A new step size rule for the superiorization method and its application in computerized tomography
In this paper, we consider a regularized least squares problem subject to convex constraints. Our algorithm is based on the superiorization technique, equipped with a new step size rule which uses subgradient projections. The superiorization method is a two-step method where one step reduces the val...
Gespeichert in:
| Veröffentlicht in: | Numerical algorithms Jg. 90; H. 3; S. 1253 - 1277 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
Springer US
01.07.2022
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 1017-1398, 1572-9265, 1572-9265 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | In this paper, we consider a regularized least squares problem subject to convex constraints. Our algorithm is based on the superiorization technique, equipped with a new step size rule which uses subgradient projections. The superiorization method is a two-step method where one step reduces the value of the penalty term and the other step reduces the residual of the underlying linear system (using an algorithmic operator
T
). For the new step size rule, we present a convergence analysis for the case when
T
belongs to a large subclass of strictly quasi-nonexpansive operators. To examine our algorithm numerically, we consider box constraints and use the total variation (TV) functional as a regularization term. The specific test cases are chosen from computed tomography using both noisy and noiseless data. We compare our algorithm with previously used parameters in superiorization. The
T
operator is based on sequential block iteration (for which our convergence analysis is valid), but we also use the conjugate gradient method (without theoretical support). Finally, we compare with the well-known “fast iterative shrinkage-thresholding algorithm” (FISTA). The numerical results demonstrate that our new step size rule improves previous step size rules for the superiorization methodology and is competitive with, and in several instances behaves better than, the other methods. |
|---|---|
| AbstractList | In this paper, we consider a regularized least squares problem subject to convex constraints. Our algorithm is based on the superiorization technique, equipped with a new step size rule which uses subgradient projections. The superiorization method is a two-step method where one step reduces the value of the penalty term and the other step reduces the residual of the underlying linear system (using an algorithmic operator
T
). For the new step size rule, we present a convergence analysis for the case when
T
belongs to a large subclass of strictly quasi-nonexpansive operators. To examine our algorithm numerically, we consider box constraints and use the total variation (TV) functional as a regularization term. The specific test cases are chosen from computed tomography using both noisy and noiseless data. We compare our algorithm with previously used parameters in superiorization. The
T
