document}-subLaplace equations on the Heisenberg group. Boundary Value Problems, Art. 128 (2020)
GutiérrezCETournierFHarnack inequality for a degenerate elliptic equationCommun. Partial Differ. Equ.20113621032116285207110.1080/03605302.2011.6182101260.35063
Piccinini, M.: The obstacle problem and the Perron Method for nonlinear fractional equations in the Heisenberg group. Nonlinear Anal. 222, Art. 112966 (2022)
IannizzottoAMosconiSSquassinaMGlobal Hölder regularity for the fractional p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document}-LaplacianRev. Mat. Iberoamericana201632413531392359352810.4171/RMI/9211433.35447
Palatucci, G., Piccinini, M.: Nonlocal Harnack inequal
CE Gutiérrez (1124_CR29) 2011; 36
1124_CR30
1124_CR33
A Di Castro (1124_CR18) 2014; 267
C De Filippis (1124_CR16) 2020; 30
J Korvenpää (1124_CR34) 2017; 369
T Kuusi (1124_CR35) 2015; 8
JM Scott (1124_CR47) 2022; 21
D Danielli (1124_CR14) 2011; 34
ZM Balogh (1124_CR2) 2017; 195
B Dyda (1124_CR21) 2021
GB Folland (1124_CR24) 1982
R Frank (1124_CR26) 2008; 21
E Di Nezza (1124_CR20) 2012; 136
J Korvenpää (1124_CR32) 2019; 132
G Citti (1124_CR12) 2016; 103
1124_CR42
1124_CR44
A Bonfiglioli (1124_CR5) 2007
C De Filippis (1124_CR17) 2019; 267
G Palatucci (1124_CR40) 2018; 177
Z-Q Chen (1124_CR9) 2008; 140
J Manfredi (1124_CR37) 2007; 339
P Ciatti (1124_CR10) 2015; 277
F Ferrari (1124_CR22) 2015; 279
1124_CR1
L Brasco (1124_CR3) 2017; 304
1124_CR50
1124_CR6
C De Filippis (1124_CR15) 2020; 30
1124_CR7
G Mingione (1124_CR38) 2003; 166
L Brasco (1124_CR4) 2018; 338
A Schikorra (1124_CR46) 2016; 366
1124_CR19
R Frank (1124_CR25) 2015; 270
L Silvestre (1124_CR48) 2006; 55
Y Zhang (1124_CR51) 2021; 302
A Kassymov (1124_CR31) 2020; 5
L Caffarelli (1124_CR8) 2007; 32
J Cygan (1124_CR13) 1981; 83
L Roncal (1124_CR45) 2016; 302
G Palatucci (1124_CR43) 2013; 192
G Tralli (1124_CR49) 2014; 256
E Cinti (1124_CR11) 2016; 433
N Garofalo (1124_CR27) 2022; 70
1124_CR28
G Palatucci (1124_CR41) 2014; 50
S Mukherjee (1124_CR39) 2021; 14
F Ferrari (1124_CR23) 2018; 11
A Iannizzotto (1124_CR36) 2016; 32
References_xml – reference: CiattiPCowlingMGRicciFHardy and uncertainty inequalities on stratified Lie groupsAdv. Math.2015277365387333609010.1016/j.aim.2014.12.0401322.22010
– reference: FollandGBSteinEMHardy Spaces on Homogeneous Groups1982PrincetonPrinceton University Press0508.42025
– reference: Di NezzaEPalatucciGValdinociEHitchhiker’s guide to the fractional Sobolev spacesBull. Sci. Math.2012136521573294436910.1016/j.bulsci.2011.12.0041252.46023
– reference: SilvestreLHölder estimates for solutions of integro-differential equations like the fractional LaplaceIndiana Univ. Math. J.200655311551174224460210.1512/iumj.2006.55.27061101.45004
– reference: Piccinini, M.: The obstacle problem and the Perron Method for nonlinear fractional equations in the Heisenberg group. Nonlinear Anal. 222, Art. 112966 (2022)
– reference: BrascoLLindgrenEHigher Sobolev regularity for the fractional p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document}-Laplace equation in the superquadratic caseAdv. Math.2017304300354355821210.1016/j.aim.2016.03.0391364.35055
– reference: De FilippisCMingioneGOn the regularity of minima of non-autonomous functionalsJ. Geom. Anal.202030215841626408132510.1007/s12220-019-00225-z1437.35292
– reference: SchikorraANonlinear commutators for the fractional p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document}-Laplacian and applicationsMath. Ann.20163661695720355225410.1007/s00208-015-1347-01351.35255
– reference: BonfiglioliALanconelliEUguzzoniFStratified Lie Groups and their sub-Laplacians2007BerlinSpringer1128.43001
– reference: Di Castro, A., Kuusi, T., Palatucci, G.: Local behavior of fractional p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document}-minimizers. Ann. Inst. H. Poincaré Anal. Non Linéaire 33, 1279–1299 (2016)
