A new step size rule for the superiorization method and its application in computerized tomography

In this paper, we consider a regularized least squares problem subject to convex constraints. Our algorithm is based on the superiorization technique, equipped with a new step size rule which uses subgradient projections. The superiorization method is a two-step method where one step reduces the val...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerical algorithms Jg. 90; H. 3; S. 1253 - 1277
Hauptverfasser: Nikazad, T., Abbasi, M., Afzalipour, L., Elfving, T.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.07.2022
Springer Nature B.V
Schlagworte:
ISSN:1017-1398, 1572-9265, 1572-9265
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In this paper, we consider a regularized least squares problem subject to convex constraints. Our algorithm is based on the superiorization technique, equipped with a new step size rule which uses subgradient projections. The superiorization method is a two-step method where one step reduces the value of the penalty term and the other step reduces the residual of the underlying linear system (using an algorithmic operator T ). For the new step size rule, we present a convergence analysis for the case when T belongs to a large subclass of strictly quasi-nonexpansive operators. To examine our algorithm numerically, we consider box constraints and use the total variation (TV) functional as a regularization term. The specific test cases are chosen from computed tomography using both noisy and noiseless data. We compare our algorithm with previously used parameters in superiorization. The T operator is based on sequential block iteration (for which our convergence analysis is valid), but we also use the conjugate gradient method (without theoretical support). Finally, we compare with the well-known “fast iterative shrinkage-thresholding algorithm” (FISTA). The numerical results demonstrate that our new step size rule improves previous step size rules for the superiorization methodology and is competitive with, and in several instances behaves better than, the other methods.
AbstractList In this paper, we consider a regularized least squares problem subject to convex constraints. Our algorithm is based on the superiorization technique, equipped with a new step size rule which uses subgradient projections. The superiorization method is a two-step method where one step reduces the value of the penalty term and the other step reduces the residual of the underlying linear system (using an algorithmic operator T ). For the new step size rule, we present a convergence analysis for the case when T belongs to a large subclass of strictly quasi-nonexpansive operators. To examine our algorithm numerically, we consider box constraints and use the total variation (TV) functional as a regularization term. The specific test cases are chosen from computed tomography using both noisy and noiseless data. We compare our algorithm with previously used parameters in superiorization. The T operator is based on sequential block iteration (for which our convergence analysis is valid), but we also use the conjugate gradient method (without theoretical support). Finally, we compare with the well-known “fast iterative shrinkage-thresholding algorithm” (FISTA). The numerical results demonstrate that our new step size rule improves previous step size rules for the superiorization methodology and is competitive with, and in several instances behaves better than, the other methods.
In this paper, we consider a regularized least squares problem subject to convex constraints. Our algorithm is based on the superiorization technique, equipped with a new step size rule which uses subgradient projections. The superiorization method is a two-step method where one step reduces the value of the penalty term and the other step reduces the residual of the underlying linear system (using an algorithmic operator T). For the new step size rule, we present a convergence analysis for the case when T belongs to a large subclass of strictly quasi-nonexpansive operators. To examine our algorithm numerically, we consider box constraints and use the total variation (TV) functional as a regularization term. The specific test cases are chosen from computed tomography using both noisy and noiseless data. We compare our algorithm with previously used parameters in superiorization. The T operator is based on sequential block iteration (for which our convergence analysis is valid), but we also use the conjugate gradient method (without theoretical support). Finally, we compare with the well-known “fast iterative shrinkage-thresholding algorithm” (FISTA). The numerical results demonstrate that our new step size rule improves previous step size rules for the superiorization methodology and is competitive with, and in several instances behaves better than, the other methods.
Author Afzalipour, L.
Abbasi, M.
Elfving, T.
Nikazad, T.
