Efficient non-linear model reduction via a least-squares Petrov-Galerkin projection and compressive tensor approximations

A Petrov–Galerkin projection method is proposed for reducing the dimension of a discrete non‐linear static or dynamic computational model in view of enabling its processing in real time. The right reduced‐order basis is chosen to be invariant and is constructed using the Proper Orthogonal Decomposit...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal for numerical methods in engineering Ročník 86; číslo 2; s. 155 - 181
Hlavní autoři: Carlberg, Kevin, Bou-Mosleh, Charbel, Farhat, Charbel
Médium: Journal Article
Jazyk:angličtina
Vydáno: Chichester, UK John Wiley & Sons, Ltd 15.04.2011
Wiley
Témata:
ISSN:0029-5981, 1097-0207, 1097-0207
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract A Petrov–Galerkin projection method is proposed for reducing the dimension of a discrete non‐linear static or dynamic computational model in view of enabling its processing in real time. The right reduced‐order basis is chosen to be invariant and is constructed using the Proper Orthogonal Decomposition method. The left reduced‐order basis is selected to minimize the two‐norm of the residual arising at each Newton iteration. Thus, this basis is iteration‐dependent, enables capturing of non‐linearities, and leads to the globally convergent Gauss–Newton method. To avoid the significant computational cost of assembling the reduced‐order operators, the residual and action of the Jacobian on the right reduced‐order basis are each approximated by the product of an invariant, large‐scale matrix, and an iteration‐dependent, smaller one. The invariant matrix is computed using a data compression procedure that meets proposed consistency requirements. The iteration‐dependent matrix is computed to enable the least‐squares reconstruction of some entries of the approximated quantities. The results obtained for the solution of a turbulent flow problem and several non‐linear structural dynamics problems highlight the merit of the proposed consistency requirements. They also demonstrate the potential of this method to significantly reduce the computational cost associated with high‐dimensional non‐linear models while retaining their accuracy. Copyright © 2010 John Wiley & Sons, Ltd.
AbstractList A Petrov–Galerkin projection method is proposed for reducing the dimension of a discrete non‐linear static or dynamic computational model in view of enabling its processing in real time. The right reduced‐order basis is chosen to be invariant and is constructed using the Proper Orthogonal Decomposition method. The left reduced‐order basis is selected to minimize the two‐norm of the residual arising at each Newton iteration. Thus, this basis is iteration‐dependent, enables capturing of non‐linearities, and leads to the globally convergent Gauss–Newton method. To avoid the significant computational cost of assembling the reduced‐order operators, the residual and action of the Jacobian on the right reduced‐order basis are each approximated by the product of an invariant, large‐scale matrix, and an iteration‐dependent, smaller one. The invariant matrix is computed using a data compression procedure that meets proposed consistency requirements. The iteration‐dependent matrix is computed to enable the least‐squares reconstruction of some entries of the approximated quantities. The results obtained for the solution of a turbulent flow problem and several non‐linear structural dynamics problems highlight the merit of the proposed consistency requirements. They also demonstrate the potential of this method to significantly reduce the computational cost associated with high‐dimensional non‐linear models while retaining their accuracy. Copyright © 2010 John Wiley & Sons, Ltd.
A Petrov-Galerkin projection method is proposed for reducing the dimension of a discrete non-linear static or dynamic computational model in view of enabling its processing in real time. The right reduced-order basis is chosen to be invariant and is constructed using the Proper Orthogonal Decomposition method. The left reduced-order basis is selected to minimize the two-norm of the residual arising at each Newton iteration. Thus, this basis is iteration-dependent, enables capturing of non-linearities, and leads to the globally convergent Gauss-Newton method. To avoid the significant computational cost of assembling the reduced-order operators, the residual and action of the Jacobian on the right reduced-order basis are each approximated by the product of an invariant, large-scale matrix, and an iteration-dependent, smaller one. The invariant matrix is computed using a data compression procedure that meets proposed consistency requirements. The iteration-dependent matrix is computed to enable the least-squares reconstruction of some entries of the approximated quantities. The results obtained for the solution of a turbulent flow problem and several non-linear structural dynamics problems highlight the merit of the proposed consistency requirements. They also demonstrate the potential of this method to significantly reduce the computational cost associated with high-dimensional non-linear models while retaining their accuracy. Copyright 2010 John Wiley & Sons, Ltd.
Author Farhat, Charbel
Bou-Mosleh, Charbel
Carlberg, Kevin
Author_xml – sequence: 1
  givenname: Kevin
  surname: Carlberg
  fullname: Carlberg, Kevin
  email: carlberg@stanford.edu
  organization: Department of Aeronautics and Astronautics, Stanford University, Mail Code 3035, Stanford, CA 94305, U.S.A
– sequence: 2
  givenname: Charbel
  surname: Bou-Mosleh
  fullname: Bou-Mosleh, Charbel
  organization: Department of Mechanical Engineering, Notre Dame University, P.O. Box 72 Zouk Mikael, Louaize, Lebanon
– sequence: 3
  givenname: Charbel
  surname: Farhat
  fullname: Farhat, Charbel
  organization: Department of Aeronautics and Astronautics, Stanford University, Mail Code 3035, Stanford, CA 94305, U.S.A
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23932215$$DView record in Pascal Francis
BookMark eNp10c1uEzEUBWALtRJpQeIRvEGwmWCP47FniaIQftrCopSldXGuJbceO7UnoXl7nKYggdqVF_7u8bXOCTmKKSIhrzibcsbad3HAqWCSPSMTznrVsJapIzKpV30je82fk5NSrhnjXDIxIbuFc956jCOtQU3wESHTIa0w0IyrjR19inTrgQINCGVsyu0GMhb6Dcects0SAuYbH-k6p2s8cIgratOwrqz4LdIRY0mZwrqaOz_AHpUX5NhBKPjy4Twl3z8sLucfm7Ovy0_z92eNndXdm1aBtbqDGXey0y3MupWQVouOSwU_uXDScsf6Fix21nEtmJPQadBKdtzqVpySN4fc-vjtBstoBl8shgAR06YY3Xdc91zxKl8_SCgWgssQrS9mnevKeWda0Yu25bK66cHZnErJ6Iz14_2nxgw-GM7MvgpTqzD7KurA2_8G_mQ-QpsD_eUD7p505uJ88a_3ZcS7vx7yjemUUNL8uFiaL1dXl_yzOjdz8Ru7zqrd