– reference: Korvenpää, J., Kuusi, T., Palatucci, G.: The obstacle problem for nonlinear integro-differential operators. Calc. Var. Partial Differ. Equ. 55, no. 3, Art. 63 (2016)
– reference: CintiETanJA nonlinear Liouville theorem for fractional equations in the Heisenberg groupJ. Math. Anal. Appl.2016433434454338880110.1016/j.jmaa.2015.07.0501332.35374
– reference: MukherjeeSZhongXC1,α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^{1,\alpha }$$\end{document}-regularity for variational problems in the Heisenberg groupAnal. PDE2021142567594424180810.2140/apde.2021.14.5671473.35087
– reference: Bucur, C., Squassina, M.: An asymptotic expansion for the fractional p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document}-Laplacian and for gradient dependent nonlocal operators. Commun. Contemp. Math. 24, Art. 2150021 (2022)
– reference: GarofaloNTralliGA class of nonlocal hypoelliptic operators and their extensionsIndiana J. Math.202270517171744434047910.1512/iumj.2021.70.86351487.35195
– reference: ZhangYTangXRǎdulescuVDConcentration of solutions for fractional double-phase problems: critical and supercritical casesJ. Differ. Equ.2021302139184431054810.1016/j.jde.2021.08.0381481.35385
– reference: Wang, X., Du, G.: Properties of solutions to fractional p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document}-subLaplace equations on the Heisenberg group. Boundary Value Problems, Art. 128 (2020)
– reference: TralliGA certain critical density property for invariant Harnack inequalities in H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H$$\end{document}-type groupsJ. Differ. Equ.20142562461474312170210.1016/j.jde.2013.09.0081318.35048
– reference: RoncalLThangaveluSHardy’s inequality for fractional powers of the sublaplacian on the Heisenberg groupAdv. Math.2016302106158354592710.1016/j.aim.2016.07.0101348.43011
– reference: De FilippisCMingioneGManifold constrained non-uniformly elliptic problemsJ. Geom. Anal.202030216611723408132810.1007/s12220-019-00275-31437.49008
– reference: Mallick, Adimurthi A.: A Hardy type inequality on fractional order Sobolev spaces on the Heisenberg group. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 18(3), 917–949 (2018)
– reference: Bucur, C., Dipierro, S., Valdinoci, E.: On the mean value property of fractional harmonic functions. Nonlinear Anal. 201, Art. 112112 (2020)
– reference: KorvenpääJKuusiTLindgrenEEquivalence of solutions to fractional p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document}-Laplace type equationsJ. Math. Pures Appl.2019132126403024710.1016/j.matpur.2017.10.0041426.35220
– reference: CyganJSubadditivity of homogeneous norms on certain nilpotent Lie groupsProc. Am. Math. Soc.1981831697061998310.1090/S0002-9939-1981-0619983-80475.43010
– reference: Palatucci, G., Piccinini, M.: Nonlocal Harnack inequalities in the Heisenberg group. Calc. Var. Partial Differ. Equ. 61. Art. 185 (2022)
– reference: PalatucciGThe Dirichlet problem for the p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document}-fractional Laplace equationNonlinear Anal.2018177699732388659810.1016/j.na.2018.05.0041404.35212
– reference: Di CastroAKuusiTPalatucciGNonlocal Harnack inequalitiesJ. Funct. Anal.2014267618071836323777410.1016/j.jfa.2014.05.0231302.35082
– reference: Kassymov, A., Surgan, D.: Some functional inequalities for the fractional p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document}-sub-Laplacian. arXiv:1804.01415 (2018)
– reference: IannizzottoAMosconiSSquassinaMGlobal Hölder regularity for the fractional p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document}-LaplacianRev. Mat. Iberoamericana201632413531392359352810.4171/RMI/9211433.35447
– reference: KassymovASurganDLyapunov-type inequalities for the fractional p-sub-LaplacianAdv. Oper. Theory20205435452409139510.1007/s43036-019-00037-61440.22016