Author_xml – sequence: 1
  givenname: T.
  orcidid: 0000-0002-9704-2893
  surname: Nikazad
  fullname: Nikazad, T.
  email: tnikazad@iust.ac.ir
  organization: School of Mathematics, Applied Mathematics Department, Iran University of Science and Technology
– sequence: 2
  givenname: M.
  surname: Abbasi
  fullname: Abbasi, M.
  organization: Department of Mathematics, University of Qom
– sequence: 3
  givenname: L.
  surname: Afzalipour
  fullname: Afzalipour, L.
  organization: School of Mathematics, Applied Mathematics Department, Iran University of Science and Technology
– sequence: 4
  givenname: T.
  surname: Elfving
  fullname: Elfving, T.
  organization: Department of Mathematics, Linköping University
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-181470$$DView record from Swedish Publication Index (Linköpings universitet)
BookMark eNp9kE9v3CAQxVGVSk3SfoGekHqmncFrY46r9K8UqZe2VwQ27BJ5DQWsKP70ZeOolXrIiZF4vzfz3hW5mMNsCXmL8B4BxIeMCKJlwJEBci7Z-oJcYis4k7xrL-oMKBg2sn9FrnK-A6gYF5fE7Ols72kuNtLsV0vTMlnqQqLlaGleok0-JL_q4sNMT7Ycw0j1PFJfMtUxTn7YvvxMh3CKS6nAakdawikcko7Hh9fkpdNTtm-e3mvy8_OnHzdf2e33L99u9rds2AEW5owZdO_A6EaDHvtOy86dYzngksudbZ2AnR1lb1qDYEDoGrQ1HeLoGieaa8I233xv42JUTP6k04MK2quP_tdehXRQk18U9rgTUPXvNn1M4fdic1F3YUlzPVFxiX2HAuTZlW-qIYWck3V_fRHUuXu1da9q9-qxe7VWqP8PGnx57Kkk7afn0eYpRd0zH2z6d9Uz1B_rcZ1N
CitedBy_id crossref_primary_10_1016_j_cam_2024_115790
crossref_primary_10_1093_imanum_drad070
Cites_doi 10.1080/10556788.2016.1209500
10.1088/1361-6420/aa5d79
10.1137/S089547980138705X
10.1118/1.3504603
10.1088/0266-5611/28/3/035005
10.1137/070711712
10.1109/JSTSP.2007.910263
10.1007/978-1-84628-723-7
10.1137/050639399
10.1137/S0036144593251710
10.1088/1361-6420/33/4/044002
10.1137/1.9781611971484
10.1088/1361-6420/33/4/044001
10.1088/1361-6420/aaa49b
10.1088/0266-5611/25/11/115011
10.1137/14095724X
10.1137/1.9780898718836
10.1007/s11075-017-0430-x
10.1088/1361-6420/33/4/044006
10.1016/0022-5193(70)90109-8
10.1137/080716542
10.1118/1.4745566
10.1515/auom-2015-0046
10.1109/42.959302
10.1007/s10957-013-0408-3
10.1080/10556788.2018.1437159
10.1088/0266-5611/26/6/065008
10.1137/S1052623499362111
10.1515/jiip-2015-0082
10.1137/1.9780898719284
10.1007/978-3-642-30901-4
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
M7S
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
ABXSW
ADTPV
AOWAS
D8T
DG8
ZZAVC
DOI 10.1007/s11075-021-01229-z
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Engineering Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
Engineering Collection
SWEPUB Linköpings universitet full text
SwePub
SwePub Articles
SWEPUB Freely available online
SWEPUB Linköpings universitet
SwePub Articles full text
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Engineering Database
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList
Advanced Technologies & Aerospace Collection

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central Database Suite (ProQuest)
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
Computer Science
EISSN 1572-9265
EndPage 1277
ExternalDocumentID oai_DiVA_org_liu_181470
10_1007_s11075_021_01229_z
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
29N
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
KOW
LAK
LLZTM
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9O
PF0
PT4
PT5
PTHSS
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VOH
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z7Z
Z81
Z83
Z88
Z8M
Z8R
Z8T
Z8W
Z92
ZMTXR
ZY4
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
L6V
P62
PKEHL
PQEST
PQQKQ
PQUKI
ABXSW
ADTPV
AOWAS
D8T
DG8
