Numerical simulation of parametric resonance in point absorbers using a simplified model

Parametric resonance is a non‐linear phenomenon in which a system can oscillate at a frequency different from its exciting frequency. Some wave energy converters are prone to this phenomenon, which is usually detrimental to their performance. Here, a computationally efficient way of simulating param...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IET renewable power generation Ročník 15; číslo 14; s. 3186 - 3205
Hlavní autori: Kurniawan, Adi, Tran, Thanh Toan, Brown, Scott A., Eskilsson, Claes, Orszaghova, Jana, Greaves, Deborah
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United Kingdom Institution of Engineering and Technology (IET) 01.10.2021
Wiley
Predmet:
ISSN:1752-1416, 1752-1424
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Parametric resonance is a non‐linear phenomenon in which a system can oscillate at a frequency different from its exciting frequency. Some wave energy converters are prone to this phenomenon, which is usually detrimental to their performance. Here, a computationally efficient way of simulating parametric resonance in point absorbers is presented. The model is based on linear potential theory, so the wave forces are evaluated at the mean position of the body. However, the first‐order variation of the body's centres of gravity and buoyancy is taken into account. This gives essentially the same result as a more rigorous approach of keeping terms in the equation of motion up to second order in the body motions. The only difference from a linear model is the presence of non‐zero off‐diagonal elements in the mass matrix. The model is benchmarked against state‐of‐the‐art non‐linear Froude–Krylov and computational fluid dynamics models for free decay, regular wave, and focused wave group cases. It is shown that the simplified model is able to simulate parametric resonance in pitch to a reasonable accuracy even though no non‐linear wave forces are included. The simulation speed on a standard computer is up to two orders of magnitude faster than real time.
AbstractList Parametric resonance is a non‐linear phenomenon in which a system can oscillate at a frequency different from its exciting frequency. Some wave energy converters are prone to this phenomenon, which is usually detrimental to their performance. Here, a computationally efficient way of simulating parametric resonance in point absorbers is presented. The model is based on linear potential theory, so the wave forces are evaluated at the mean position of the body. However, the first‐order variation of the body's centres of gravity and buoyancy is taken into account. This gives essentially the same result as a more rigorous approach of keeping terms in the equation of motion up to second order in the body motions. The only difference from a linear model is the presence of non‐zero off‐diagonal elements in the mass matrix. The model is benchmarked against state‐of‐the‐art non‐linear Froude–Krylov and computational fluid dynamics models for free decay, regular wave, and focused wave group cases. It is shown that the simplified model is able to simulate parametric resonance in pitch to a reasonable accuracy even though no non‐linear wave forces are included. The simulation speed on a standard computer is up to two orders of magnitude faster than real time.
Abstract Parametric resonance is a non‐linear phenomenon in which a system can oscillate at a frequency different from its exciting frequency. Some wave energy converters are prone to this phenomenon, which is usually detrimental to their performance. Here, a computationally efficient way of simulating parametric resonance in point absorbers is presented. The model is based on linear potential theory, so the wave forces are evaluated at the mean position of the body. However, the first‐order variation of the body's centres of gravity and buoyancy is taken into account. This gives essentially the same result as a more rigorous approach of keeping terms in the equation of motion up to second order in the body motions. The only difference from a linear model is the presence of non‐zero off‐diagonal elements in the mass matrix. The model is benchmarked against state‐of‐the‐art non‐linear Froude–Krylov and computational fluid dynamics models for free decay, regular wave, and focused wave group cases. It is shown that the simplified model is able to simulate parametric resonance in pitch to a reasonable accuracy even though no non‐linear wave forces are included. The simulation speed on a standard computer is up to two orders of magnitude faster than real time.
Author Eskilsson, Claes
Orszaghova, Jana
Kurniawan, Adi
Greaves, Deborah
Tran, Thanh Toan
Brown, Scott A.