operator is based on sequential block iteration (for which our convergence analysis is valid), but we also use the conjugate gradient method (without theoretical support). Finally, we compare with the well-known “fast iterative shrinkage-thresholding algorithm” (FISTA). The numerical results demonstrate that our new step size rule improves previous step size rules for the superiorization methodology and is competitive with, and in several instances behaves better than, the other methods. In this paper, we consider a regularized least squares problem subject to convex constraints. Our algorithm is based on the superiorization technique, equipped with a new step size rule which uses subgradient projections. The superiorization method is a two-step method where one step reduces the value of the penalty term and the other step reduces the residual of the underlying linear system (using an algorithmic operator T). For the new step size rule, we present a convergence analysis for the case when T belongs to a large subclass of strictly quasi-nonexpansive operators. To examine our algorithm numerically, we consider box constraints and use the total variation (TV) functional as a regularization term. The specific test cases are chosen from computed tomography using both noisy and noiseless data. We compare our algorithm with previously used parameters in superiorization. The T operator is based on sequential block iteration (for which our convergence analysis is valid), but we also use the conjugate gradient method (without theoretical support). Finally, we compare with the well-known “fast iterative shrinkage-thresholding algorithm” (FISTA). The numerical results demonstrate that our new step size rule improves previous step size rules for the superiorization methodology and is competitive with, and in several instances behaves better than, the other methods. |
| Author | Afzalipour, L. Abbasi, M. Elfving, T. Nikazad, T. |
| Author_xml | – sequence: 1 givenname: T. orcidid: 0000-0002-9704-2893 surname: Nikazad fullname: Nikazad, T. email: tnikazad@iust.ac.ir organization: School of Mathematics, Applied Mathematics Department, Iran University of Science and Technology – sequence: 2 givenname: M. surname: Abbasi fullname: Abbasi, M. organization: Department of Mathematics, University of Qom – sequence: 3 givenname: L. surname: Afzalipour fullname: Afzalipour, L. organization: School of Mathematics, Applied Mathematics Department, Iran University of Science and Technology – sequence: 4 givenname: T. surname: Elfving fullname: Elfving, T. organization: Department of Mathematics, Linköping University |
| BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-181470$$DView record from Swedish Publication Index (Linköpings universitet) |
| BookMark | eNp9kE9v3CAQxVGVSk3SfoGekHqmncFrY46r9K8UqZe2VwQ27BJ5DQWsKP70ZeOolXrIiZF4vzfz3hW5mMNsCXmL8B4BxIeMCKJlwJEBci7Z-oJcYis4k7xrL-oMKBg2sn9FrnK-A6gYF5fE7Ols72kuNtLsV0vTMlnqQqLlaGleok0-JL_q4sNMT7Ycw0j1PFJfMtUxTn7YvvxMh3CKS6nAakdawikcko7Hh9fkpdNTtm-e3mvy8_OnHzdf2e33L99u9rds2AEW5owZdO_A6EaDHvtOy86dYzngksudbZ2AnR1lb1qDYEDoGrQ1HeLoGieaa8I233xv42JUTP6k04MK2quP_tdehXRQk18U9rgTUPXvNn1M4fdic1F3YUlzPVFxiX2HAuTZlW-qIYWck3V_fRHUuXu1da9q9-qxe7VWqP8PGnx57Kkk7afn0eYpRd0zH2z6d9Uz1B_rcZ1N |
| CitedBy_id | crossref_primary_10_1016_j_cam_2024_115790 crossref_primary_10_1093_imanum_drad070 |
| Cites_doi | 10.1080/10556788.2016.1209500 10.1088/1361-6420/aa5d79 10.1137/S089547980138705X 10.1118/1.3504603 10.1088/0266-5611/28/3/035005 10.1137/070711712 10.1109/JSTSP.2007.910263 10.1007/978-1-84628-723-7 10.1137/050639399 10.1137/S0036144593251710 10.1088/1361-6420/33/4/044002 10.1137/1.9781611971484 10.1088/1361-6420/33/4/044001 10.1088/1361-6420/aaa49b 10.1088/0266-5611/25/11/115011 10.1137/14095724X 10.1137/1.9780898718836 10.1007/s11075-017-0430-x 10.1088/1361-6420/33/4/044006 10.1016/0022-5193(70)90109-8 10.1137/080716542 10.1118/1.4745566 10.1515/auom-2015-0046 10.1109/42.959302 10.1007/s10957-013-0408-3 10.1080/10556788.2018.1437159 10.1088/0266-5611/26/6/065008 10.1137/S1052623499362111 10.1515/jiip-2015-0082 10.1137/1.9780898719284 10.1007/978-3-642-30901-4 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021. |