CODEN IJNMBH
CitedBy_id crossref_primary_10_1002_fld_4260
crossref_primary_10_1016_j_physd_2020_132368
crossref_primary_10_1016_j_compscitech_2019_107922
crossref_primary_10_1002_nme_6942
crossref_primary_10_1016_j_cma_2023_116498
crossref_primary_10_1016_j_crma_2015_03_019
crossref_primary_10_1016_j_finel_2021_103530
crossref_primary_10_1016_j_jcp_2014_01_047
crossref_primary_10_1016_j_jcp_2016_08_032
crossref_primary_10_1016_j_cma_2015_12_029
crossref_primary_10_1002_nme_7240
crossref_primary_10_1016_j_cma_2020_113379
crossref_primary_10_1016_j_ijengsci_2023_103943
crossref_primary_10_2514_1_J059315
crossref_primary_10_1002_nme_4770
crossref_primary_10_1002_nme_5980
crossref_primary_10_1098_rsta_2021_0202
crossref_primary_10_1002_nme_4772
crossref_primary_10_1016_j_cma_2018_02_028
crossref_primary_10_1002_nme_6395
crossref_primary_10_1016_j_jcp_2022_111348
crossref_primary_10_1016_j_cma_2020_112844
crossref_primary_10_2514_1_J058462
crossref_primary_10_1016_j_jcp_2019_108973
crossref_primary_10_1002_nme_6934
crossref_primary_10_1137_130924408
crossref_primary_10_1137_23M1570715
crossref_primary_10_1002_nme_4753
crossref_primary_10_1002_nme_4874
crossref_primary_10_1016_j_cma_2025_118325
crossref_primary_10_1007_s11004_021_09958_6
crossref_primary_10_1016_j_jcp_2017_10_001
crossref_primary_10_1016_j_jcp_2016_08_025
crossref_primary_10_1016_j_jcp_2020_109939
crossref_primary_10_1016_j_compfluid_2022_105604
crossref_primary_10_1016_j_finel_2024_104237
crossref_primary_10_1002_nme_7590
crossref_primary_10_1016_j_jcp_2013_02_028
crossref_primary_10_1016_j_cma_2018_06_035
crossref_primary_10_1016_j_cma_2014_02_011
crossref_primary_10_3390_fluids6070259
crossref_primary_10_1016_j_commatsci_2017_08_022
crossref_primary_10_1016_j_ymssp_2025_112638
crossref_primary_10_1016_j_jcp_2025_113817
crossref_primary_10_1002_nme_5177
crossref_primary_10_1016_j_media_2013_09_003
crossref_primary_10_1016_j_apm_2017_08_012
crossref_primary_10_1016_j_physd_2023_133852
crossref_primary_10_1007_s10494_023_00417_2
crossref_primary_10_1002_nme_4883
crossref_primary_10_1016_j_jcp_2022_111452
crossref_primary_10_1016_j_pnucene_2019_103137
crossref_primary_10_1016_j_compfluid_2016_03_032
crossref_primary_10_1137_100813051
crossref_primary_10_1007_s10915_021_01416_z
crossref_primary_10_1016_j_jcp_2021_110545
crossref_primary_10_1002_nme_4668
crossref_primary_10_1016_j_cma_2021_114050
crossref_primary_10_1088_1748_3190_ac6374
crossref_primary_10_1002_nme_5998
crossref_primary_10_1002_nme_6603
crossref_primary_10_1080_14685248_2020_1832230
crossref_primary_10_1016_j_jocs_2024_102400
crossref_primary_10_1002_fld_3946
crossref_primary_10_1016_j_jocs_2017_01_004
crossref_primary_10_1137_17M1120531
crossref_primary_10_1016_j_cma_2021_113997
crossref_primary_10_1007_s40314_025_03344_2
crossref_primary_10_1016_j_petrol_2020_107273
crossref_primary_10_1002_eqe_3176
crossref_primary_10_1007_s10596_021_10081_y
crossref_primary_10_1007_s11071_024_10507_z
crossref_primary_10_1002_nme_4552
crossref_primary_10_1016_j_jcp_2019_07_053
crossref_primary_10_1063_5_0220705
crossref_primary_10_1016_j_compstruc_2025_107867
crossref_primary_10_1002_fld_5383
crossref_primary_10_1016_j_cageo_2012_03_027
crossref_primary_10_2514_1_J054888
crossref_primary_10_1109_TCYB_2023_3265279
crossref_primary_10_1016_j_cma_2020_113470
crossref_primary_10_1016_j_cma_2023_116161
crossref_primary_10_1002_nme_6281
crossref_primary_10_2514_1_J059785
crossref_primary_10_1016_j_cma_2020_112931
crossref_primary_10_1007_s00366_023_01805_y
crossref_primary_10_1016_j_jocs_2024_102511
crossref_primary_10_2514_1_J063116
crossref_primary_10_3389_fphy_2022_1092931
crossref_primary_10_1016_j_cma_2019_01_024
crossref_primary_10_1016_j_jcp_2025_113915
crossref_primary_10_1115_1_4031175
crossref_primary_10_1016_j_cma_2023_116712
crossref_primary_10_1016_j_oceaneng_2017_05_020
crossref_primary_10_1103_PhysRevFluids_6_094401
crossref_primary_10_1137_19M1307391
crossref_primary_10_1016_j_cma_2024_116978
crossref_primary_10_1007_s10596_018_9782_0
crossref_primary_10_1016_j_jsv_2013_02_014
crossref_primary_10_1016_j_petrol_2020_108137
crossref_primary_10_1016_j_cma_2019_05_039
crossref_primary_10_1016_j_cma_2024_117149
crossref_primary_10_1016_j_cma_2023_116298
crossref_primary_10_1016_j_finel_2023_104021
crossref_primary_10_1007_s00466_012_0706_x
crossref_primary_10_1016_j_jcp_2018_05_027
crossref_primary_10_1002_fld_4066
crossref_primary_10_1002_nme_4963
crossref_primary_10_1016_j_jcp_2023_112086
crossref_primary_10_1016_j_jcp_2016_02_055
crossref_primary_10_1007_s10596_019_09834_7
crossref_primary_10_2514_1_B37064
crossref_primary_10_1002_nme_4608
crossref_primary_10_1016_j_cma_2013_08_001
crossref_primary_10_1016_j_cma_2025_118194
crossref_primary_10_1002_fld_4507
crossref_primary_10_1016_j_jcp_2020_109513
crossref_primary_10_1017_jfm_2019_358
crossref_primary_10_1007_s40314_025_03363_z
crossref_primary_10_1016_j_jcp_2015_09_046
crossref_primary_10_1002_nme_4298
crossref_primary_10_1002_nme_5145
crossref_primary_10_1016_j_cam_2016_01_029
crossref_primary_10_1016_j_matcom_2022_03_006
crossref_primary_10_1016_j_cma_2015_03_020
crossref_primary_10_1016_j_jcp_2021_110336
crossref_primary_10_2514_1_J056807
crossref_primary_10_1016_j_cma_2024_117254
crossref_primary_10_1115_1_4068608
crossref_primary_10_3390_math9141690
crossref_primary_10_1016_j_cma_2011_08_017
crossref_primary_10_1002_nme_5927
crossref_primary_10_1016_j_jcp_2020_109736
crossref_primary_10_1016_j_jcp_2016_10_068
crossref_primary_10_1007_s10444_014_9393_9
crossref_primary_10_2514_1_J060742
crossref_primary_10_1016_j_cma_2013_08_009
crossref_primary_10_1016_j_cma_2020_112991
crossref_primary_10_1109_TMAG_2024_3384009
crossref_primary_10_1002_nme_5135
crossref_primary_10_1002_nme_5499
crossref_primary_10_1002_nme_3074
crossref_primary_10_1016_j_cpc_2019_107013
crossref_primary_10_1016_j_jcp_2024_113038
crossref_primary_10_1002_nme_6462
crossref_primary_10_3390_axioms14050385
crossref_primary_10_1080_10618562_2022_2152014
crossref_primary_10_1007_s00466_015_1238_y
crossref_primary_10_1016_j_jcp_2023_112420
crossref_primary_10_1007_s10444_016_9485_9
crossref_primary_10_1016_j_cma_2012_12_004
crossref_primary_10_2118_193863_PA
crossref_primary_10_1007_s00466_017_1428_x
crossref_primary_10_1007_s00466_025_02670_w
crossref_primary_10_1177_17568277221100650
crossref_primary_10_1002_nme_6009
crossref_primary_10_1029_2022MS003170
crossref_primary_10_1016_j_compchemeng_2016_09_017
crossref_primary_10_1016_j_jcp_2020_109845
crossref_primary_10_3390_app7060586
crossref_primary_10_1038_s41598_023_41039_y
crossref_primary_10_1137_18M1170339