ZZAVC
ID FETCH-LOGICAL-c401t-fbbca8f0ba3a0ad86a96f1107f029294e5f704ed98b5b10b07a2295b611df3f73
IEDL.DBID RSV
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000719752400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1017-1398
1572-9265
IngestDate Tue Nov 04 17:18:40 EST 2025
Wed Nov 05 03:13:46 EST 2025
Sat Nov 29 01:34:56 EST 2025
Tue Nov 18 22:24:17 EST 2025
Fri Feb 21 02:49:16 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Strictly quasi-nonexpansive operator
Convex feasibility problem
Computed tomography
65F10
Convex optimization
Sequential block method
Perturbation resilient iterative method
47J25
Superiorization
47H14
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c401t-fbbca8f0ba3a0ad86a96f1107f029294e5f704ed98b5b10b07a2295b611df3f73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9704-2893
OpenAccessLink https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-181470
PQID 2918617097
PQPubID 2043837
PageCount 25
ParticipantIDs swepub_primary_oai_DiVA_org_liu_181470
proquest_journals_2918617097
crossref_primary_10_1007_s11075_021_01229_z
crossref_citationtrail_10_1007_s11075_021_01229_z
springer_journals_10_1007_s11075_021_01229_z
PublicationCentury 2000
PublicationDate 2022-07-01
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Numerical algorithms
PublicationTitleAbbrev Numer Algor
PublicationYear 2022
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Nikazad, Abbasi (CR24) 2015; 53
Herman (CR19) 2009
Nikazad, Abbasi, Mirzapour (CR27) 2016; 31
Björck (CR4) 1996
Hansen, Jørgensen (CR18) 2018; 79
Zibetti, Lin, Herman (CR31) 2018; 34
Censor (CR8) 2015; 23
Reem, De Pierro (CR30) 2017; 33
Butnariu, Davidi, Herman, Kazantsev (CR5) 2007; 1
Neto, De Pierro (CR23) 2009; 20
Penfold, Schulte, Censor, Rosenfeld (CR29) 2010; 37
Cegielski, Al-Musallam (CR7) 2017; 33
Censor, Elfving (CR12) 2002; 24
Nikazad, Abbasi (CR25) 2017; 33
Beck, Teboulle (CR3) 2009; 2
Censor, Elfving, Herman, Nikazad (CR13) 2008; 30
Bauschke, Borwein (CR1) 1996; 38
CR6
Censor, Davidi, Herman (CR10) 2010; 26
Beck, Guttmann-Beck (CR2) 2019; 34
Elfving, Nikazad (CR15) 2009; 25
Censor, Gordon, Gordon (CR14) 2001; 20
CR21
Gordon, Bender, Herman (CR16) 1970; 29
Herman, Garduño, Davidi, Censor (CR20) 2012; 39
Nikazad, Davidi, Herman (CR28) 2012; 28
Censor, Davidi, Herman, Schulte, Tetruashvili (CR11) 2014; 160
Censor (CR9) 2017; 33
Hansen (CR17) 2010
Nedic, Bertsekas (CR22) 2001; 12
Nikazad, Abbasi, Elfving (CR26) 2017; 25
R Gordon (1229_CR16) 1970; 29
D Reem (1229_CR30) 2017; 33
HH Bauschke (1229_CR1) 1996; 38
Y Censor (1229_CR11) 2014; 160
Y Censor (1229_CR12) 2002; 24
1229_CR21
Y Censor (1229_CR13) 2008; 30
A Cegielski (1229_CR7) 2017; 33
T Nikazad (1229_CR27) 2016; 31
MVW Zibetti (1229_CR31) 2018; 34
T Nikazad (1229_CR25) 2017; 33
T Nikazad (1229_CR26) 2017; 25
D Butnariu (1229_CR5) 2007; 1
Y Censor (1229_CR8) 2015; 23
PC Hansen (1229_CR18) 2018; 79
A Beck (1229_CR2) 2019; 34
1229_CR6
ESH Neto (1229_CR23) 2009; 20
T Nikazad (1229_CR24) 2015; 53
T Nikazad (1229_CR28) 2012; 28
Å Björck (1229_CR4) 1996
A Beck (1229_CR3) 2009; 2
T Elfving (1229_CR15) 2009; 25
Y Censor (1229_CR14) 2001; 20
PC Hansen (1229_CR17) 2010
GT Herman (1229_CR20) 2012; 39
Y Censor (1229_CR10) 2010; 26
A Nedic (1229_CR22) 2001; 12
Y Censor (1229_CR9) 2017; 33
GT Herman (1229_CR19) 2009
S Penfold (1229_CR29) 2010; 37
References_xml – volume: 31
  start-page: 1189
  issue: 6
  year: 2016
  end-page: 1208
  ident: CR27
  article-title: Convergence of string-averaging method for a class of operators
  publication-title: Optim. Methods Softw.