– reference: GutiérrezCETournierFHarnack inequality for a degenerate elliptic equationCommun. Partial Differ. Equ.20113621032116285207110.1080/03605302.2011.6182101260.35063
– reference: CaffarelliLSilvestreLAn extension problem related to the fractional LaplacianCommun. Partial Differ. Equ.20073212451260235449310.1080/036053006009873061143.26002
– reference: CittiGManfrediniMPinamontiASerra CassanoFPoincaré-type inequality for Lipschitz continuous vector fields in the Heisenberg groupJ. Math. Pure Appl.201610326529210.1016/j.matpur.2015.09.0011337.43005
– reference: De FilippisCPalatucciGHölder regularity for nonlocal double phase equationsJ. Differ. Equ.2019267154758610.1016/j.jde.2019.01.0171412.35041
– reference: DanielliDGarofaloNPhucNCHardy-Sobolev type inequalities with sharp constants in Carnot-Carathéodory spacesPotential Anal.201134223242278297110.1007/s11118-010-9190-01221.35108
– reference: FrankRLiebEHSeiringerRHardy-Lieb-Thirring inequalities for fractional Schrödinger operatorsJ. Am. Math. Soc.20082192595010.1090/S0894-0347-07-00582-61202.35146
– reference: Garofalo, N., Tralli, G.: Feeling the heat in a group of Heisenberg type. Adv. Math. 381, Art. 107635 (2021)
– reference: DydaBLehrbäckJVähäkangasAVFractional Poincaré and localized Hardy inequalities on metric spacesAdv. Calc. Var.202110.1515/acv-2021-00691394.35008
– reference: FerrariFFranchiBHarnack inequality for fractional Laplacians in Carnot groupsMath. Z.2015279435458329986210.1007/s00209-014-1376-51314.26008
– reference: ScottJMMengeshaTSelf-improving Inequalities for bounded weak solutions to nonlocal double phase equationsCommun. Pure Appl. Anal.202221118321245073771481.35105
– reference: ChenZ-QKumagaiTHeat kernel estimates for jump processes of mixed types on metric measure spacesProbab. Theory Relat. Fields20081401–2277317235767810.1007/s00440-007-0070-51131.60076
– reference: FerrariFMirandaMJrPallaraDPinamontiASireYFractional Laplacians, perimeters and heat semigroups in Carnot groupsDiscrete Cont. Dyn. Syst. Ser. S201811347749137321781375.35610
– reference: FrankRGonzalezMdMMonticelliDTanJAn extension problem for the CR fractional LaplacianJ. Adv. Math.201527097137328653210.1016/j.aim.2014.09.0261304.35747
– reference: KorvenpääJKuusiTPalatucciGFractional superharmonic functions and the Perron method for nonlinear integro-differential equationsMath. Ann.20173693–414431489371354710.1007/s00208-016-1495-x1386.35028
– reference: BrascoLLindgrenESchikorraAHigher Hölder regularity for the fractional p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document}-Laplacian in the superquadratic caseAdv. Math.2018338782846386171610.1016/j.aim.2018.09.0091400.35049
– reference: BaloghZMFässlerKSobrinoHIsometric embeddings into Heisenberg groupsGeom. Dedic.20171951163192382050010.1007/s10711-017-0282-51397.30042
– reference: MingioneGThe singular set of solutions to non-differentiable elliptic systemsArch. Ration. Mech. Anal.2003166287301196144210.1007/s00205-002-0231-81142.35391
– reference: KuusiTMingioneGSireYNonlocal self-improving propertiesAnal. PDE20158157114333692210.2140/apde.2015.8.571317.35284
– reference: PalatucciGSavinOValdinociELocal and Global minimizers for a variational energy involving a fractional normAnn. Mat. Pura Appl.20131924673718308164110.1007/s10231-011-0243-91278.82022
– reference: ManfrediJMingioneGRegularity results for quasilinear elliptic equations in the Heisenberg groupMath. Ann.2007339485544233605810.1007/s00208-007-0121-31128.35034
– reference: PalatucciGPisanteAImproved Sobolev embeddings, profile decomposition, and concentration-compactness for fractional Sobolev spacesCalc. Var. Partial Differ. Equ.2014503–4799829321683410.1007/s00526-013-0656-y1296.35064
– volume-title: Stratified Lie Groups and their sub-Laplacians
  year: 2007
  ident: 1124_CR5
– volume: 34
  start-page: 223
  year: 2011
  ident: 1124_CR14
  publication-title: Potential Anal.