crossref_primary_10_1007_s00466_023_02301_2
crossref_primary_10_1016_j_cma_2023_116744
crossref_primary_10_1002_nme_5283
crossref_primary_10_1016_j_cma_2023_116506
crossref_primary_10_1007_s00366_023_01916_6
crossref_primary_10_1016_j_cma_2025_117779
crossref_primary_10_1016_j_jcp_2018_05_019
crossref_primary_10_1137_19M1257275
crossref_primary_10_1016_j_compstruc_2025_107770
crossref_primary_10_1007_s10444_015_9417_0
crossref_primary_10_1016_j_cma_2017_01_027
crossref_primary_10_1016_j_compfluid_2018_10_006
crossref_primary_10_3390_a13060148
crossref_primary_10_1016_j_compfluid_2020_104615
crossref_primary_10_3390_act10110279
crossref_primary_10_1016_j_cnsns_2025_109138
crossref_primary_10_1016_j_jcp_2012_10_011
crossref_primary_10_1177_0954410019890721
crossref_primary_10_1016_j_cma_2015_02_013
crossref_primary_10_1016_j_cma_2016_10_022
crossref_primary_10_1007_s11242_018_1170_7
crossref_primary_10_1016_j_cma_2018_07_017
crossref_primary_10_1002_nme_6365
crossref_primary_10_1016_j_jcp_2022_111399
crossref_primary_10_1016_j_jocs_2023_101969
crossref_primary_10_1137_140959602
crossref_primary_10_1137_18M1174362
crossref_primary_10_1137_21M1466657
crossref_primary_10_3390_fluids5010039
crossref_primary_10_1016_j_cma_2024_116930
crossref_primary_10_1137_24M1695099
crossref_primary_10_1016_j_cma_2025_117863
crossref_primary_10_1016_j_cma_2025_118393
crossref_primary_10_1016_j_cma_2022_115282
crossref_primary_10_1016_j_jcp_2020_109789
crossref_primary_10_1007_s10825_014_0630_8
crossref_primary_10_1186_s40323_024_00273_3
crossref_primary_10_1016_j_jcp_2023_111908
crossref_primary_10_1007_s00466_017_1523_z
crossref_primary_10_1007_s11012_015_0244_7
crossref_primary_10_1007_s11831_024_10197_1
crossref_primary_10_2514_1_J063885
crossref_primary_10_1007_s00162_023_00670_1
crossref_primary_10_1007_s00466_025_02662_w
crossref_primary_10_1016_j_amc_2023_127920
crossref_primary_10_1016_j_jcp_2022_111068
crossref_primary_10_1016_j_segan_2023_101031
crossref_primary_10_1002_nme_3167
crossref_primary_10_1016_j_jcp_2021_110378
crossref_primary_10_1155_2018_3081078
crossref_primary_10_1002_nme_4371
crossref_primary_10_1002_nme_5583
crossref_primary_10_1137_140989169
crossref_primary_10_1002_nme_7624
crossref_primary_10_1016_j_cma_2012_04_015
crossref_primary_10_1016_j_jcp_2014_06_038
crossref_primary_10_1137_100816717
crossref_primary_10_1007_s13272_014_0116_1
crossref_primary_10_1016_j_cma_2022_115392
crossref_primary_10_1002_nme_7072
crossref_primary_10_1109_MCS_2018_2810460
crossref_primary_10_3390_aerospace10050470
crossref_primary_10_1016_j_cma_2016_12_033
crossref_primary_10_1016_j_jcp_2022_111739
crossref_primary_10_3390_fluids9080178
crossref_primary_10_1002_nme_5332
crossref_primary_10_1002_nme_6544
crossref_primary_10_1016_j_ast_2020_106120
crossref_primary_10_1016_j_jcp_2025_114067
crossref_primary_10_1137_140978922
crossref_primary_10_1007_s11831_025_10299_4
crossref_primary_10_1016_j_heliyon_2023_e20930
crossref_primary_10_1016_j_jsv_2014_06_004
crossref_primary_10_1016_j_cma_2025_118137
crossref_primary_10_1002_nme_4820
crossref_primary_10_1016_j_cma_2022_115620
crossref_primary_10_1016_j_jcp_2016_10_033
crossref_primary_10_1007_s00211_016_0802_5
crossref_primary_10_1007_s10915_022_01901_z
crossref_primary_10_1137_19M1242963
crossref_primary_10_1016_j_jcp_2020_109769
crossref_primary_10_1080_15376494_2021_1986611
crossref_primary_10_3390_s24186008
crossref_primary_10_1016_j_cma_2017_06_011
crossref_primary_10_1016_j_buildenv_2018_10_035
crossref_primary_10_1002_nme_5124
crossref_primary_10_1016_j_cma_2012_11_002
crossref_primary_10_1016_j_jcp_2025_114298
crossref_primary_10_1007_s42967_023_00308_3
crossref_primary_10_1016_j_jcp_2023_112697
crossref_primary_10_1016_j_cma_2021_114206
crossref_primary_10_1016_j_jcp_2018_11_038
crossref_primary_10_1108_EC_11_2021_0647
crossref_primary_10_1002_nme_3185
crossref_primary_10_1016_j_physd_2020_132797
crossref_primary_10_1016_j_ifacol_2018_04_019
crossref_primary_10_1016_j_triboint_2014_02_021
crossref_primary_10_1016_j_paerosci_2017_11_003
crossref_primary_10_1007_s00162_019_00508_9
crossref_primary_10_1016_j_anucene_2015_09_002
crossref_primary_10_1016_j_cma_2021_114341
crossref_primary_10_1137_22M1484018
crossref_primary_10_1016_j_finel_2025_104351
crossref_primary_10_1016_j_jcp_2015_04_030
crossref_primary_10_1016_j_cma_2025_118022
crossref_primary_10_1016_j_cma_2025_118382
crossref_primary_10_1016_j_jcp_2020_109402
crossref_primary_10_1186_s40323_021_00213_5
crossref_primary_10_2514_1_J062304
crossref_primary_10_1002_fld_3777
crossref_primary_10_1137_20M1344263
crossref_primary_10_1007_s00466_016_1290_2
crossref_primary_10_1002_nme_6321
crossref_primary_10_1137_19M1292448
crossref_primary_10_1002_nme_6324
crossref_primary_10_1002_nag_3988
crossref_primary_10_1016_j_cma_2021_113924
crossref_primary_10_1088_1742_6596_2647_2_022001
crossref_primary_10_1051_epjconf_201714011004
crossref_primary_10_1007_s00158_014_1183_y
crossref_primary_10_1016_j_jcp_2024_113452
crossref_primary_10_1002_nme_6625
crossref_primary_10_1016_j_ast_2024_109312
crossref_primary_10_1016_j_cma_2023_116334
crossref_primary_10_1002_nme_5535
crossref_primary_10_1016_j_compfluid_2025_106568
crossref_primary_10_1016_j_cma_2019_112594
crossref_primary_10_2514_1_J060581
crossref_primary_10_1007_s10444_019_09721_w
crossref_primary_10_1007_s10915_023_02128_2
crossref_primary_10_1016_j_cam_2025_116584
crossref_primary_10_1145_2461912_2462006
crossref_primary_10_2514_1_J063840
crossref_primary_10_1016_j_enganabound_2022_02_016
crossref_primary_10_1016_j_cam_2015_01_029
crossref_primary_10_1063_5_0077768
crossref_primary_10_1186_s13362_022_00127_w
crossref_primary_10_1016_j_oceaneng_2024_118308
crossref_primary_10_1016_j_cma_2023_115913
crossref_primary_10_3390_app10217415
crossref_primary_10_1016_j_engstruct_2013_04_004
crossref_primary_10_1007_s10444_019_09710_z
crossref_primary_10_1016_j_cam_2024_115767
crossref_primary_10_1016_j_jcp_2024_113562
crossref_primary_10_1016_j_paerosci_2021_100725
crossref_primary_10_1109_TRO_2018_2861900
crossref_primary_10_1016_j_cma_2014_03_011
crossref_primary_10_1016_j_cma_2015_08_016
crossref_primary_10_1016_j_jcp_2024_113563
crossref_primary_10_1002_num_70031
crossref_primary_10_1016_j_cma_2024_117532
crossref_primary_10_1016_j_jcp_2021_110196
crossref_primary_10_1002_nme_4436
crossref_primary_10_1016_j_compfluid_2021_104895
crossref_primary_10_1007_s10915_022_02001_8
crossref_primary_10_1186_s40323_016_0058_8
crossref_primary_10_3389_fams_2023_1160250
crossref_primary_10_1007_s00466_025_02638_w
crossref_primary_10_1016_j_ijggc_2017_08_017
crossref_primary_10_1016_j_anucene_2013_11_045