  doi: 10.1080/10556788.2016.1209500
– volume: 33
  start-page: 044009
  issue: 4
  year: 2017
  ident: CR7
  article-title: Superiorization with level control
  publication-title: Inv. Probl.
  doi: 10.1088/1361-6420/aa5d79
– volume: 24
  start-page: 40
  issue: 1
  year: 2002
  end-page: 58
  ident: CR12
  article-title: Block-iterative algorithms with diagonally scaled oblique projections for the linear feasibility problem
  publication-title: SIAM J. Matrix Anal. Appl.
  doi: 10.1137/S089547980138705X
– volume: 37
  start-page: 5887
  issue: 11
  year: 2010
  end-page: 5895
  ident: CR29
  article-title: Total variation superiorization schemes in proton computed tomography image reconstruction
  publication-title: Med. Phys.
  doi: 10.1118/1.3504603
– volume: 28
  start-page: 035005
  issue: 3
  year: 2012
  ident: CR28
  article-title: Accelerated perturbation-resilient block-iterative projection methods with application to image reconstruction
  publication-title: Inv. Probl.
  doi: 10.1088/0266-5611/28/3/035005
– volume: 20
  start-page: 1547
  issue: 3
  year: 2009
  end-page: 1572
  ident: CR23
  article-title: Incremental subgradients for constrained convex optimization: a unified framework and new methods
  publication-title: SIAM J. Optim.
  doi: 10.1137/070711712
– ident: CR6
– volume: 1
  start-page: 540
  issue: 4
  year: 2007
  end-page: 547
  ident: CR5
  article-title: Stable convergence behavior under summable perturbations of a class of projection methods for convex feasibility and optimization problems
  publication-title: IEEE J. Sel. Top. Signal Process.
  doi: 10.1109/JSTSP.2007.910263
– year: 2009
  ident: CR19
  publication-title: Fundamentals of Computerized Tomography: Image Reconstruction from Projections
  doi: 10.1007/978-1-84628-723-7
– volume: 30
  start-page: 473
  issue: 1
  year: 2008
  end-page: 504
  ident: CR13
  article-title: On diagonally relaxed orthogonal projection methods
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/050639399
– volume: 38
  start-page: 367
  issue: 3
  year: 1996
  end-page: 426
  ident: CR1
  article-title: On projection algorithms for solving convex feasibility problems
  publication-title: SIAM Rev.
  doi: 10.1137/S0036144593251710
– ident: CR21
– volume: 33
  start-page: 044002
  issue: 4
  year: 2017
  ident: CR25
  article-title: A unified treatment of some perturbed fixed point iterative methods with an infinite pool of operators
  publication-title: Inv. Probl.
  doi: 10.1088/1361-6420/33/4/044002
– volume: 25
  start-page: 35
  issue: 1
  year: 2017
  end-page: 56
  ident: CR26
  article-title: Error minimizing relaxation strategies in Landweber and Kaczmarz type iterations
  publication-title: J. Inv. Ill-posed Probl.