Author_xml – sequence: 1
  givenname: Adi
  orcidid: 0000-0002-9176-3702
  surname: Kurniawan
  fullname: Kurniawan, Adi
  email: adi.kurniawan@uwa.edu.au
  organization: The University of Western Australia
– sequence: 2
  givenname: Thanh Toan
  surname: Tran
  fullname: Tran, Thanh Toan
  organization: National Renewable Energy Laboratory
– sequence: 3
  givenname: Scott A.
  surname: Brown
  fullname: Brown, Scott A.
  organization: University of Plymouth
– sequence: 4
  givenname: Claes
  surname: Eskilsson
  fullname: Eskilsson, Claes
  organization: Aalborg University
– sequence: 5
  givenname: Jana
  surname: Orszaghova
  fullname: Orszaghova, Jana
  organization: The University of Western Australia
– sequence: 6
  givenname: Deborah
  surname: Greaves
  fullname: Greaves, Deborah
  organization: University of Plymouth
BackLink https://www.osti.gov/biblio/1787387$$D View this record in Osti.gov
BookMark eNp9kV9rFDEUxYNUsF198RMEH4Wt-TeTyaMUrYViS2nBt3CT3FlTZpIhmUX67Tu7I30QKQQSTs75XbjnjJyknJCQj5ydc6bMlzLtxDkXQpg35JTrRmy5Eurk5c3bd-Ss1kfGGsO69pT8-rkfsUQPA61x3A8wx5xo7ukEBUacly9asOYEySONiU45ppmCq7k4LJXua0w7Cof0NMQ-YqBjDji8J297GCp--HtvyMP3b_cXP7bXN5dXF1-vt14xYbbBtaZppGulZiF478EDAwitPGiiE73mTivfGjBBase569C1rHcieCOd3JCrlRsyPNqpxBHKk80Q7VHIZWehzNEPaFFp1I1RvDNCKZAugFMtl9orLVv0C-vTysp1jrb6OKP_7XNK6GfLdaflcjbk82ryJddasH8Zypk9lGAPJdhjCYuZ_WNeoMcdzwXi8P8IXyN_4oBPr8Dt3e2lWDPPSN6cVg
CitedBy_id crossref_primary_10_1007_s11071_022_07710_1
crossref_primary_10_1016_j_ijmecsci_2024_109544
crossref_primary_10_1016_j_oceaneng_2022_113090
crossref_primary_10_3390_jmse9111162
crossref_primary_10_1016_j_jsv_2025_119287
crossref_primary_10_1016_j_rser_2025_115850
Cites_doi 10.1115/OMAE2012-83040
10.1016/j.apenergy.2020.115421
10.1016/j.oceaneng.2015.10.041
10.4043/10953-MS
10.1016/0021-9991(79)90145-1
10.1007/978-94-007-1482-3_19
10.1145/325165.325242
10.1080/17445302.2019.1595924
10.1007/s40722-018-0124-z
10.1017/S002211209700846X
10.17736/ijope.2020.jc779
10.1016/j.ijome.2016.04.007
10.1016/j.renene.2019.12.054
10.1016/0141-1187(84)90050-6
10.1016/j.oceaneng.2007.10.008
10.1115/OMAE2009-79909
10.1007/978-3-642-82666-5_21
10.1061/JMCEA3.0000098
10.1016/j.coastaleng.2016.04.002
10.1098/rspa.2018.0459
10.1002/fld.2726
10.1017/9781108674812
10.1016/j.coastaleng.2015.07.001
10.1098/rspa.2019.0762
10.3390/jmse8100819
10.1115/OMAE2014-24445
10.2514/3.12149
10.1115/1.2889772
10.1177/0957650915570351
10.1016/0021-9991(86)90099-9
10.17736/ijope.2020.jc774
ContentType Journal Article
Copyright 2021 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology
Copyright_xml – notice: 2021 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology
DBID 24P
AAYXX
CITATION
OTOTI
DOA
DOI 10.1049/rpg2.12229
DatabaseName Wiley Online Library Open Access
CrossRef
OSTI.GOV
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef


Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1752-1424
EndPage 3205
ExternalDocumentID oai_doaj_org_article_e47e7594189244a3bdab46137c4736ec
1787387
10_1049_rpg2_12229
RPG212229
Genre article
GrantInformation_xml – fundername: Engineering and Physical Sciences Research Council
  funderid: EP/P026109/1; EP/S000747/1
– fundername: National Renewable Energy Laboratory
  funderid: DE‐AC36‐08GO28308
– fundername: Water Power Technologies Office
– fundername: Department of Primary Industries
– fundername: Energistyrelsen
  funderid: 64017‐05197
GroupedDBID .DC
0R~
1OC
24P
29I
5GY
6IK
AAHHS
AAHJG
AAJGR
ABMDY
ABQXS
ACCFJ