crossref_primary_10_1016_j_jcp_2014_01_011
crossref_primary_10_1007_s11222_020_09954_6
crossref_primary_10_1137_130925141
crossref_primary_10_1016_j_compfluid_2023_106047
crossref_primary_10_1002_nme_6068
crossref_primary_10_1016_j_jsv_2021_116055
crossref_primary_10_1016_j_cma_2022_115747
crossref_primary_10_1016_j_jcp_2022_111655
crossref_primary_10_1016_j_cma_2025_117946
crossref_primary_10_1016_j_jcp_2022_111412
crossref_primary_10_1016_j_jcp_2024_113677
crossref_primary_10_1016_j_advengsoft_2025_103864
crossref_primary_10_1016_j_cma_2023_116232
crossref_primary_10_1016_j_jcp_2023_112387
crossref_primary_10_1017_jfm_2021_1051
crossref_primary_10_1016_j_cma_2025_117920
crossref_primary_10_1002_nme_5798
crossref_primary_10_1002_nme_4588
crossref_primary_10_1016_j_ast_2019_07_016
crossref_primary_10_1016_j_compositesa_2024_108649
crossref_primary_10_1002_nme_4468
crossref_primary_10_1002_nme_6525
crossref_primary_10_1002_num_70006
crossref_primary_10_1016_j_compchemeng_2025_109293
crossref_primary_10_1007_s10444_015_9409_0
crossref_primary_10_2514_1_J055773
crossref_primary_10_1016_j_cma_2012_03_005
crossref_primary_10_1016_j_physd_2020_132471
crossref_primary_10_1016_j_mechrescom_2020_103599
crossref_primary_10_1137_20M1323552
crossref_primary_10_1088_1361_6471_ac83dd
crossref_primary_10_1016_j_cma_2021_113956
crossref_primary_10_1016_j_finel_2025_104439
crossref_primary_10_1002_fld_4255
crossref_primary_10_1007_s00162_020_00529_9
crossref_primary_10_1002_fld_4930
crossref_primary_10_1016_j_cma_2017_08_036
crossref_primary_10_1016_j_cma_2021_113723
crossref_primary_10_1137_15M1013870
crossref_primary_10_1145_2461912_2461987
crossref_primary_10_1007_s00500_020_04997_3
crossref_primary_10_1016_j_compfluid_2025_106783
crossref_primary_10_1080_09243046_2024_2313251
crossref_primary_10_1002_nme_7179
crossref_primary_10_1016_j_jcp_2020_109681
crossref_primary_10_1098_rsta_2021_0213
crossref_primary_10_1002_nme_5312
crossref_primary_10_1016_j_cma_2021_114259
crossref_primary_10_1109_MAES_2019_2921177
crossref_primary_10_2514_1_J062869
crossref_primary_10_1002_nme_7056
crossref_primary_10_1016_j_jcp_2021_110841
Cites_doi 10.1016/j.cma.2005.08.026
10.2514/6.1999-655
10.1137/1.9780898718713
10.1017/S0022112004001338
10.1016/j.paerosci.2005.02.001
10.1016/j.compfluid.2004.11.006
10.2514/1.11246
10.1016/j.crma.2004.08.006
10.1364/JOSAA.12.001657
10.23919/ACC.2004.1384488
10.2514/6.2003-3847
10.2514/2.867
10.1007/s11071-005-2803-2
10.2514/2.1570
10.1177/1077546302008001518
10.2514/2.3128
10.1109/TAC.2008.2006102
10.1002/nme.2309
10.1137/070694855
10.1016/S0889-9746(03)00044-6
10.1016/j.jfluidstructs.2003.06.002
10.2514/6.2003-4213
10.1137/1.9781611970944
10.2514/1.24512
10.1137/1.9780898718003
10.2514/1.35374
10.1090/qam/910462
10.1007/BF03024948
10.1051/m2an:2007031
10.1002/fld.867
10.2514/6.2000-2545
10.1063/1.2033624
10.2514/6.2006-1819
10.2514/1.2159
10.1017/CBO9780511622700
10.1002/nme.2746
10.1137/S0036142901389049
10.1016/j.physd.2003.03.001
ContentType Journal Article
Copyright Copyright © 2010 John Wiley & Sons, Ltd.
2015 INIST-CNRS
Copyright_xml – notice: Copyright © 2010 John Wiley & Sons, Ltd.
– notice: 2015 INIST-CNRS
DBID BSCLL
AAYXX
CITATION
IQODW
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1002/nme.3050
DatabaseName Istex
CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Mathematics
Physics
EISSN 1097-0207
EndPage 181
ExternalDocumentID 23932215
10_1002_nme_3050
NME3050
ark_67375_WNG_KVVT1J7M_C
Genre article
GroupedDBID -~X
.3N
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ACAHQ
ACBWZ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
TN5
TUS
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WLBEL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
AAHHS
ACCFJ
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
RWI
RWS
WRC
AAYXX
CITATION
O8X
.4S
6TJ
ABDPE
ABEML
ACKIV
ACSCC
AGHNM
AI.
ARCSS
GBZZK
IQODW
M6O
PALCI
RIWAO
SAMSI
VH1
VOH
ZY4
~A~
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c4020-27acc86a41f5682a46d35c836157ab13f5c1f092ace6cf1830f5a68a87561c823
IEDL.DBID DRFUL
ISICitedReferencesCount 473
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000288339000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0029-5981
1097-0207
IngestDate Fri Sep 05 11:56:46 EDT 2025
Mon Jul 21 09:16:32 EDT 2025
Sat Nov 29 06:43:43 EST 2025
Tue Nov 18 22:09:47 EST 2025
Wed Jan 22 16:49:27 EST 2025
Sun Sep 21 06:17:54 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Invariant
Turbulent flow
Karhunen Loeve transformation
Vibration
compressive approximation
Gauss Newton method
Real time
Modeling
gappy data
Galerkin-Petrov method
discrete non-linear systems
Static model
Petrov―Galerkin projection
Least squares method
Galerkin method
Reduced order systems
proper orthogonal decomposition
Non linear effect
Incomplete information
Dynamic model
non-linear model reduction
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4020-27acc86a41f5682a46d35c836157ab13f5c1f092ace6cf1830f5a68a87561c823
Notes ArticleID:NME3050
istex:4E8851FB8294A59F96E8405757060C1F0558655E
ark:/67375/WNG-KVVT1J7M-C
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 896189171
PQPubID 23500
PageCount 27
ParticipantIDs proquest_miscellaneous_896189171
pascalfrancis_primary_23932215
crossref_citationtrail_10_1002_nme_3050
crossref_primary_10_1002_nme_3050
wiley_primary_10_1002_nme_3050_NME3050
istex_primary_ark_67375_WNG_KVVT1J7M_C
PublicationCentury 2000
PublicationDate 15 April 2011
PublicationDateYYYYMMDD 2011-04-15
PublicationDate_xml – month: 04
  year: 2011
  text: 15 April 2011
  day: 15
PublicationDecade 2010
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
– name: Chichester
PublicationTitle International journal for numerical methods in engineering
PublicationTitleAlternate Int. J. Numer. Meth. Engng
PublicationYear 2011
Publisher John Wiley & Sons, Ltd
Wiley
Publisher_xml – name: John Wiley & Sons, Ltd
– name: Wiley
References Everson R, Sirovich L. Karhunen-Loeve procedure for gappy data. Journal of the Optical Society of America A 1995; 12(8):1657-1664.
Bui-Thanh T, Willcox K, Ghattas O. Model reduction for large-scale systems with high-dimensional parametric input space. SIAM Journal on Scientific Computing 2008; 30(6):3270-3288.
Queipo N, Haftka R, Shyy W, Goel T, Vaidyanathan R, Tucker P. Surrogate-based analysis and optimization. Progress in Aerospace Sciences 2005; 41(1):1-28.
Kerschen G, Golinval J-C, Vakakis AF, Bergman LA. The method of proper orthogonal decomposition for dynamical characterization and order reduction of mechanical systems: an overview. Nonlinear Dynamics 2005; 41:147-169.