| DBID | AAYXX CITATION 8FE 8FG ABJCF AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L6V M7S P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS ABXSW ADTPV AOWAS D8T DG8 ZZAVC |
| DOI | 10.1007/s11075-021-01229-z |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central ProQuest Technology Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Engineering Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition Engineering Collection SWEPUB Linköpings universitet full text SwePub SwePub Articles SWEPUB Freely available online SWEPUB Linköpings universitet SwePub Articles full text |
| DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Engineering Database Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) Engineering Collection |
| DatabaseTitleList | Advanced Technologies & Aerospace Collection |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central Database Suite (ProQuest) url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Mathematics Computer Science |
| EISSN | 1572-9265 |
| EndPage | 1277 |
| ExternalDocumentID | oai_DiVA_org_liu_181470 10_1007_s11075_021_01229_z |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 29N 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K7- KDC KOV KOW LAK LLZTM M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9O PF0 PT4 PT5 PTHSS QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VOH W23 W48 WK8 YLTOR Z45 Z7R Z7X Z7Z Z81 Z83 Z88 Z8M Z8R Z8T Z8W Z92 ZMTXR ZY4 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 8FE 8FG AZQEC DWQXO GNUQQ JQ2 L6V P62 PKEHL PQEST PQQKQ PQUKI ABXSW ADTPV AOWAS D8T DG8 ZZAVC |
| ID | FETCH-LOGICAL-c401t-fbbca8f0ba3a0ad86a96f1107f029294e5f704ed98b5b10b07a2295b611df3f73 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 4 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000719752400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1017-1398 1572-9265 |
| IngestDate | Tue Nov 04 17:18:40 EST 2025 Wed Nov 05 03:13:46 EST 2025 Sat Nov 29 01:34:56 EST 2025 Tue Nov 18 22:24:17 EST 2025 Fri Feb 21 02:49:16 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Strictly quasi-nonexpansive operator Convex feasibility problem Computed tomography 65F10 Convex optimization Sequential block method Perturbation resilient iterative method 47J25 Superiorization 47H14 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c401t-fbbca8f0ba3a0ad86a96f1107f029294e5f704ed98b5b10b07a2295b611df3f73 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-9704-2893 |
| OpenAccessLink | https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-181470 |
| PQID | 2918617097 |
| PQPubID | 2043837 |
| PageCount | 25 |
| ParticipantIDs | swepub_primary_oai_DiVA_org_liu_181470 proquest_journals_2918617097 crossref_primary_10_1007_s11075_021_01229_z crossref_citationtrail_10_1007_s11075_021_01229_z springer_journals_10_1007_s11075_021_01229_z |
| PublicationCentury | 2000 |
| PublicationDate | 2022-07-01 |
| PublicationDateYYYYMMDD | 2022-07-01 |
| PublicationDate_xml | – month: 07 year: 2022 text: 2022-07-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Numerical algorithms |