ACCMX
ACESK
ACGFS
ACIWK
ACXQS
ADZOD
AEEZP
AENEX
AEQDE
AFRAH
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AVUZU
CS3
DU5
EBS
GROUPED_DOAJ
HZ~
IAO
IEP
IFIPE
IGS
IPLJI
ITC
JAVBF
LAI
MCNEO
O9-
OCL
OK1
P2P
RIE
RNS
ROL
RUI
4.4
7XC
8FE
8FG
8FH
AAMMB
AAYXX
ABJCF
AEFGJ
AEUYN
AFFHD
AFKRA
AGXDD
AIDQK
AIDYY
ARAPS
ATCPS
BENPR
BGLVJ
BHPHI
CCPQU
CITATION
EJD
HCIFZ
IDLOA
L6V
M43
M7S
P62
PATMY
PHGZM
PHGZT
PQGLB
PTHSS
PYCSY
S0W
WIN
OTOTI
ID FETCH-LOGICAL-c4029-db69553b6370ddcccaca0aad633b63282f71b74c69a9d37b11b8eb60fb2dc93b3
IEDL.DBID 24P
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000660487100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1752-1416
IngestDate Fri Oct 03 12:37:22 EDT 2025
Thu May 18 22:32:18 EDT 2023
Wed Oct 29 21:21:34 EDT 2025
Tue Nov 18 22:35:12 EST 2025
Wed Jan 22 16:27:23 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 14
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4029-db69553b6370ddcccaca0aad633b63282f71b74c69a9d37b11b8eb60fb2dc93b3
Notes USDOE
ORCID 0000-0002-9176-3702
0000000291763702
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1049%2Frpg2.12229
PageCount 20
ParticipantIDs doaj_primary_oai_doaj_org_article_e47e7594189244a3bdab46137c4736ec
osti_scitechconnect_1787387
crossref_primary_10_1049_rpg2_12229
crossref_citationtrail_10_1049_rpg2_12229
wiley_primary_10_1049_rpg2_12229_RPG212229
PublicationCentury 2000
PublicationDate 2021-10-01
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-10-01
  day: 01
PublicationDecade 2020
PublicationPlace United Kingdom
PublicationPlace_xml – name: United Kingdom
PublicationTitle IET renewable power generation
PublicationYear 2021
Publisher Institution of Engineering and Technology (IET)
Wiley
Publisher_xml – name: Institution of Engineering and Technology (IET)
– name: Wiley
References 1959; 85
1997; 119
2012
2015; 104
2011
2019; 14
2009
2020; 149
2007
2006
2008; 35
2015; 229
2003
1998; 359
1991
2002
2016; 15
1999
2020; 8
1976; 32
1985; 19
2018; 232
2012; 70
2018; 4
1986; 62
1990
2020; 30
2020
1984; 6
1986
2016; 111
2018
2017
2016
2015
2020; 276
2021; 174
2014
2020; 476
2016; 114
2019; 475
1994; 32
e_1_2_9_31_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_12_1
e_1_2_9_33_1
Faltinsen O.M. (e_1_2_9_30_1) 1990
Ransley E.J. (e_1_2_9_38_1) 2021; 174
Orszaghova J. (e_1_2_9_17_1) 2020; 476
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_37_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_2_1
Egeland O. (e_1_2_9_52_1) 2002
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_13_1
e_1_2_9_32_1
Brown S.A. (e_1_2_9_36_1) 2021; 174
Wang W. (e_1_2_9_27_1) 2018; 232
e_1_2_9_15_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
Orszaghova J. (e_1_2_9_16_1) 2019; 475
Newman J.N. (e_1_2_9_29_1) 2017
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_48_1
References_xml – start-page: 217
  year: 1999
  end-page: 228
  article-title: Alternative shape of spar platforms for use in hostile areas
– volume: 19
  start-page: 245
  year: 1985
  end-page: 254
  article-title: Animating rotation with quarternion curves
  publication-title: ACM SIGGRAPH Comput. Graphics
– start-page: 1045
  year: 2009
  end-page: 1053
  article-title: On the numerical modelling of the nonlinear behaviour of a wave energy converter
– volume: 32
  start-page: 101
  year: 1976
  end-page: 136
  article-title: Towards the ultimate conservative difference scheme V. A second order sequel to Godunov's method
  publication-title: J. Comput. Phys.