Golub GH, Loan CFV. Matrix Computations (3rd edn). Johns Hopkins University Press: Baltimore, MD, 1996.
Lieu T, Farhat C, Lesoinne M. Reduced-order fluid/structure modeling of a complete aircraft configuration. Computer Methods in Applied Mechanics and Engineering 2006; 195:5730-5742.
Bergmann M, Cordier L, Brancher J-P. Optimal rotary control of the cylinder wake using proper orthogonal decomposition reduced-order model. Physics of Fluids 2005; 17(9):80-101.
Barrault M, Maday Y, Nguyen N, Patera A. An 'empirical interpolation' method: application to efficient reduced-basis discretization of partial differential equations. Comptes Rendus Mathématique Académie des Sciences 2004; 339(9):667-672.
Sirovich L. Turbulence and the dynamics of coherent structures. I-coherent structures. Quarterly of Applied Mathematics 1987; 45:561-571.
Epureanu BI. A parametric analysis of reduced order models of viscous flows in turbomachinery. Journal of Fluids and Structures 2003; 17:971-982.
Veroy K, Patera AT. Certified real-time solution of the parametrized steady incompressible Navier-Stokes equations: rigorous reduced-basis a posteriori error bounds. International Journal for Numerical Methods in Fluids 2005; 47(8):773-788.
Grepl MA, Maday Y, Nguyen NC, Patera AT. Efficient reduced-basis treatment of nonaffine and nonlinear partial differential equations. Mathematical Modelling and Numerical Analysis 2007; 41(3):575-605.
Galbally D, Fidkowski K, Willcox K, Ghattas O. Non-linear model reduction for uncertainty quantification in large-scale inverse problems. International Journal for Numerical Methods in Engineering 2010; 81(12):1581-1608.
Amabili M, Sarkar A, Paidoussis MP. Reduced-order models for nonlinear vibrations of cylindrical shells via the proper orthogonal decomposition method. Journal of Fluids and Structures 2003; 18(2):227-250.
Rathinam M, Petzold LR. A new look at proper orthogonal decomposition. SIAM Journal on Numerical Analysis 2003; 41(5):1893-1925.
Venturi D, Karniadakis G. Gappy data and reconstruction procedures for flow past a cylinder. Journal of Fluid Mechanics 2004; 519:315-336.
Amsallem D, Farhat C. An interpolation method for adapting reduced-order models and application to aeroelasticity. AIAA Journal 2008; 46:1803-1813.
Astrid P, Weiland S, Willcox K, Backx T. Missing point estimation in models described by proper orthogonal decomposition. IEEE Transactions on Automatic Control 2008; 53(10):2237-2251.
Nocedal J, Wright SJ. Numerical Optimization (2nd edn). Springer: Berlin, 2006.
Thomas JP, Dowell EH, Hall KC. Three-dimensional transonic aeroelasticity using proper orthogonal decomposition-based reduced order models. Journal of Aircraft 2003; 40(3):544-551.
Kim T, Hong M, Bhatia KB, SenGupta G. Aeroelastic model reduction for affordable computational fluid dynamics-based flutter analysis. AIAA Journal 2005; 43(12):2487-2495.
Willcox K. Unsteady flow sensing and estimation via the gappy proper orthogonal decomposition. Computers and Fluids 2006; 35(2):208-226.
Han S, Feeny BF. Enhanced proper orthogonal decomposition for the modal analysis of homogeneous structures. Journal of Vibration and Control 2002; 8(1):19-40.
Amsallem D, Carlberg K, Cortial J, Farhat C. A method for interpolating on manifolds structural dynamics reduced-order models. International Journal for Numerical Methods in Engineering 2009; 78:275-295.
Rozza G, Huynh DBP, Patera AT. Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations. Archives of Computational Methods in Engineering 2007; 15(3):1-47.
Bui-Thanh T, Damodaran M, Willcox K. Aerodynamic data reconstruction and inverse design using proper orthogonal decomposition. AIAA Journal 2004; 42(8):1505-1516.
Willcox K, Peraire J. Balanced model reduction via the proper orthogonal decomposition. AIAA Journal 2002; 40(11):2323-2330.
Nguyen NC, Peraire J. An efficient reduced-order modeling approach for non-linear parametrized partial differential equations. International Journal for Numerical Methods in Engineering 2008; 76:27-55.
Saad Y. Iterative Methods for Sparse Linear Systems (2nd edn). Society for Industrial and Applied Mathematics: Philadelphia, PA, 2003.
Rowley C, Colonius T, Murray R. Model reduction for compressible flows using POD and Galerkin projection. Physica D: Nonlinear Phenomena 2004; 189(1-2):115-129.
Hall KC, Thomas JP, Dowell EH. Proper orthogonal decomposition technique for transonic unsteady aerodynamic flows. AIAA Journal 2000; 38(2):1853-1862.
Kelley CT. Iterative Methods for Linear and Nonlinear Equations. Society for Industrial and Applied Mathematics: Philadelphia, PA, 1995.
Antoulas AC. Approximation of Large-scale Dynamical Systems. Society for Industrial and Applied Mathematics: Philadelphia, PA, 2005.
Holmes P, Lumley J, Berkooz G. Turbulence, Coherent Structures, Dynamical Systems and Symmetry. Cambridge University Press: Cambridge, 1996.
Lieu T, Farhat C. Adaptation of aeroelastic reduced-order models and application to an F-16 configuration. AIAA Journal 2007; 45:1244-1269.
2004; 189
2004; 42
2006; 35
1995; 12
2002; 8
2009
2006; 195
2005; 41
1996
2007
2005; 43
2006
1995
2005
2003; 17
2008; 76
2003; 18
2004
2003
2008; 30
2008; 53
2010; 81
2007; 15
2005; 47
2009; 78
1987; 45
2000; 38
2004; 19
2002; 40
2008; 46
1984
2007; 41
2004; 339
2003; 40
2005; 17
2007; 45
2003; 41
2004; 519
Nocedal J (e_1_2_13_37_2) 2006
e_1_2_13_47_2
e_1_2_13_26_2
e_1_2_13_45_2
e_1_2_13_25_2
e_1_2_13_46_2
e_1_2_13_20_2
e_1_2_13_43_2
e_1_2_13_44_2
e_1_2_13_22_2
e_1_2_13_21_2
e_1_2_13_42_2
e_1_2_13_8_2
e_1_2_13_6_2
e_1_2_13_5_2
e_1_2_13_9_2
Amsallem D (e_1_2_13_23_2) 2009; 78
e_1_2_13_16_2
e_1_2_13_39_2
e_1_2_13_17_2
e_1_2_13_38_2
e_1_2_13_18_2
e_1_2_13_19_2
Ahmed SR (e_1_2_13_40_2) 1984
e_1_2_13_12_2
e_1_2_13_35_2
e_1_2_13_13_2
e_1_2_13_34_2
e_1_2_13_14_2
e_1_2_13_15_2
e_1_2_13_31_2
e_1_2_13_30_2
e_1_2_13_10_2
e_1_2_13_33_2
e_1_2_13_11_2
e_1_2_13_32_2
Golub GH (e_1_2_13_36_2) 1996
Grepl MA (e_1_2_13_24_2) 2007
Nguyen NC (e_1_2_13_7_2) 2005
e_1_2_13_4_2
e_1_2_13_3_2
e_1_2_13_2_2
Hinterberger C (e_1_2_13_41_2) 2004
e_1_2_13_28_2
e_1_2_13_27_2
e_1_2_13_29_2
References_xml – reference: Nocedal J, Wright SJ. Numerical Optimization (2nd edn). Springer: Berlin, 2006.
– reference: Kerschen G, Golinval J-C, Vakakis AF, Bergman LA. The method of proper orthogonal decomposition for dynamical characterization and order reduction of mechanical systems: an overview. Nonlinear Dynamics 2005; 41:147-169.
– reference: Antoulas AC. Approximation of Large-scale Dynamical Systems. Society for Industrial and Applied Mathematics: Philadelphia, PA, 2005.