| PublicationTitleAbbrev | Numer Algor |
| PublicationYear | 2022 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Nikazad, Abbasi (CR24) 2015; 53 Herman (CR19) 2009 Nikazad, Abbasi, Mirzapour (CR27) 2016; 31 Björck (CR4) 1996 Hansen, Jørgensen (CR18) 2018; 79 Zibetti, Lin, Herman (CR31) 2018; 34 Censor (CR8) 2015; 23 Reem, De Pierro (CR30) 2017; 33 Butnariu, Davidi, Herman, Kazantsev (CR5) 2007; 1 Neto, De Pierro (CR23) 2009; 20 Penfold, Schulte, Censor, Rosenfeld (CR29) 2010; 37 Cegielski, Al-Musallam (CR7) 2017; 33 Censor, Elfving (CR12) 2002; 24 Nikazad, Abbasi (CR25) 2017; 33 Beck, Teboulle (CR3) 2009; 2 Censor, Elfving, Herman, Nikazad (CR13) 2008; 30 Bauschke, Borwein (CR1) 1996; 38 CR6 Censor, Davidi, Herman (CR10) 2010; 26 Beck, Guttmann-Beck (CR2) 2019; 34 Elfving, Nikazad (CR15) 2009; 25 Censor, Gordon, Gordon (CR14) 2001; 20 CR21 Gordon, Bender, Herman (CR16) 1970; 29 Herman, Garduño, Davidi, Censor (CR20) 2012; 39 Nikazad, Davidi, Herman (CR28) 2012; 28 Censor, Davidi, Herman, Schulte, Tetruashvili (CR11) 2014; 160 Censor (CR9) 2017; 33 Hansen (CR17) 2010 Nedic, Bertsekas (CR22) 2001; 12 Nikazad, Abbasi, Elfving (CR26) 2017; 25 R Gordon (1229_CR16) 1970; 29 D Reem (1229_CR30) 2017; 33 HH Bauschke (1229_CR1) 1996; 38 Y Censor (1229_CR11) 2014; 160 Y Censor (1229_CR12) 2002; 24 1229_CR21 Y Censor (1229_CR13) 2008; 30 A Cegielski (1229_CR7) 2017; 33 T Nikazad (1229_CR27) 2016; 31 MVW Zibetti (1229_CR31) 2018; 34 T Nikazad (1229_CR25) 2017; 33 T Nikazad (1229_CR26) 2017; 25 D Butnariu (1229_CR5) 2007; 1 Y Censor (1229_CR8) 2015; 23 PC Hansen (1229_CR18) 2018; 79 A Beck (1229_CR2) 2019; 34 1229_CR6 ESH Neto (1229_CR23) 2009; 20 T Nikazad (1229_CR24) 2015; 53 T Nikazad (1229_CR28) 2012; 28 Å Björck (1229_CR4) 1996 A Beck (1229_CR3) 2009; 2 T Elfving (1229_CR15) 2009; 25 Y Censor (1229_CR14) 2001; 20 PC Hansen (1229_CR17) 2010 GT Herman (1229_CR20) 2012; 39 Y Censor (1229_CR10) 2010; 26 A Nedic (1229_CR22) 2001; 12 Y Censor (1229_CR9) 2017; 33 GT Herman (1229_CR19) 2009 S Penfold (1229_CR29) 2010; 37 |
| References_xml | – volume: 31 start-page: 1189 issue: 6 year: 2016 end-page: 1208 ident: CR27 article-title: Convergence of string-averaging method for a class of operators publication-title: Optim. Methods Softw. doi: 10.1080/10556788.2016.1209500 – volume: 33 start-page: 044009 issue: 4 year: 2017 ident: CR7 article-title: Superiorization with level control publication-title: Inv. Probl. doi: 10.1088/1361-6420/aa5d79 – volume: 24 start-page: 40 issue: 1 year: 2002 end-page: 58 ident: CR12 article-title: Block-iterative algorithms with diagonally scaled oblique projections for the linear feasibility problem publication-title: SIAM J. Matrix Anal. Appl. doi: 10.1137/S089547980138705X – volume: 37 start-page: 5887 issue: 11 year: 2010 end-page: 5895 ident: CR29 article-title: Total variation superiorization schemes in proton computed tomography image reconstruction publication-title: Med. Phys. doi: 10.1118/1.3504603 – volume: 28 start-page: 035005 issue: 3 year: 2012 ident: CR28 article-title: Accelerated perturbation-resilient block-iterative projection methods with application to image reconstruction publication-title: Inv. Probl. doi: 10.1088/0266-5611/28/3/035005 – volume: 20 start-page: 1547 issue: 3 year: 2009 end-page: 1572 ident: CR23 article-title: Incremental subgradients for constrained convex optimization: a unified framework and new methods publication-title: SIAM J. Optim. doi: 10.1137/070711712 – ident: CR6 – volume: 1 start-page: 540 issue: 4 year: 2007 end-page: 547 ident: CR5 article-title: Stable convergence behavior under summable perturbations of a class of projection methods for convex feasibility and optimization problems publication-title: IEEE J. Sel. Top. Signal Process. doi: 10.1109/JSTSP.2007.910263 – year: 2009 ident: CR19 publication-title: Fundamentals of Computerized Tomography: Image Reconstruction from Projections doi: 10.1007/978-1-84628-723-7 – volume: 30 start-page: 473 issue: 1 year: 2008 end-page: 504 ident: CR13 article-title: On diagonally relaxed orthogonal projection methods publication-title: SIAM J. Sci. Comput. doi: 10.1137/050639399 – volume: 38 start-page: 367 issue: 3 year: 1996 end-page: 426 ident: CR1 article-title: On projection algorithms for solving convex feasibility problems publication-title: SIAM Rev. doi: 10.1137/S0036144593251710 – ident: CR21 – volume: 33 start-page: 044002 issue: 4 year: 2017 ident: CR25 article-title: A unified treatment of some perturbed fixed point iterative methods with an infinite pool of operators publication-title: Inv. Probl. doi: 10.1088/1361-6420/33/4/044002 – volume: 25 start-page: 35 issue: 1 year: 2017 end-page: 56 ident: CR26 article-title: Error minimizing relaxation strategies in Landweber and Kaczmarz type iterations publication-title: J. Inv. Ill-posed Probl. – year: 1996 ident: CR4 publication-title: Numerical Methods for Least Squares Problems, vol. 51 doi: 10.1137/1.9781611971484 – volume: 33 start-page: 044001 issue: 4 year: 2017 ident: CR30 article-title: A new convergence analysis and perturbation resilience of some accelerated proximal forward–backward algorithms with errors publication-title: Inv. Probl. doi: 10.1088/1361-6420/33/4/044001 – volume: 34 start-page: 034001 issue: 3 year: 2018 ident: CR31 article-title: Total variation superiorized conjugate gradient method for image reconstruction publication-title: Inv. Probl. doi: 10.1088/1361-6420/aaa49b – volume: 25 start-page: 115011 issue: 11 year: 2009 ident: CR15 article-title: Properties of a class of block-iterative methods. publication-title: Inv. Probl. doi: 10.1088/0266-5611/25/11/115011 – volume: 53 start-page: 390 issue: 1 year: 2015 end-page: 404 ident: CR24 article-title: Perturbation-resilient iterative methods with an infinite pool of mappings publication-title: SIAM J. Numer. Anal. doi: 10.1137/14095724X – year: 2010 ident: CR17 publication-title: Discrete Inverse Problems: Insight and Algorithms doi: 10.1137/1.9780898718836 – volume: 79 start-page: 107 issue: 1 year: 2018 end-page: 137 ident: CR18 article-title: AIR Tools II: algebraic iterative reconstruction methods, improved implementation publication-title: Numer. Algorithms doi: 10.1007/s11075-017-0430-x – volume: 33 start-page: 044006 issue: 4 year: 2017 ident: CR9 article-title: Can linear superiorization be useful for linear optimization problems? publication-title: Inv. Probl. doi: 10.1088/1361-6420/33/4/044006 – volume: 29 start-page: 471 issue: 3 year: 1970 end-page: 481 ident: CR16 article-title: Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and x-ray photography publication-title: J. Theor. Biol. doi: 10.1016/0022-5193(70)90109-8 – volume: 2 start-page: 183 issue: 1 year: 2009 end-page: 202 ident: CR3 article-title: A fast iterative shrinkage-thresholding algorithm for linear inverse problems publication-title: SIAM J. Imaging Sci. doi: 10.1137/080716542 – volume: 39 start-page: 5532 issue: 9 year: 2012 end-page: 5546 ident: CR20 article-title: Superiorization: an optimization heuristic for medical physics publication-title: Med. Phys. doi: 10.1118/1.4745566 – volume: 23 start-page: 41 issue: 3 year: 2015 end-page: 54 ident: CR8 article-title: Weak and strong superiorization: between feasibility-seeking and minimization publication-title: Analele Universitatii Ovidius Constanta-Seria Matematica doi: 10.1515/auom-2015-0046 – volume: 20 start-page: 1050 issue: 10 year: 2001 end-page: 1060 ident: CR14 article-title: BICAV: an inherently parallel algorithm for sparse systems with pixel-dependent weighting publication-title: IEEE Trans. Med. Imaging doi: 10.1109/42.959302 – volume: 160 start-page: 730 issue: 3 year: 2014 end-page: 747 ident: CR11 article-title: Projected subgradient minimization versus superiorization publication-title: J. Optim. Theory Appl. doi: 10.1007/s10957-013-0408-3 – volume: 34 start-page: 172 issue: 1 year: 2019 end-page: 193 ident: CR2 article-title: FOM–a MATLAB toolbox of first-order methods for solving convex optimization problems publication-title: Optim. Methods Softw doi: 10.1080/10556788.2018.1437159 – volume: 26 start-page: 065008 issue: 6 year: 2010 ident: CR10 article-title: Perturbation resilience and superiorization of iterative algorithms publication-title: Inv. Probl. doi: 10.1088/0266-5611/26/6/065008 – volume: 12 start-page: 109 issue: 1 year: 2001 end-page: 138 ident: CR22 article-title: Incremental subgradient methods for nondifferentiable optimization publication-title: SIAM J. Optim. doi: 10.1137/S1052623499362111 – volume: 12 start-page: 109 issue: 1 year: 2001 ident: 1229_CR22 publication-title: SIAM J. Optim. doi: 10.1137/S1052623499362111 – volume: 1 start-page: 540 issue: 4 year: 2007 ident: 1229_CR5 publication-title: IEEE J. Sel. Top. Signal Process. doi: 10.1109/JSTSP.2007.910263 – volume: 39 start-page: 5532 issue: 9 year: 2012 ident: 1229_CR20 publication-title: Med. Phys. doi: 10.1118/1.4745566 – volume: 34 start-page: 172 issue: 1 year: 2019 ident: 1229_CR2 publication-title: Optim. Methods Softw doi: 10.1080/10556788.2018.1437159 – volume: 37 start-page: 5887 issue: 11 year: 2010 ident: 1229_CR29 publication-title: Med. Phys. doi: 10.1118/1.3504603 – volume: 25 start-page: 35 issue: 1 year: 2017 ident: 1229_CR26 publication-title: J. Inv. Ill-posed Probl. doi: 10.1515/jiip-2015-0082 – volume-title: Numerical Methods for Least Squares Problems, vol. 51 year: 1996 ident: 1229_CR4 doi: 10.1137/1.9781611971484 – volume: 23 start-page: 41 issue: 3 year: 2015 ident: 1229_CR8 publication-title: Analele Universitatii Ovidius Constanta-Seria Matematica doi: 10.1515/auom-2015-0046 – volume: 29 start-page: 471 issue: 3 year: 1970 ident: 1229_CR16 publication-title: J. Theor. Biol. doi: 10.1016/0022-5193(70)90109-8 – volume: 24 start-page: 40 issue: 1 year: 2002 ident: 1229_CR12 publication-title: SIAM J. Matrix Anal. Appl. doi: 10.1137/S089547980138705X – volume: 30 start-page: 473 issue: 1 year: 2008 ident: 1229_CR13 publication-title: SIAM J. Sci. Comput. doi: 10.1137/050639399 – ident: 1229_CR21 doi: 10.1137/1.9780898719284 – volume: 33 start-page: 044001 issue: 4 year: 2017 ident: 1229_CR30 publication-title: Inv. Probl. doi: 10.1088/1361-6420/33/4/044001 – volume: 26 start-page: 065008 issue: 6 year: 2010 ident: 1229_CR10 publication-title: Inv. Probl. doi: 10.1088/0266-5611/26/6/065008 – volume: 28 start-page: 035005 issue: 3 year: 2012 ident: 1229_CR28 publication-title: Inv. Probl. doi: 10.1088/0266-5611/28/3/035005 – volume: 20 start-page: 1547 issue: 3 year: 2009 ident: 1229_CR23 publication-title: SIAM J. Optim. doi: 10.1137/070711712 – volume: 33 start-page: 044002 issue: 4 year: 2017 ident: 1229_CR25 publication-title: Inv. Probl. doi: 10.1088/1361-6420/33/4/044002 – volume: 25 start-page: 115011 issue: 11 year: 2009 ident: 1229_CR15 publication-title: Inv. Probl. doi: 10.1088/0266-5611/25/11/115011 – ident: 1229_CR6 doi: 10.1007/978-3-642-30901-4 – volume: 34 start-page: 034001 issue: 3 year: 2018 ident: 1229_CR31 publication-title: Inv. Probl. doi: 10.1088/1361-6420/aaa49b – volume: 79 start-page: 107 issue: 1 year: 2018 ident: 1229_CR18 publication-title: Numer. Algorithms doi: 10.1007/s11075-017-0430-x – volume: 31 start-page: 1189 issue: 6 year: 2016 ident: 1229_CR27 publication-title: Optim. Methods Softw. doi: 10.1080/10556788.2016.1209500 – volume-title: Fundamentals of Computerized Tomography: Image Reconstruction from Projections year: 2009 ident: 1229_CR19 doi: 10.1007/978-1-84628-723-7 – volume: 38 start-page: 367 issue: 3 year: 1996 ident: 1229_CR1 publication-title: SIAM Rev. doi: 10.1137/S0036144593251710 – volume: 20 start-page: 1050 issue: 10 year: 2001 ident: 1229_CR14 publication-title: IEEE Trans. Med. Imaging doi: 10.1109/42.959302 – volume: 33 start-page: 044009 issue: 4 year: 2017 ident: 1229_CR7 publication-title: Inv. Probl. doi: 10.1088/1361-6420/aa5d79 – volume: 160 start-page: 730 issue: 3 year: 2014 ident: 1229_CR11 publication-title: J. Optim. Theory Appl. doi: 10.1007/s10957-013-0408-3 – volume: 33 start-page: 044006 issue: 4 year: 2017 ident: 1229_CR9 publication-title: Inv. Probl. doi: 10.1088/1361-6420/33/4/044006 – volume: 53 start-page: 390 issue: 1 year: 2015 ident: 1229_CR24 publication-title: SIAM J. Numer. Anal. doi: 10.1137/14095724X – volume-title: Discrete Inverse Problems: Insight and Algorithms year: 2010 ident: 1229_CR17 doi: 10.1137/1.9780898718836 – volume: 2 start-page: 183 issue: 1 year: 2009 ident: 1229_CR3 publication-title: SIAM J. Imaging Sci. doi: 10.1137/080716542 |
| SSID | ssj0010027 |
| Score | 2.3267617 |
| Snippet | In this paper, we consider a regularized least squares problem subject to convex constraints. Our algorithm is based on the superiorization technique, equipped... |
| SourceID | swepub proquest crossref springer |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1253 |
| SubjectTerms | Algebra Algorithms Computed tomography Computer Science Conjugate gradient method Convergence Iterative methods Least squares method Numeric Computing Numerical Analysis Original Paper Regularization Theory of Computation Tomography |
| SummonAdditionalLinks | – databaseName: Computer Science Database dbid: K7- link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB2VlgM9tKWAuqWt5oC4gIXjJJvkhFa0VSWg4gBVb5a_giIt2WWT7WF_fceJNwsc9sI5jh1lZjxvPJ43AG8SMiAVx4ZxN3YsSTPDdGEJyCluyV-RE-yqXO--ZLe3-f198S0cuDXhWuV6T-w2ajsz_oz8gyii3JOHF9nH-W_mu0b57GpoofEE9iIhIq_nnzM2ZBF8zNVlO2knJqSTh6KZvnSO4h5fm-yDaSEKtvrbMW3Q5pAg_YdMtHNA14f_--lHcBCgJ056XXkOO64-hsMAQzEYeXMM-18HKtfmBegJEvJGUoY5NtXK4WI5dUhQF2kQNkvPlEyL9dWc2DekRlVbrNoG_0iPY1WjCS0kaBqL7exXoMt-CT-ur75_umGhMQMzFI61rNTaqLzkWsWKK5uPVTEu_Q8tuSC4lbi0zHjibJHrVEdc80z5ruF6HEW2jMssfgW79ax2J4CRElaTwxSJSRNhU-0RJMXNStnSJYqPIFpLRZrAWu6bZ0zlhm_ZS1KSJGUnSbkawbvhnXnP2bF19NlaajLYbyM3IhvB-7UCbB5vm-1tryTDyp6_-7K6m8jZ4qecVktJmCrJ-On2ZV_DM-ELLbqLwWew2y6W7hyemoe2ahYXnZo_Aqt2Ayo priority: 102 providerName: ProQuest |