– volume: 174
  start-page: 4
  issue: 1
  year: 2021
  end-page: 18
  article-title: Assessing focused wave impacts on floating wave energy converters using OpenFOAM
  publication-title: Proc. Inst. Civ. Eng. ‐ Eng. Comput. Mech.
– year: 2018
– year: 1990
– start-page: 1
  year: 2012
  end-page: 7
  article-title: Testing of a small‐scale floating OWC model in a wave flume
– volume: 15
  start-page: 68
  year: 2016
  end-page: 84
  article-title: Tank testing of an inherently phase‐controlled wave energy converter
  publication-title: Int. J. Mar. Energy
– start-page: 455
  year: 2018
  end-page: 462
  article-title: Parametric excitation of moored wave energy converters using viscous and non‐viscous CFD simulations
– volume: 276
  year: 2020
  article-title: Detecting parametric resonance in a floating oscillating water column device for wave energy conversion: Numerical simulations and validation with physical model tests
  publication-title: Appl. Energy
– volume: 114
  start-page: 177
  year: 2016
  end-page: 193
  article-title: Evaluation of turbulence closure models under spilling and plunging breakers in the surf zone
  publication-title: Coastal Eng.
– volume: 149
  start-page: 217
  year: 2020
  end-page: 225
  article-title: Time‐varying linear quadratic Gaussian optimal control for three‐degree‐of‐freedom wave energy converters
  publication-title: Renew Energy
– volume: 14
  start-page: 344
  year: 2019
  end-page: 356
  article-title: Numerical modelling and wave tank testing of a self‐reacting two‐body wave energy device
  publication-title: Ships Offshore Struct.
– volume: 476
  issue: 2235
  year: 2020
  article-title: Onset and limiting amplitude of yaw instability of a submerged three‐tethered buoy
  publication-title: Proc. R. Soc. A: Math., Phys. Eng. Sci.
– volume: 359
  start-page: 239
  year: 1998
  end-page: 264
  article-title: A numerical study of breaking waves in the surf zone
  publication-title: J. Fluid Mech.
– year: 2015
– start-page: 1
  year: 2011
  end-page: 12
  article-title: Assessment of time‐domain models of wave energy conversion systems
– volume: 475
  issue: 2221
  year: 2019
  article-title: Transverse motion instability of a submerged moored buoy
  publication-title: Proc. R. Soc. A: Math., Phys. Eng. Sci.
– volume: 32
  start-page: 1598
  issue: 8
  year: 1994
  end-page: 1605
  article-title: Two‐equation eddy‐viscosity turbulence models for engineering applications
  publication-title: AIAA J.
– volume: 232
  start-page: 71
  issue: 1
  year: 2018
  end-page: 84
  article-title: Estimation of numerical uncertainty in CFD simulations of a passively controlled wave energy converter
  publication-title: Proc. Inst. Mech. Eng., Part M: J. Eng. Marit. Environ.
– start-page: 64
  year: 1991
  end-page: 71
  article-title: A new model for the kinematics of large ocean waves ‐ application as a design wave
– year: 2003
– start-page: 1
  year: 2017
  end-page: 4
  article-title: Simplified dynamics of a moored submerged buoy
– start-page: 1
  year: 2015
  end-page: 9
  article-title: Wave channel tests of a slack‐moored floating oscillating water column in regular waves
– year: 2014
  article-title: Implementing nonlinear buoyancy and excitation forces in the WEC‐Sim wave energy converter modeling tool
– volume: 30
  start-page: 1
  issue: 1
  year: 2020
  end-page: 10
  article-title: A blind comparative study of focused wave interactions with floating structures (CCP‐WSI Blind Test Series 3)
  publication-title: Int. J. Offshore Polar Eng.