– reference: Kelley CT. Iterative Methods for Linear and Nonlinear Equations. Society for Industrial and Applied Mathematics: Philadelphia, PA, 1995.
– reference: Bui-Thanh T, Willcox K, Ghattas O. Model reduction for large-scale systems with high-dimensional parametric input space. SIAM Journal on Scientific Computing 2008; 30(6):3270-3288.
– reference: Nguyen NC, Peraire J. An efficient reduced-order modeling approach for non-linear parametrized partial differential equations. International Journal for Numerical Methods in Engineering 2008; 76:27-55.
– reference: Epureanu BI. A parametric analysis of reduced order models of viscous flows in turbomachinery. Journal of Fluids and Structures 2003; 17:971-982.
– reference: Rowley C, Colonius T, Murray R. Model reduction for compressible flows using POD and Galerkin projection. Physica D: Nonlinear Phenomena 2004; 189(1-2):115-129.
– reference: Holmes P, Lumley J, Berkooz G. Turbulence, Coherent Structures, Dynamical Systems and Symmetry. Cambridge University Press: Cambridge, 1996.
– reference: Amsallem D, Carlberg K, Cortial J, Farhat C. A method for interpolating on manifolds structural dynamics reduced-order models. International Journal for Numerical Methods in Engineering 2009; 78:275-295.
– reference: Amsallem D, Farhat C. An interpolation method for adapting reduced-order models and application to aeroelasticity. AIAA Journal 2008; 46:1803-1813.
– reference: Grepl MA, Maday Y, Nguyen NC, Patera AT. Efficient reduced-basis treatment of nonaffine and nonlinear partial differential equations. Mathematical Modelling and Numerical Analysis 2007; 41(3):575-605.
– reference: Golub GH, Loan CFV. Matrix Computations (3rd edn). Johns Hopkins University Press: Baltimore, MD, 1996.
– reference: Rozza G, Huynh DBP, Patera AT. Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations. Archives of Computational Methods in Engineering 2007; 15(3):1-47.
– reference: Barrault M, Maday Y, Nguyen N, Patera A. An 'empirical interpolation' method: application to efficient reduced-basis discretization of partial differential equations. Comptes Rendus Mathématique Académie des Sciences 2004; 339(9):667-672.
– reference: Sirovich L. Turbulence and the dynamics of coherent structures. I-coherent structures. Quarterly of Applied Mathematics 1987; 45:561-571.
– reference: Saad Y. Iterative Methods for Sparse Linear Systems (2nd edn). Society for Industrial and Applied Mathematics: Philadelphia, PA, 2003.
– reference: Willcox K. Unsteady flow sensing and estimation via the gappy proper orthogonal decomposition. Computers and Fluids 2006; 35(2):208-226.
– reference: Han S, Feeny BF. Enhanced proper orthogonal decomposition for the modal analysis of homogeneous structures. Journal of Vibration and Control 2002; 8(1):19-40.
– reference: Everson R, Sirovich L. Karhunen-Loeve procedure for gappy data. Journal of the Optical Society of America A 1995; 12(8):1657-1664.
– reference: Rathinam M, Petzold LR. A new look at proper orthogonal decomposition. SIAM Journal on Numerical Analysis 2003; 41(5):1893-1925.
– reference: Thomas JP, Dowell EH, Hall KC. Three-dimensional transonic aeroelasticity using proper orthogonal decomposition-based reduced order models. Journal of Aircraft 2003; 40(3):544-551.
– reference: Kim T, Hong M, Bhatia KB, SenGupta G. Aeroelastic model reduction for affordable computational fluid dynamics-based flutter analysis. AIAA Journal 2005; 43(12):2487-2495.
– reference: Willcox K, Peraire J. Balanced model reduction via the proper orthogonal decomposition. AIAA Journal 2002; 40(11):2323-2330.
– reference: Veroy K, Patera AT. Certified real-time solution of the parametrized steady incompressible Navier-Stokes equations: rigorous reduced-basis a posteriori error bounds. International Journal for Numerical Methods in Fluids 2005; 47(8):773-788.
– reference: Lieu T, Farhat C. Adaptation of aeroelastic reduced-order models and application to an F-16 configuration. AIAA Journal 2007; 45:1244-1269.
– reference: Galbally D, Fidkowski K, Willcox K, Ghattas O. Non-linear model reduction for uncertainty quantification in large-scale inverse problems. International Journal for Numerical Methods in Engineering 2010; 81(12):1581-1608.
– reference: Venturi D, Karniadakis G. Gappy data and reconstruction procedures for flow past a cylinder. Journal of Fluid Mechanics 2004; 519:315-336.
– reference: Bergmann M, Cordier L, Brancher J-P. Optimal rotary control of the cylinder wake using proper orthogonal decomposition reduced-order model. Physics of Fluids 2005; 17(9):80-101.
– reference: Queipo N, Haftka R, Shyy W, Goel T, Vaidyanathan R, Tucker P. Surrogate-based analysis and optimization. Progress in Aerospace Sciences 2005; 41(1):1-28.
– reference: Hall KC, Thomas JP, Dowell EH. Proper orthogonal decomposition technique for transonic unsteady aerodynamic flows. AIAA Journal 2000; 38(2):1853-1862.
– reference: Astrid P, Weiland S, Willcox K, Backx T. Missing point estimation in models described by proper orthogonal decomposition. IEEE Transactions on Automatic Control 2008; 53(10):2237-2251.
– reference: Amabili M, Sarkar A, Paidoussis MP. Reduced-order models for nonlinear vibrations of cylindrical shells via the proper orthogonal decomposition method. Journal of Fluids and Structures 2003; 18(2):227-250.
– reference: Lieu T, Farhat C, Lesoinne M. Reduced-order fluid/structure modeling of a complete aircraft configuration. Computer Methods in Applied Mechanics and Engineering 2006; 195:5730-5742.
– reference: Bui-Thanh T, Damodaran M, Willcox K. Aerodynamic data reconstruction and inverse design using proper orthogonal decomposition. AIAA Journal 2004; 42(8):1505-1516.