  doi: 10.1007/s11118-010-9190-0
– ident: 1124_CR19
  doi: 10.1016/j.anihpc.2015.04.003
– volume: 21
  start-page: 183
  issue: 1
  year: 2022
  ident: 1124_CR47
  publication-title: Commun. Pure Appl. Anal.
  doi: 10.3934/cpaa.2021174
– volume: 256
  start-page: 461
  issue: 2
  year: 2014
  ident: 1124_CR49
  publication-title: J. Differ. Equ.
  doi: 10.1016/j.jde.2013.09.008
– volume: 11
  start-page: 477
  issue: 3
  year: 2018
  ident: 1124_CR23
  publication-title: Discrete Cont. Dyn. Syst. Ser. S
– volume: 433
  start-page: 434
  year: 2016
  ident: 1124_CR11
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2015.07.050
– volume: 192
  start-page: 673
  issue: 4
  year: 2013
  ident: 1124_CR43
  publication-title: Ann. Mat. Pura Appl.
  doi: 10.1007/s10231-011-0243-9
– volume: 21
  start-page: 925
  year: 2008
  ident: 1124_CR26
  publication-title: J. Am. Math. Soc.
  doi: 10.1090/S0894-0347-07-00582-6
– volume: 302
  start-page: 139
  year: 2021
  ident: 1124_CR51
  publication-title: J. Differ. Equ.
  doi: 10.1016/j.jde.2021.08.038
– volume: 270
  start-page: 97
  year: 2015
  ident: 1124_CR25
  publication-title: J. Adv. Math.
  doi: 10.1016/j.aim.2014.09.026
– volume: 36
  start-page: 2103
  year: 2011
  ident: 1124_CR29
  publication-title: Commun. Partial Differ. Equ.
  doi: 10.1080/03605302.2011.618210
– ident: 1124_CR50
  doi: 10.1186/s13661-020-01425-1
– ident: 1124_CR30
– ident: 1124_CR42
  doi: 10.1007/s00526-022-02301-9
– volume: 366
  start-page: 695
  issue: 1
  year: 2016
  ident: 1124_CR46
  publication-title: Math. Ann.
  doi: 10.1007/s00208-015-1347-0
– volume: 277
  start-page: 365
  year: 2015
  ident: 1124_CR10
  publication-title: Adv. Math.
  doi: 10.1016/j.aim.2014.12.040
– volume: 267
  start-page: 1807
  issue: 6
  year: 2014
  ident: 1124_CR18
  publication-title: J. Funct. Anal.
  doi: 10.1016/j.jfa.2014.05.023
– volume: 132
  start-page: 1
  year: 2019
  ident: 1124_CR32
  publication-title: J. Math. Pures Appl.
  doi: 10.1016/j.matpur.2017.10.004
– volume: 177
  start-page: 699
  year: 2018
  ident: 1124_CR40
  publication-title: Nonlinear Anal.
  doi: 10.1016/j.na.2018.05.004
– volume: 55
  start-page: 1155
  issue: 3
  year: 2006
  ident: 1124_CR48
  publication-title: Indiana Univ. Math. J.
  doi: 10.1512/iumj.2006.55.2706
– volume: 8
  start-page: 57
  issue: 1
  year: 2015
  ident: 1124_CR35
  publication-title: Anal. PDE
  doi: 10.2140/apde.2015.8.57
– volume: 338
  start-page: 782
  year: 2018
  ident: 1124_CR4
  publication-title: Adv. Math.