– volume: 70
  start-page: 1073
  year: 2012
  end-page: 1088
  article-title: A wave generation toolbox for the open‐source CFD library: OpenFOAM
  publication-title: Int. J. Numer. Methods Fluids
– volume: 30
  start-page: 20
  issue: 1
  year: 2020
  end-page: 27
  article-title: Quantifying the predictive capability of OpenFOAM 5.0: Focused wave impacts with floating bodies
  publication-title: Int. J. Offshore Polar Eng.
– volume: 104
  start-page: 151
  year: 2015
  end-page: 169
  article-title: Experimental and numerical study of hydrodynamic responses of a combined wind and wave energy converter concept in survival modes
  publication-title: Coastal Eng.
– start-page: 247
  year: 1986
  end-page: 255
– volume: 229
  start-page: 772
  issue: 7
  year: 2015
  end-page: 794
  article-title: Nonlinear hydrodynamic and real fluid effects on wave energy converters
  publication-title: Proc. Inst. Mech. Eng., Part A: J. Power Energy
– volume: 85
  start-page: 67
  issue: 3
  year: 1959
  end-page: 94
  article-title: A method of computation for structural dynamics
  publication-title: J. Eng. Mech. Div.
– year: 2016
– volume: 119
  start-page: 624
  issue: 4
  year: 1997
  end-page: 628
  article-title: Time domain simulation of jack‐up dynamics with the extremes of a Gaussian process
  publication-title: J. Vib. Acoust.
– volume: 174
  start-page: 46
  issue: 1
  year: 2021
  end-page: 61
  article-title: Focused wave interactions with floating structures: A blind comparative study
  publication-title: Proc. Inst. Civ. Eng. ‐ Eng. Comput. Mech.
– volume: 6
  start-page: 118
  issue: 2
  year: 1984
  end-page: 122
  article-title: Numerical simulation of a random sea: A common error and its effect upon wave group statistics
  publication-title: Appl. Ocean Res.
– start-page: 347
  year: 2011
  end-page: 360
– volume: 35
  start-page: 342
  issue: 3–4
  year: 2008
  end-page: 357
  article-title: Assessment of boundary‐element method for modelling a free‐floating sloped wave energy device
  publication-title: Part 2: Experimental validation. Ocean. Eng.
– year: 2002
– start-page: 1
  year: 2007
  end-page: 8
  article-title: Experimental validation of the performances of the SEAREV wave energy converter with real time latching control
– year: 2006
– year: 2020
– volume: 8
  issue: 10
  year: 2020
  article-title: A real‐time detection system for the onset of parametric resonance in wave energy converters
  publication-title: J. Mar. Sci. Eng.
– year: 2017
– volume: 62
  start-page: 40
  issue: 1
  year: 1986
  end-page: 65
  article-title: Solution of the implicitly discretised fluid flow equations by operator‐splitting
  publication-title: J. Comput. Phys.
– start-page: 169
  year: 2012
  end-page: 178
  article-title: Experimental studies of a floating cylindrical OWC WEC
– volume: 4
  start-page: 311
  issue: 4
  year: 2018
  end-page: 322
  article-title: Articulating parametric resonance for an OWC spar buoy in regular and irregular waves
  publication-title: J. Ocean Eng. Mar. Energy
– volume: 111
  start-page: 67
  year: 2016
  end-page: 81
  article-title: Investigation on parametrically excited motions of point absorbers in regular waves
  publication-title: Ocean Eng.