– year: 1996
  ident: CR4
  publication-title: Numerical Methods for Least Squares Problems, vol. 51
  doi: 10.1137/1.9781611971484
– volume: 33
  start-page: 044001
  issue: 4
  year: 2017
  ident: CR30
  article-title: A new convergence analysis and perturbation resilience of some accelerated proximal forward–backward algorithms with errors
  publication-title: Inv. Probl.
  doi: 10.1088/1361-6420/33/4/044001
– volume: 34
  start-page: 034001
  issue: 3
  year: 2018
  ident: CR31
  article-title: Total variation superiorized conjugate gradient method for image reconstruction
  publication-title: Inv. Probl.
  doi: 10.1088/1361-6420/aaa49b
– volume: 25
  start-page: 115011
  issue: 11
  year: 2009
  ident: CR15
  article-title: Properties of a class of block-iterative methods.
  publication-title: Inv. Probl.
  doi: 10.1088/0266-5611/25/11/115011
– volume: 53
  start-page: 390
  issue: 1
  year: 2015
  end-page: 404
  ident: CR24
  article-title: Perturbation-resilient iterative methods with an infinite pool of mappings
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/14095724X
– year: 2010
  ident: CR17
  publication-title: Discrete Inverse Problems: Insight and Algorithms
  doi: 10.1137/1.9780898718836
– volume: 79
  start-page: 107
  issue: 1
  year: 2018
  end-page: 137
  ident: CR18
  article-title: AIR Tools II: algebraic iterative reconstruction methods, improved implementation
  publication-title: Numer. Algorithms
  doi: 10.1007/s11075-017-0430-x
– volume: 33
  start-page: 044006
  issue: 4
  year: 2017
  ident: CR9
  article-title: Can linear superiorization be useful for linear optimization problems?
  publication-title: Inv. Probl.
  doi: 10.1088/1361-6420/33/4/044006
– volume: 29
  start-page: 471
  issue: 3
  year: 1970
  end-page: 481
  ident: CR16
  article-title: Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and x-ray photography
  publication-title: J. Theor. Biol.
  doi: 10.1016/0022-5193(70)90109-8
– volume: 2
  start-page: 183
  issue: 1
  year: 2009
  end-page: 202
  ident: CR3
  article-title: A fast iterative shrinkage-thresholding algorithm for linear inverse problems
  publication-title: SIAM J. Imaging Sci.
  doi: 10.1137/080716542
– volume: 39
  start-page: 5532
  issue: 9
  year: 2012
  end-page: 5546
  ident: CR20
  article-title: Superiorization: an optimization heuristic for medical physics
  publication-title: Med. Phys.
  doi: 10.1118/1.4745566
– volume: 23
  start-page: 41
  issue: 3
  year: 2015
  end-page: 54
  ident: CR8
  article-title: Weak and strong superiorization: between feasibility-seeking and minimization
  publication-title: Analele Universitatii Ovidius Constanta-Seria Matematica
  doi: 10.1515/auom-2015-0046
– volume: 20
  start-page: 1050
  issue: 10
  year: 2001
  end-page: 1060
  ident: CR14
  article-title: BICAV: an inherently parallel algorithm for sparse systems with pixel-dependent weighting
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/42.959302
– volume: 160
  start-page: 730
  issue: 3
  year: 2014
  end-page: 747
  ident: CR11
  article-title: Projected subgradient minimization versus superiorization
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-013-0408-3
– volume: 34
  start-page: 172
  issue: 1
  year: 2019
  end-page: 193
  ident: CR2
  article-title: FOM–a MATLAB toolbox of first-order methods for solving convex optimization problems
  publication-title: Optim. Methods Softw
  doi: 10.1080/10556788.2018.1437159
– volume: 26
  start-page: 065008
  issue: 6
  year: 2010
  ident: CR10
  article-title: Perturbation resilience and superiorization of iterative algorithms
  publication-title: Inv. Probl.