– year: 2009
– volume: 17
  start-page: 80
  issue: 9
  year: 2005
  end-page: 101
  article-title: Optimal rotary control of the cylinder wake using proper orthogonal decomposition reduced‐order model
  publication-title: Physics of Fluids
– volume: 40
  start-page: 2323
  issue: 11
  year: 2002
  end-page: 2330
  article-title: Balanced model reduction via the proper orthogonal decomposition
  publication-title: AIAA Journal
– volume: 45
  start-page: 561
  year: 1987
  end-page: 571
  article-title: Turbulence and the dynamics of coherent structures. I—coherent structures
  publication-title: Quarterly of Applied Mathematics
– year: 2005
– volume: 45
  start-page: 1244
  year: 2007
  end-page: 1269
  article-title: Adaptation of aeroelastic reduced‐order models and application to an F‐16 configuration
  publication-title: AIAA Journal
– volume: 18
  start-page: 227
  issue: 2
  year: 2003
  end-page: 250
  article-title: Reduced‐order models for nonlinear vibrations of cylindrical shells via the proper orthogonal decomposition method
  publication-title: Journal of Fluids and Structures
– volume: 339
  start-page: 667
  issue: 9
  year: 2004
  end-page: 672
  article-title: An ‘empirical interpolation’ method: application to efficient reduced‐basis discretization of partial differential equations
  publication-title: Comptes Rendus Mathématique Académie des Sciences
– year: 2003
– volume: 35
  start-page: 208
  issue: 2
  year: 2006
  end-page: 226
  article-title: Unsteady flow sensing and estimation via the gappy proper orthogonal decomposition
  publication-title: Computers and Fluids
– year: 1996
– volume: 47
  start-page: 773
  issue: 8
  year: 2005
  end-page: 788
  article-title: Certified real‐time solution of the parametrized steady incompressible Navier–Stokes equations: rigorous reduced‐basis a posteriori error bounds
  publication-title: International Journal for Numerical Methods in Fluids
– volume: 41
  start-page: 575
  issue: 3
  year: 2007
  end-page: 605
  article-title: Efficient reduced‐basis treatment of nonaffine and nonlinear partial differential equations
  publication-title: Mathematical Modelling and Numerical Analysis
– volume: 41
  start-page: 1
  issue: 1
  year: 2005
  end-page: 28
  article-title: Surrogate‐based analysis and optimization
  publication-title: Progress in Aerospace Sciences
– volume: 8
  start-page: 19
  issue: 1
  year: 2002
  end-page: 40
  article-title: Enhanced proper orthogonal decomposition for the modal analysis of homogeneous structures
  publication-title: Journal of Vibration and Control
– volume: 41
  start-page: 1893
  issue: 5
  year: 2003
  end-page: 1925
  article-title: A new look at proper orthogonal decomposition
  publication-title: SIAM Journal on Numerical Analysis
– start-page: 3705
  year: 2004
  end-page: 3710
– volume: 78
  start-page: 275
  year: 2009
  end-page: 295
  article-title: A method for interpolating on manifolds structural dynamics reduced‐order models
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 19
  year: 2004
– volume: 15
  start-page: 1
  issue: 3
  year: 2007
  end-page: 47
  article-title: Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations
  publication-title: Archives of Computational Methods in Engineering
– volume: 53
  start-page: 2237
  issue: 10
  year: 2008
  end-page: 2251
  article-title: Missing point estimation in models described by proper orthogonal decomposition
  publication-title: IEEE Transactions on Automatic Control
– volume: 30
  start-page: 3270
  issue: 6
  year: 2008
  end-page: 3288
  article-title: Model reduction for large‐scale systems with high‐dimensional parametric input space
  publication-title: SIAM Journal on Scientific Computing
– volume: 17
  start-page: 971
  year: 2003
  end-page: 982
  article-title: A parametric analysis of reduced order models of viscous flows in turbomachinery
  publication-title: Journal of Fluids and Structures
– volume: 81
  start-page: 1581
  issue: 12
  year: 2010
  end-page: 1608
  article-title: Non‐linear model reduction for uncertainty quantification in large‐scale inverse problems
  publication-title: International Journal for Numerical Methods in Engineering
– year: 1984
– volume: 12
  start-page: 1657
  issue: 8
  year: 1995
  end-page: 1664
  article-title: Karhunen–Loeve procedure for gappy data
  publication-title: Journal of the Optical Society of America A
– volume: 189
  start-page: 115
  year: 2004
  end-page: 129
  article-title: Model reduction for compressible flows using POD and Galerkin projection
  publication-title: Physica D: Nonlinear Phenomena
– volume: 41
  start-page: 147
  year: 2005
  end-page: 169
  article-title: The method of proper orthogonal decomposition for dynamical characterization and order reduction of mechanical systems: an overview
  publication-title: Nonlinear Dynamics
– start-page: 1529
  year: 2005
  end-page: 1564
– volume: 43
  start-page: 2487
  issue: 12
  year: 2005
  end-page: 2495
  article-title: Aeroelastic model reduction for affordable computational fluid dynamics‐based flutter analysis
  publication-title: AIAA Journal
– year: 2006
– volume: 40
  start-page: 544
  issue: 3
  year: 2003
  end-page: 551
  article-title: Three‐dimensional transonic aeroelasticity using proper orthogonal decomposition‐based reduced order models
  publication-title: Journal of Aircraft
– year: 1995
– volume: 38
  start-page: 1853
  issue: 2
  year: 2000
  end-page: 1862
  article-title: Proper orthogonal decomposition technique for transonic unsteady aerodynamic flows
  publication-title: AIAA Journal
– volume: 519
  start-page: 315
  year: 2004
  end-page: 336
  article-title: Gappy data and reconstruction procedures for flow past a cylinder
  publication-title: Journal of Fluid Mechanics
– volume: 46
  start-page: 1803
  year: 2008
  end-page: 1813
  article-title: An interpolation method for adapting reduced‐order models and application to aeroelasticity
  publication-title: AIAA Journal
– volume: 195
  start-page: 5730
  year: 2006
  end-page: 5742
  article-title: Reduced‐order fluid/structure modeling of a complete aircraft configuration
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 42
  start-page: 1505
  issue: 8
  year: 2004
  end-page: 1516
  article-title: Aerodynamic data reconstruction and inverse design using proper orthogonal decomposition
  publication-title: AIAA Journal
– start-page: 197
  year: 2007
  end-page: 216
– volume: 76
  start-page: 27
  year: 2008
  end-page: 55
  article-title: An efficient reduced‐order modeling approach for non‐linear parametrized partial differential equations
  publication-title: International Journal for Numerical Methods in Engineering
– ident: e_1_2_13_16_2
  doi: 10.1016/j.cma.2005.08.026
– ident: e_1_2_13_9_2
  doi: 10.2514/6.1999-655
– ident: e_1_2_13_4_2
  doi: 10.1137/1.9780898718713
– ident: e_1_2_13_44_2
  doi: 10.1017/S0022112004001338
– start-page: 1529
  volume-title: Handbook of Materials Modeling
  year: 2005
  ident: e_1_2_13_7_2
– ident: e_1_2_13_32_2
  doi: 10.1016/j.paerosci.2005.02.001
– ident: e_1_2_13_45_2
  doi: 10.1016/j.compfluid.2004.11.006
– ident: e_1_2_13_15_2
  doi: 10.2514/1.11246
– ident: e_1_2_13_31_2
  doi: 10.1016/j.crma.2004.08.006
– ident: e_1_2_13_30_2
  doi: 10.1364/JOSAA.12.001657
– volume-title: Matrix Computations
  year: 1996
  ident: e_1_2_13_36_2
– ident: e_1_2_13_47_2
  doi: 10.23919/ACC.2004.1384488
– ident: e_1_2_13_6_2
  doi: 10.2514/6.2003-3847
– ident: e_1_2_13_11_2
  doi: 10.2514/2.867
– ident: e_1_2_13_22_2
  doi: 10.1007/s11071-005-2803-2
– ident: e_1_2_13_12_2
  doi: 10.2514/2.1570
– ident: e_1_2_13_20_2
  doi: 10.1177/1077546302008001518
– ident: e_1_2_13_14_2
  doi: 10.2514/2.3128
– ident: e_1_2_13_28_2
– ident: e_1_2_13_27_2
  doi: 10.1109/TAC.2008.2006102
– ident: e_1_2_13_26_2
  doi: 10.1002/nme.2309
– ident: e_1_2_13_39_2
  doi: 10.1137/070694855
– ident: e_1_2_13_13_2
  doi: 10.1016/S0889-9746(03)00044-6
– ident: e_1_2_13_21_2
  doi: 10.1016/j.jfluidstructs.2003.06.002
– ident: e_1_2_13_42_2
  doi: 10.2514/6.2003-4213
– ident: e_1_2_13_38_2
  doi: 10.1137/1.9781611970944
– volume: 78
  start-page: 275
  year: 2009
  ident: e_1_2_13_23_2
  article-title: A method for interpolating on manifolds structural dynamics reduced‐order models
  publication-title: International Journal for Numerical Methods in Engineering
– ident: e_1_2_13_17_2
  doi: 10.2514/1.24512
– ident: e_1_2_13_35_2
  doi: 10.1137/1.9780898718003
– ident: e_1_2_13_18_2
  doi: 10.2514/1.35374
– volume-title: SAE Paper 840300
  year: 1984
  ident: e_1_2_13_40_2
– ident: e_1_2_13_2_2
  doi: 10.1090/qam/910462
– ident: e_1_2_13_5_2
  doi: 10.1007/BF03024948
– ident: e_1_2_13_25_2
  doi: 10.1051/m2an:2007031
– ident: e_1_2_13_8_2
  doi: 10.1002/fld.867
– ident: e_1_2_13_10_2
  doi: 10.2514/6.2000-2545
– ident: e_1_2_13_19_2
  doi: 10.1063/1.2033624
– ident: e_1_2_13_46_2
  doi: 10.2514/6.2006-1819
– ident: e_1_2_13_43_2
  doi: 10.2514/1.2159
– start-page: 197
  volume-title: Proceedings of the Second Sandia Workshop of PDE‐Constrained Optimization
  year: 2007
  ident: e_1_2_13_24_2
– volume-title: Numerical Optimization
  year: 2006
  ident: e_1_2_13_37_2
– ident: e_1_2_13_3_2
  doi: 10.1017/CBO9780511622700
– ident: e_1_2_13_29_2
  doi: 10.1002/nme.2746
– volume-title: The Aerodynamics of Heavy Vehicles: Trucks, Buses, and Trains
  year: 2004
  ident: e_1_2_13_41_2
– ident: e_1_2_13_34_2
  doi: 10.1137/S0036142901389049
– ident: e_1_2_13_33_2
  doi: 10.1016/j.physd.2003.03.001
SSID ssj0011503
Score 2.5426357
Snippet A Petrov–Galerkin projection method is proposed for reducing the dimension of a discrete non‐linear static or dynamic computational model in view of enabling...