– ident: e_1_2_9_3_1
  doi: 10.1115/OMAE2012-83040
– ident: e_1_2_9_48_1
– ident: e_1_2_9_6_1
  doi: 10.1016/j.apenergy.2020.115421
– ident: e_1_2_9_20_1
– ident: e_1_2_9_12_1
  doi: 10.1016/j.oceaneng.2015.10.041
– ident: e_1_2_9_4_1
– volume-title: Modeling and simulation for automatic control
  year: 2002
  ident: e_1_2_9_52_1
– ident: e_1_2_9_35_1
– ident: e_1_2_9_5_1
– ident: e_1_2_9_23_1
  doi: 10.4043/10953-MS
– ident: e_1_2_9_8_1
– volume-title: Sea Loads on Ships and Offshore Structures
  year: 1990
  ident: e_1_2_9_30_1
– volume-title: Marine Hydrodynamics
  year: 2017
  ident: e_1_2_9_29_1
– ident: e_1_2_9_42_1
  doi: 10.1016/0021-9991(79)90145-1
– ident: e_1_2_9_2_1
  doi: 10.1007/978-94-007-1482-3_19
– ident: e_1_2_9_46_1
  doi: 10.1145/325165.325242
– ident: e_1_2_9_13_1
  doi: 10.1080/17445302.2019.1595924
– ident: e_1_2_9_22_1
  doi: 10.1007/s40722-018-0124-z
– ident: e_1_2_9_49_1
  doi: 10.1017/S002211209700846X
– ident: e_1_2_9_31_1
– ident: e_1_2_9_37_1
  doi: 10.17736/ijope.2020.jc779
– ident: e_1_2_9_14_1
  doi: 10.1016/j.ijome.2016.04.007
– ident: e_1_2_9_24_1
  doi: 10.1016/j.renene.2019.12.054
– ident: e_1_2_9_7_1
– volume: 232
  start-page: 71
  issue: 1
  year: 2018
  ident: e_1_2_9_27_1
  article-title: Estimation of numerical uncertainty in CFD simulations of a passively controlled wave energy converter
  publication-title: Proc. Inst. Mech. Eng., Part M: J. Eng. Marit. Environ.
– ident: e_1_2_9_33_1
  doi: 10.1016/0141-1187(84)90050-6
– volume: 174
  start-page: 46
  issue: 1
  year: 2021
  ident: e_1_2_9_38_1
  article-title: Focused wave interactions with floating structures: A blind comparative study
  publication-title: Proc. Inst. Civ. Eng. ‐ Eng. Comput. Mech.
– ident: e_1_2_9_9_1
  doi: 10.1016/j.oceaneng.2007.10.008
– ident: e_1_2_9_10_1
  doi: 10.1115/OMAE2009-79909
– ident: e_1_2_9_40_1
– ident: e_1_2_9_32_1
– ident: e_1_2_9_18_1
  doi: 10.1007/978-3-642-82666-5_21
– ident: e_1_2_9_47_1
  doi: 10.1061/JMCEA3.0000098
– ident: e_1_2_9_21_1
– volume: 174
  start-page: 4
  issue: 1
  year: 2021
  ident: e_1_2_9_36_1
  article-title: Assessing focused wave impacts on floating wave energy converters using OpenFOAM
  publication-title: Proc. Inst. Civ. Eng. ‐ Eng. Comput. Mech.
– ident: e_1_2_9_45_1
  doi: 10.1016/j.coastaleng.2016.04.002
– volume: 475
  issue: 2221
  year: 2019
  ident: e_1_2_9_16_1
  article-title: Transverse motion instability of a submerged moored buoy
  publication-title: Proc. R. Soc. A: Math., Phys. Eng. Sci.
  doi: 10.1098/rspa.2018.0459
– ident: e_1_2_9_41_1
  doi: 10.1002/fld.2726
– ident: e_1_2_9_28_1
  doi: 10.1017/9781108674812
– ident: e_1_2_9_11_1
  doi: 10.1016/j.coastaleng.2015.07.001
– volume: 476
  issue: 2235
  year: 2020
  ident: e_1_2_9_17_1
  article-title: Onset and limiting amplitude of yaw instability of a submerged three‐tethered buoy
  publication-title: Proc. R. Soc. A: Math., Phys. Eng. Sci.
  doi: 10.1098/rspa.2019.0762
– ident: e_1_2_9_15_1
– ident: e_1_2_9_25_1
  doi: 10.3390/jmse8100819
– ident: e_1_2_9_19_1
  doi: 10.1115/OMAE2014-24445
– ident: e_1_2_9_26_1
– ident: e_1_2_9_44_1
  doi: 10.2514/3.12149
– ident: e_1_2_9_51_1
  doi: 10.1115/1.2889772
– ident: e_1_2_9_50_1
– ident: e_1_2_9_34_1
  doi: 10.1177/0957650915570351
– ident: e_1_2_9_43_1
  doi: 10.1016/0021-9991(86)90099-9
– ident: e_1_2_9_39_1
  doi: 10.17736/ijope.2020.jc774
SSID ssj0059086
Score 2.3381891
Snippet Parametric resonance is a non‐linear phenomenon in which a system can oscillate at a frequency different from its exciting frequency. Some wave energy...