  doi: 10.1016/j.aim.2018.09.009
– volume: 369
  start-page: 1443
  issue: 3–4
  year: 2017
  ident: 1124_CR34
  publication-title: Math. Ann.
  doi: 10.1007/s00208-016-1495-x
– ident: 1124_CR44
  doi: 10.1016/j.na.2022.112966
– volume: 302
  start-page: 106
  year: 2016
  ident: 1124_CR45
  publication-title: Adv. Math.
  doi: 10.1016/j.aim.2016.07.010
– volume: 83
  start-page: 69
  issue: 1
  year: 1981
  ident: 1124_CR13
  publication-title: Proc. Am. Math. Soc.
  doi: 10.1090/S0002-9939-1981-0619983-8
– volume: 166
  start-page: 287
  year: 2003
  ident: 1124_CR38
  publication-title: Arch. Ration. Mech. Anal.
  doi: 10.1007/s00205-002-0231-8
– volume: 30
  start-page: 1661
  issue: 2
  year: 2020
  ident: 1124_CR16
  publication-title: J. Geom. Anal.
  doi: 10.1007/s12220-019-00275-3
– volume: 339
  start-page: 485
  year: 2007
  ident: 1124_CR37
  publication-title: Math. Ann.
  doi: 10.1007/s00208-007-0121-3
– volume: 136
  start-page: 521
  year: 2012
  ident: 1124_CR20
  publication-title: Bull. Sci. Math.
  doi: 10.1016/j.bulsci.2011.12.004
– volume: 50
  start-page: 799
  issue: 3–4
  year: 2014
  ident: 1124_CR41
  publication-title: Calc. Var. Partial Differ. Equ.
  doi: 10.1007/s00526-013-0656-y
– volume: 70
  start-page: 1717
  issue: 5
  year: 2022
  ident: 1124_CR27
  publication-title: Indiana J. Math.
  doi: 10.1512/iumj.2021.70.8635
– volume: 279
  start-page: 435
  year: 2015
  ident: 1124_CR22
  publication-title: Math. Z.
  doi: 10.1007/s00209-014-1376-5
– volume-title: Hardy Spaces on Homogeneous Groups
  year: 1982
  ident: 1124_CR24
– volume: 30
  start-page: 1584
  issue: 2
  year: 2020
  ident: 1124_CR15
  publication-title: J. Geom. Anal.
  doi: 10.1007/s12220-019-00225-z
– volume: 32
  start-page: 1353
  issue: 4
  year: 2016
  ident: 1124_CR36
  publication-title: Rev. Mat. Iberoamericana
  doi: 10.4171/RMI/921
– volume: 103
  start-page: 265
  year: 2016
  ident: 1124_CR12
  publication-title: J. Math. Pure Appl.
  doi: 10.1016/j.matpur.2015.09.001
– ident: 1124_CR1
  doi: 10.2422/2036-2145.201604_010
– ident: 1124_CR7
  doi: 10.1142/S0219199721500218
– year: 2021
  ident: 1124_CR21
  publication-title: Adv. Calc. Var.
  doi: 10.1515/acv-2021-0069
– ident: 1124_CR6
  doi: 10.1016/j.na.2020.112112
– volume: 195
  start-page: 163
  issue: 1
  year: 2017
  ident: 1124_CR2
  publication-title: Geom. Dedic.
  doi: 10.1007/s10711-017-0282-5
– volume: 304
  start-page: 300
  year: 2017
  ident: 1124_CR3
  publication-title: Adv. Math.
  doi: 10.1016/j.aim.2016.03.039
– volume: 5
  start-page: 435
  year: 2020
  ident: 1124_CR31
  publication-title: Adv. Oper. Theory
  doi: 10.1007/s43036-019-00037-6
– volume: 140
  start-page: 277
  issue: 1–2
  year: 2008
  ident: 1124_CR9
  publication-title: Probab. Theory Relat. Fields
  doi: 10.1007/s00440-007-0070-5
– ident: 1124_CR28
  doi: 10.1016/j.aim.2021.107635
– volume: 32
  start-page: 1245
  year: 2007
  ident: 1124_CR8
  publication-title: Commun. Partial Differ. Equ.