A Petrov-Galerkin projection method is proposed for reducing the dimension of a discrete non-linear static or dynamic computational model in view of enabling...
SourceID proquest
pascalfrancis
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 155
SubjectTerms Approximation
compressive approximation
Computation
Computational efficiency
discrete non-linear systems
Exact sciences and technology
Fluid dynamics
Fundamental areas of phenomenology (including applications)
gappy data
Invariants
Mathematical models
Mathematics
Methods of scientific computing (including symbolic computation, algebraic computation)
non-linear model reduction
Nonlinear dynamics
Nonlinearity
Numerical analysis. Scientific computation
Petrov-Galerkin projection
Physics
Projection
proper orthogonal decomposition
Sciences and techniques of general use
Solid mechanics
Structural and continuum mechanics
Turbulent flows, convection, and heat transfer
Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)
Title Efficient non-linear model reduction via a least-squares Petrov-Galerkin projection and compressive tensor approximations
URI https://api.istex.fr/ark:/67375/WNG-KVVT1J7M-C/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnme.3050
https://www.proquest.com/docview/896189171
Volume 86
WOSCitedRecordID wos000288339000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1097-0207
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011503
  issn: 0029-5981
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-hlgd42GCAKB-TkRA8hdVJnDiPaLRDsFYIbWNvluPaUsWWQrJWe2N_AtL-w_0lu3M-1EogIfEURTorzvnO9-Hz7wBei9hkkRUmiEyug1hwgzpHMY81syixUsxyD-J6mE6n8vQ0-9JUVdJdmBofoku4kWb4_ZoUXOfV3hpo6Ll9h8KK4Xo_RLGNe9D_8HV8fNidIaCrE7UFHiKTvIWeHYZ77dgNY9Qnvl5ScaSukD-ubmyx4Xmu-6_eAI23_2fqD2CrcTvZ-1pOHsIdW-zAduOCskbBqx24v4ZPiG-TDtS1egS_Rh5uAq0UKxbFzdVvmogumW-mw0rCgKVVZqu5ZpqdUVMgJKp-LumKE6PWXYvVzdX1AZokStCzJglEQ3QxY1Tc7otyV5ZRWf2iZB7w_HJe366sHsPxeHS0_zFo-jcExkelYaqNkYmOuROJDHWczCJhZIROVKpzHjlhuBtmoTY2MQ73lqETOpEaQ6iEGxlGT6CH_2OfAkOnxqBz4rLEuTgVlnD00M4663gs0lwP4G27kMo04ObUY-NM1bDMoUKeK-L5AF51lD9qQI8_0LzxstAR6PI7FcClQn2bHqjPJydH_FM6UfsD2N0Qlm4AAcuFOOEBsFZ6FOotHcbowi6WlZLUagdjZY4f87Ly19mo6WREz2f_Svgc7tWZ7zjg4gX0LsqlfQl3zepiXpW7jZrcAiF3G0Y
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3daxNBEB9KIqgPVqvF-FFXEH06m727vQ98kpq02uQQSWvfls1mF4L1ondN6Jv9EwT_w_4lzux9kICC4NNxMMvtzc7sfOzsbwBeiFCngRHaC_RUeaHgGnWOYh6jZ0FkEjGbOhDXUZxlydlZ-nEL3jR3YSp8iDbhRprh9mtScEpI76-hhn41r1FaMV7vhihFogPdd5-GJ6P2EAF9naCp8BBpwhvs2b6_34zdsEZdYuwlVUeqEhlkq84WG67nugPrLNBw-7_mfhfu1I4ne1tJyj3YMvkObNdOKKtVvNyB22sIhfg2bmFdy_vwY-AAJ9BOsXyRX1_9pJmogrl2OqwgFFhaZ7aaK6bYObUFQqLy-5IuOTFq3rVYXV_9OkSjRCl6VqeBaIjKZ4zK211Z7sowKqxfFMxBnl_Oq_uV5QM4GQ4mB0de3cHB0y4u9WOldRKpkFsRJb4Ko1kgdBKgGxWrKQ-s0Nz2U19pE2mLu0vfChUlCoOoiOvED3ahg_9jHgJDt0aje2LTyNowFoaQ9NDSWmN5KOKp6sGrZiWlruHNqcvGuayAmX2JPJfE8x48bym_VZAef6B56YShJVDFFyqBi4X8nB3K49PTCf8Qj-VBD_Y2pKUdQNByPk64B6wRH4maS8cxKjeLZSkTaraD0TLHjzlh-etsZDYe0PPRvxI-g5tHk_FIjt5nx4_hVpUHDz0unkDnoliap3BDry7mZbFX68xv-AEfNg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3daxQxEB9KT0QfrFaL50eNIPp09rK72Q98Ku1d1d4tRdrat5DLJnBY9-pu7-ib_ROE_of9S5zJfnAHCoJPy8KEzU5mMh-Z_AbgjQh04huhe76eqF4guEado5jH6MwPTSyyiQNxHUVpGp-dJUdr8KG5C1PhQ7QJN9IMt1-TgpuLzO4soYZ-N-9RWjFe7wQiCVErO_tfhiej9hABfR2_qfAQScwb7Nm-t9OMXbFGHWLsFVVHqhIZZKvOFiuu57ID6yzQcOO_5v4QHtSOJ9utJOURrJl8EzZqJ5TVKl5uwv0lhEJ8G7ewruVj-DlwgBNop1g-y2-vf9FMVMFcOx1WEAosrTNbTBVT7JzaAiFR-WNOl5wYNe-aLW6vbw7QKFGKntVpIBqi8oxRebsry10YRoX1s4I5yPOraXW_snwCJ8PB8d7HXt3BoaddXOpFSus4VAG3Iow9FYSZL3TsoxsVqQn3rdDc9hNPaRNqi7tL3woVxgqDqJDr2PO3YB3_xzwFhm6NRvfEJqG1QSQMIemhpbXG8kBEE9WFd81KSl3Dm1OXjXNZATN7EnkuieddeN1SXlSQHn-geeuEoSVQxTcqgYuE_JoeyMPT02P-ORrLvS5sr0hLO4Cg5TyccBdYIz4SNZeOY1RuZvNSxtRsB6Nljh9zwvLX2ch0PKDns38lfAV3j_aHcvQpPXwO96o0eNDj4gWsXxZz8xLu6MXltCy2a5X5DVkxHrE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+non-linear+model+reduction+via+a+least-squares+Petrov%E2%80%95Galerkin+projection+and+compressive+tensor+approximations&rft.jtitle=International+journal+for+numerical+methods+in+engineering&rft.au=CARLBERG%2C+Kevin&rft.au=BOU-MOSLEH%2C+Charbel&rft.au=FARHAT%2C+Charbel&rft.date=2011-04-15&rft.pub=Wiley&rft.issn=0029-5981&rft.volume=86&rft.issue=2&rft.spage=155&rft.epage=181&rft_id=info:doi/10.1002%2Fnme.3050&rft.externalDBID=n%2Fa&rft.externalDocID=23932215
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-5981&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-5981&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-5981&client=summon