Abstract Parametric resonance is a non‐linear phenomenon in which a system can oscillate at a frequency different from its exciting frequency. Some wave energy...
SourceID doaj
osti
crossref
wiley
SourceType Open Website
Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 3186
SubjectTerms Applied fluid mechanics
Fluid mechanics and aerodynamics (mechanical engineering)
Function theory, analysis
General fluid dynamics theory, simulation and other computational methods
Numerical approximation and analysis
Surface waves, tides, and sea level
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEBUl9NAeSj_pJk0RtJcW3FiWLFnHJDTJoSyhtLA3odFHWEjsZXfT398Z2RsSKO2lJxshgRiNNG_Q6D3GPqYmRa8VVE30bYUhoK0gyFzZmMCAxJwjlYfC38x83i0W9vKe1BfVhI30wKPhjpIyybRWiQ4zBeUlRA8KY5AJykidAp2-tbG7ZGo8g0nIu7wrMm1TCcQcO2JSZY_Wq6vmiyAZ6wehqDD242fAnfUQqJZIc_acPZsgIj8ep_aCPUr9S_b0HnHgK7aY3443Ldd8s7yZFLj4kDkxed-QSFbgmEcPxKaR-LLnq2HZb7mHzbAGBHycyt2vuKfRiEIz4lBeNHFes59nX3-cXlSTRkIVFFWuRNC2bSVoaeoYA65H8LX3UUtqw3wqGwFGBW29jdKAENAl0HWGJgYrQb5he_3Qp7eMQ51xe1uvO5tVEOAFwa1Wh9xBl6WfsU87c7kwEYiTjsW1KxfZyjoyrSumnbEPd31XI23GH3udkNXvehDVdWlAB3CTA7h_OcCMHdCaOUQMRHsbqD4obJ3Ak0h2ZsY-l6X8yyzc98vzpvzt_4_5HLAnDdW9lIK_d2xvu75Nh-xx-LVdbtbvi5v-BrGy6uw
  priority: 102
  providerName: Directory of Open Access Journals
Title Numerical simulation of parametric resonance in point absorbers using a simplified model
URI https://onlinelibrary.wiley.com/doi/abs/10.1049%2Frpg2.12229
https://www.osti.gov/biblio/1787387
https://doaj.org/article/e47e7594189244a3bdab46137c4736ec
Volume 15
WOSCitedRecordID wos000660487100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1752-1424
  dateEnd: 20241231
  omitProxy: false
  ssIdentifier: ssj0059086
  issn: 1752-1416
  databaseCode: DOA
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1752-1424
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0059086
  issn: 1752-1416
  databaseCode: WIN
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1752-1424
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0059086
  issn: 1752-1416
  databaseCode: 24P
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3di9QwEA_n6YM-eH7iet4R0BeF6qZJmwZ88Q5PBVkWUdy3kMnHsnDXLr09_35n0u7qgQjiS1vChIZMJvlNMvkNYy9iGYOrFRRlcFWBS0BVgJepMCGCBok-R8wXhT_r2axZLMx8j73d3oUZ-CF2G25kGXm-JgN3MGQhQVCLSuzXy_K1oHTUN9hNIaSmMV2q-XYepmTe-W6RrspCIO7YkpMq8-ZX3WvLUWbtx1eH1nUdrObV5uzg_9p5j90dUSZ_NwyL-2wvtg_Ynd-4Bx-yxexqOKw555erizGJF-8SJzLwC8qz5Tm64h0RckS-avm6W7Ubjn_tekDMyClifskd1UYgmxDK8pxW5xH7dvb-6-nHYkyzUHhFwS8BalNVEmqppyF4VKl3U-dCLakMXbKkBWjla-NMkBqEgCZCPU1QBm8kyMdsv-3a-IRxmCacIYyrG5OUF-AEIbaq9qmBJkk3YS-3vW39yEFOqTDObT4LV8ZSb9ncWxP2fCe7Hpg3_ih1QkrbSRBbdi7o-qUdjc9GpaOujBINepvKSQgOFOIY7ZWWdfQTdkgqtwg6iDnXU4iR31iBk5ls9IS9yvr9Syvsl_mHMn89_RfhQ3a7pBCZHBv4jO1v-qt4xG75H5vVZX-cR_Nx3iTA5_dPs59c-PnO