| Title | A new step size rule for the superiorization method and its application in computerized tomography |
| URI | https://link.springer.com/article/10.1007/s11075-021-01229-z https://www.proquest.com/docview/2918617097 https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-181470 |
| Volume | 90 |
| WOSCitedRecordID | wos000719752400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1572-9265 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0010027 issn: 1572-9265 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDCb6OnSH9bEOy9oGPAy7rAbkV2wf0xcGtAuKdgt6EyRLLgxkTmA7PeTXl3Jkpy2KAttVlilbEsWPoPgR4FtACiR8P3WYHmgnCKPUkYkiICeYIntFRrDJch1fR6NRfH-f3NiksKq97d6GJJuTepXsRp6KySY27q_nJc5iHTbJ3MVGHW_vxl3swHhaTYyTzl_CN7FNlXlbxktztMKYXVj0FYVoY3Yud_7vg3fho4WZOFzuiz1Y08U-7FjIiVahK2pqqzq0bfvw4VfH5Fp9AjlEAt5Ie2GGVb7QWM4nGgnpInXCam6IkqelTebEZT1qFIXCvK7wWXQc8wJTOxaJUVhP_1q27AP4c3nx--ynY-syOCl5Y7WTSZmKOGNS-IIJFQ9EMsjMz2bMI7QV6DCLWKBVEstQukyySJii4XLguirzs8j_DBvFtNBfAF3hKUn20gvSMPBUKA2AJLdZCJXpQLAeuO3y8NSSlpvaGRO-ols2s8xplnkzy3zRgx_dO7MlZce7vY_aVedWfSvuJW5smOqTqAcn7eKuHr8n7ftyt3QjG_ru83w85NPygU_yOSdIFUTs67_JPYRtz-RdNPeEj2CjLuf6GLbSxzqvyj5snl6Mbm77sH4VOX1zffWu3-jEE_ZEA78 |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEB2VggQcKBRQAwXmAFzAYv0V2weEIkrVqmmERKl6W_bLyFLqhNgBkR_Fb2TWXjvAIbceOHu9K9tvZ954dt4API9oA4kwVB4zQ-NFcaI8mWkicoJp8lfkBJsq1_NxMpmkFxfZxy341dXC2GOVnU1sDLWeKfuP_E2Q-akVD8-Sd_Nvnu0aZbOrXQuNFhYn5ucPCtmqt8cH9H1fBMHhh7P3R57rKuApiiVqL5dSiTRnUoSCCZ0ORTbMbRSUs4C4QmTiPGGR0VkqY-kzyRJhW17Loe_rPMyTkOa9Btcja_2bo4Kf-qyFjfGa7CpZfmJWqSvSaUv1aAVbC22Dd5rPW_3tCNfstk_I_iNe2ji8w53_7VXdhTuOWuOo3Qv3YMuUu7DjaDY6I1btwu3TXqq2ug9yhBRZIIF9jlWxMrhYTg0SlUcahNXSKkHTw7XVqtg23EZRaizqCv9I_2NRonItMmgajfXs0smBP4DPV_LcD2G7nJVmD9AXgZZECIJIxVGgY2kZsh-GQujcRIINwO9QwJVTZbfNQaZ8rSdtkcMJObxBDl8N4FV_z7zVJNk4er9DCXf2qeJriAzgdQe49eVNs71sQdmvbPXJD4rzEZ8tvvJpseTEGaOEPdq87DO4eXR2Oubj48nJY7gV2KKS5hD0PmzXi6V5AjfU97qoFk-bLYbw5aqB-hvuZmDu |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Rb9MwED7BQAgeGAwQhQH3gHiBaE7iNMljxahAjGoSUO3NsmN7ilTSKkl56K_nnDjpQGgS4tVJzol9l_tO5_sO4DUnA5JxXATMTE3Ak7QIVK4JyEmmyV-RE-yqXJdn6WKRXVzk51eq-LvT7kNKsq9pcCxNVXuy0fZkX_hGUYurLHahcBTlwe4m3OKuaZCL178uxzyCi7q6fCf9iwnrZL5s5u8yfndNe7w5pkj_oBPtXND88P9f_gHc9_ATZ72-PIQbpjqCQw9F0Rt6Q0NDt4dh7AjufRkZXptHoGZIgBxJRzbYlDuD9XZlkBAw0k3YbB2B8rr2RZ7Y96lGWWks2wavZM2xrLDwc5EYje36h2fRfgzf5x--vf8Y-H4NQUFRWhtYpQqZWaZkLJnU2VTmU-s-1rKIUBg3iU0ZNzrPVKJCplgqXTNxNQ1DbWObxk_goFpX5ilgKCOtyI9GvEh4pBPlgCWF01Jqa7hkEwiHrRKFJzN3PTVWYk_D7FZZ0CqLbpXFbgJvx2c2PZXHtXcfDxogvFk3IsrDzDHY5-kE3g0bvb98nbQ3veaMMzta79NyORPr-lKsyq0gqMVT9uzf5L6CO-enc3H2afH5OdyNXGlGd5T4GA7aemtewO3iZ1s29cvOLH4Bs0UMJQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+step+size+rule+for+the+superiorization+method+and+its+application+in+computerized+tomography&rft.jtitle=Numerical+algorithms&rft.au=Nikazad%2C+T.&rft.au=Abbasi%2C+M.&rft.au=Afzalipour%2C+L.&rft.au=Elfving%2C+Tommy&rft.date=2022-07-01&rft.issn=1572-9265&rft.volume=90&rft.issue=3&rft.spage=1253&rft_id=info:doi/10.1007%2Fs11075-021-01229-z&rft.externalDocID=oai_DiVA_org_liu_181470 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1017-1398&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1017-1398&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1017-1398&client=summon |