  doi: 10.1080/03605300600987306
– ident: 1124_CR33
  doi: 10.1007/s00526-016-0999-2
– volume: 14
  start-page: 567
  issue: 2
  year: 2021
  ident: 1124_CR39
  publication-title: Anal. PDE
  doi: 10.2140/apde.2021.14.567
– volume: 267
  start-page: 547
  issue: 1
  year: 2019
  ident: 1124_CR17
  publication-title: J. Differ. Equ.
  doi: 10.1016/j.jde.2019.01.017
SSID ssj0046347
Score 2.4464374
Snippet We extend the celebrate De Giorgi-Nash-Moser theory to a wide class of nonlinear equations driven by nonlocal, possibly degenerate, integro-differential...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 77
SubjectTerms Abstract Harmonic Analysis
Continuity (mathematics)
Convex and Discrete Geometry
Differential equations
Differential Geometry
Dynamical Systems and Ergodic Theory
Estimates
Fourier Analysis
Global Analysis and Analysis on Manifolds
Laplace transforms
Lie groups
Mathematics
Mathematics and Statistics
Nonlinear equations
Operators (mathematics)
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NToQwEJ7o6kEPrq4aV1fTgzdtAmxb4KhmN3txY_zL3kihxWyiqLDro_kCvphTKBKNmuiFpGkp0J-Zb-jMfACHHteMpyylia89ytKQUym5S6VCfSSYo4SflmQT_ngcTCbhhQ0KK2pv9_pIspTUTbAbqjKHGu9zXJMeo2IRllDdBYaw4fLqtpa_TPRLWjEEDmgYhZ6woTLf9_FZHTUY88uxaKlthu3_vec6rFl0SU6q5bABCzrrQNsiTWL3cdGB1fOPbK3FJtyN3l4NWTcxqaqm2RyBOZGZIqeGckkrIwzJAEXBg8GlBFEuGVcJNmROhnkVGYFPHTxXacMLMs0Idk9GelpUDmSk_MW1BTfDwfXZiFoCBpqgWTmjrovGDpdoUaCVJjhDIe0n0hMyUTHXPI05Aibh-IJhUQm8hMzXWjAtsINQ9behlT1megdIGsjA1SaZTRwzoTwpeOoEDAthHEvldsGt5yFKbHZyQ5JxHzV5lc24RjiuUTmukejC0cc9T1Vujl9b9-rpjew-LaK--YAAUShWH9fT2VT_3Nvu35rvwYrhqa-c13rQmuVzvQ_LyctsWuQH5fp9B6fD6Xw
  priority: 102
  providerName: Springer Nature
Title Hölder Continuity and Boundedness Estimates for Nonlinear Fractional Equations in the Heisenberg Group
URI https://link.springer.com/article/10.1007/s12220-022-01124-6
https://www.proquest.com/docview/3256688356
Volume 33
WOSCitedRecordID wos000922005100017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1559-002X
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0046347
  issn: 1050-6926
  databaseCode: K7-
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1559-002X
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0046347
  issn: 1050-6926
  databaseCode: M7S
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1559-002X
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0046347
  issn: 1050-6926
  databaseCode: BENPR
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1559-002X
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0046347
  issn: 1050-6926
  databaseCode: M2P
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1559-002X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0046347
  issn: 1050-6926