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3daxQxEA9aBfXBb_Fs1YC-KGy9bLLJ5rEt1orncUiFewuZfBwH7e6xd_XvN5PdOy2IID7tEiYQMpnJb5LJbwh5G8rgrRRQlN5WRdoCqgIcj4X2ARTwFHOE_FB4oqbTej7XsyE3B9_C9PwQuwM3tIzsr9HA8UC6DzgFkmR2q0V5yLAe9U1yS6RtBgsYlGK2dcRYzTs_LlJVWbAEPLbspEJ_-NX32n6UafvTp03mdR2t5u3m9MF_DvQhuT_gTHrUL4xH5EZoHpN7v7EPPiHz6VV_XXNB18vLoYwXbSNFOvBLrLTlaArGW6TkCHTZ0FW7bDbUwrrtIKFGijnzC2qxd4KyMYFZmgvrPCXfTz-en5wVQ6GFwglMf_EgdVVxkFyNvXdJqc6OrfWSY1sKyqJioIST2mrPFTAGdQA5jlB6pznwZ2SvaZvwnFAYx-QjtJW1jsIxsAwxWyVdrKGO3I7Iu-10GzewkGMxjAuTb8OFNjhbJs_WiLzZya567o0_Sh2j1nYSyJedG9puYQbzM0GooCotWJ3iTWE5eAtpyXDlhOIyuBHZR52bBDuQO9dhkpHbGJbcGa_ViLzPCv7LKMy32acy_734F-HX5M7Z-deJmXyeftknd0tMmMmZggdkb9NdhZfktvuxWa67V3lp_wRktvus
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3daxQxEA9aReyD39KzVQP6orD1sskmm0etnorlOETh3kImH8dBu3vsXfv3N5PdOy2IID5tCBMImczkN5vJbwh5HcrgrRRQlN5WRToCqgIcj4X2ARTwFHOE_FD4VE2n9XyuZ0NuDr6F6fkhdj_c0DKyv0YDDysf-4BTIElmt1qUxwzrUd8kt0SVnCwSO4vZ1hFjNe_8uEhVZcES8Niykwr97tfYa-dRpu1PnzaZ13W0mo-byf3_nOgDcm_AmfR9vzEekhuheUT2f2MffEzm04v-uuaMrpfnQxkv2kaKdODnWGnL0RSMt0jJEeiyoat22WyohXXbQUKNFHPmF9Ti6ARlYwKzNBfWeUJ-Tj79OPlSDIUWCicw_cWD1FXFQXI19t4lpTo7ttZLjn0pKIuKgRJOaqs9V8AY1AHkOELpnebAn5K9pm3CAaEwjslHaCtrHYVjYBlitkq6WEMduR2RN9vlNm5gIcdiGGcm34YLbXC1TF6tEXm1k1313Bt_lPqAWttJIF927mi7hRnMzwShgqq0YHWKN4Xl4C2IhGSUE4rL4EbkEHVuEuxA7lyHSUZuY1hyZ7xWI_I2K_gvszDfZ5_L3Hr2L8IvyZ3Zx4k5_Tr9dkjulpgvkxMFj8jeprsIz8ltd7lZrrsXeWdfAQ_4-zA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+simulation+of+parametric+resonance+in+point+absorbers+using+a+simplified+model&rft.jtitle=IET+renewable+power+generation&rft.au=Kurniawan%2C+Adi&rft.au=Tran%2C+Thanh+Toan&rft.au=Brown%2C+Scott+A.&rft.au=Eskilsson%2C+Claes&rft.date=2021-10-01&rft.issn=1752-1416&rft.eissn=1752-1424&rft.volume=15&rft.issue=14&rft.spage=3186&rft.epage=3205&rft_id=info:doi/10.1049%2Frpg2.12229&rft.externalDBID=10.1049%252Frpg2.12229&rft.externalDocID=RPG212229
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1752-1416&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1752-1416&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1752-1416&client=summon