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTsMwDLZgcODC-BWDMeXADSLaLknbE2Jo0yTENPEnblXapGgSFNZuPBovwIvhtCkTSHDhEilqm7ZyYn92HH8ARx7XjKcspYmvPcrSkFMpuUulQnskmKOEn5ZkE_5oFDw8hGMbcCtsWmWtE0tFrV4SEyM_7aJtFgHiBXH2OqWGNcrsrloKjWVYQWTjmpSuK29ca2ImuiXBGEIIdJFCT9hDM9XROTSMDjW57DjDPUbFd8O0QJs_NkhLuzNo_veLN2DdIk5yXk2RTVjS2RY0Lfokdm0X2_A4_Hg3lN3EFKyaZHOE50RmivQM8ZJWRiWSPiqEZ4NOCWJdMqrKbMicDPLqfAS-pz-tiocXZJIRRJdkqCdFlUZGykDXDtwN-rcXQ2ppGGiCzuWMui66PFyiX4G-muAMVbWfSE_IRMVc8zTm5kcdXzDsKoFNyHytBdMCBwhVdxca2Uum94CkgQxcbUraxDETypOCp07AsBPGsVRuC9xaBlFia5QbqoynaFFd2cgtQrlFpdwi0YLjr2deqwodf97droUV2dVaRAtJteCkFvfi8u-j7f892gGsGXb6KmWtDY1ZPteHsJq8zSZF3oGVXn80vu7A8qVPO-XMNa1_g-31zf0nzXLzww
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NTuMwEB6xgLRcKLCLKBTwAU5gbePaTnJAiJ9WRUDFASRuWSd2UCUI0BQQL8WRF-DFGMcJFUhw48AlkpXEVuLxzDf2zHwAa0wYLlKe0sQ3jPI0FFQp4VGl0R5J3tTSTwuyCb_XC87Pw5MxeKpyYWxYZaUTC0WtrxO7R_6vhbZZBogX5PbNLbWsUfZ0taLQcGJxaB4f0GXLtw72cX7XGeu0T_e6tGQVoAn6SkPqeYjghUKYjK6HFBw1j58oJlWiY2FEGgs7Err3HJta4iXkvjGSG4kdhLqF_f6CCW4ri9lQQXZSaX4uWwWhGUIWdMlCJsskHZeqh4a4SW3sPK4oxql8bwhH6PbDgWxh5zq1n_aHZmC6RNRkxy2BWRgz2RzUSnRNSt2V_4GL7suzpSQntiBXP7tD94OoTJNdSyxltFX5pI0K78qib4JYnvRcGRE1IJ2By__Acdq3rjh6TvoZQfRMuqafuzA5Umzk_YWzb_nceRjPrjOzACQNVOAZW7InjrnUTEmRNgOOjTCOlfbq4FVzHiVlDXZLBXIZjapHWzmJUE6iQk4iWYeNt3duXAWSL59uVMIRldooj0aSUYfNSrxGtz_vbfHr3lbhd_f0-Cg6OugdLsEUQ_znwvMaMD4c3JllmEzuh_18sFKsEwL_v1vsXgGRdEtz
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB1BQQgOFAqIQgEfuIFFk9pOcmRpVQRUlVjUW-TEDqoEoTQtn8YP8GOMs7SAAAlxiWTZmSRexm_imTcA-zbXjEcsoqGjbcoij1MpuUWlwv1IsLoSTpQmm3A6HbfX87ofovhTb_fiSDKLaTAsTfHoaKCio2ngG25rdWo80XF-2oyKWZhjxpHe2OvXd4UuZqKRphhDEIFGkmeLPGzmexmft6Yp3vxyRJruPK3y_995BZZz1EmOs2myCjM6rkA5R6AkX99JBZauJiyuyRrct99eTRJvYiis-vEYATuRsSInJhWTVkZJkiaqiEeDVwmiX9LJiDfkkLSGWcQEPrX5nNGJJ6QfExRP2rqfZI5lJP31tQ63rebNaZvmiRloiObmiFoWGkFcoqWB1pvgDJW3E0pbyFAFXPMo4AikRN0RDItK4MVjjtaCaYECPNXYgFL8FOtNIJErXUsbkpsgYELZUvCo7jIseEEglVUFqxgTP8xZy03yjAd_yrds-tXHfvXTfvVFFQ4m9wwyzo5fW9eKofbz9Zv4DfMBLqJTrD4shnZa_bO0rb8134OF7lnLvzzvXGzDoklln_m31aA0Go71DsyHL6N-MtxNp_U7VRH1RA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=H%C3%B6lder+Continuity+and+Boundedness+Estimates+for+Nonlinear+Fractional+Equations+in+the+Heisenberg+Group&rft.jtitle=The+Journal+of+geometric+analysis&rft.au=Manfredini%2C+Maria&rft.au=Palatucci%2C+Giampiero&rft.au=Piccinini%2C+Mirco&rft.au=Polidoro%2C+Sergio&rft.date=2023-03-01&rft.pub=Springer+Nature+B.V&rft.issn=1050-6926&rft.eissn=1559-002X&rft.volume=33&rft.issue=3&rft.spage=77&rft_id=info:doi/10.1007%2Fs12220-022-01124-6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1050-6926&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1050-6926&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1050-6926&client=summon