  doi: 10.1088/0266-5611/26/6/065008
– volume: 12
  start-page: 109
  issue: 1
  year: 2001
  end-page: 138
  ident: CR22
  article-title: Incremental subgradient methods for nondifferentiable optimization
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623499362111
– volume: 12
  start-page: 109
  issue: 1
  year: 2001
  ident: 1229_CR22
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623499362111
– volume: 1
  start-page: 540
  issue: 4
  year: 2007
  ident: 1229_CR5
  publication-title: IEEE J. Sel. Top. Signal Process.
  doi: 10.1109/JSTSP.2007.910263
– volume: 39
  start-page: 5532
  issue: 9
  year: 2012
  ident: 1229_CR20
  publication-title: Med. Phys.
  doi: 10.1118/1.4745566
– volume: 34
  start-page: 172
  issue: 1
  year: 2019
  ident: 1229_CR2
  publication-title: Optim. Methods Softw
  doi: 10.1080/10556788.2018.1437159
– volume: 37
  start-page: 5887
  issue: 11
  year: 2010
  ident: 1229_CR29
  publication-title: Med. Phys.
  doi: 10.1118/1.3504603
– volume: 25
  start-page: 35
  issue: 1
  year: 2017
  ident: 1229_CR26
  publication-title: J. Inv. Ill-posed Probl.
  doi: 10.1515/jiip-2015-0082
– volume-title: Numerical Methods for Least Squares Problems, vol. 51
  year: 1996
  ident: 1229_CR4
  doi: 10.1137/1.9781611971484
– volume: 23
  start-page: 41
  issue: 3
  year: 2015
  ident: 1229_CR8
  publication-title: Analele Universitatii Ovidius Constanta-Seria Matematica
  doi: 10.1515/auom-2015-0046
– volume: 29
  start-page: 471
  issue: 3
  year: 1970
  ident: 1229_CR16
  publication-title: J. Theor. Biol.
  doi: 10.1016/0022-5193(70)90109-8
– volume: 24
  start-page: 40
  issue: 1
  year: 2002
  ident: 1229_CR12
  publication-title: SIAM J. Matrix Anal. Appl.
  doi: 10.1137/S089547980138705X
– volume: 30
  start-page: 473
  issue: 1
  year: 2008
  ident: 1229_CR13
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/050639399
– ident: 1229_CR21
  doi: 10.1137/1.9780898719284
– volume: 33
  start-page: 044001
  issue: 4
  year: 2017
  ident: 1229_CR30
  publication-title: Inv. Probl.
  doi: 10.1088/1361-6420/33/4/044001
– volume: 26
  start-page: 065008
  issue: 6
  year: 2010
  ident: 1229_CR10
  publication-title: Inv. Probl.
  doi: 10.1088/0266-5611/26/6/065008
– volume: 28
  start-page: 035005
  issue: 3
  year: 2012
  ident: 1229_CR28
  publication-title: Inv. Probl.
  doi: 10.1088/0266-5611/28/3/035005
– volume: 20
  start-page: 1547
  issue: 3
  year: 2009
  ident: 1229_CR23
  publication-title: SIAM J. Optim.
  doi: 10.1137/070711712
– volume: 33
  start-page: 044002
  issue: 4
  year: 2017
  ident: 1229_CR25
  publication-title: Inv. Probl.
  doi: 10.1088/1361-6420/33/4/044002
– volume: 25
  start-page: 115011
  issue: 11
  year: 2009
  ident: 1229_CR15
  publication-title: Inv. Probl.
  doi: 10.1088/0266-5611/25/11/115011
– ident: 1229_CR6
  doi: 10.1007/978-3-642-30901-4
– volume: 34
  start-page: 034001
  issue: 3
  year: 2018
  ident: 1229_CR31
  publication-title: Inv. Probl.
  doi: 10.1088/1361-6420/aaa49b
– volume: 79
  start-page: 107
  issue: 1
  year: 2018
  ident: 1229_CR18
  publication-title: Numer. Algorithms
  doi: 10.1007/s11075-017-0430-x
– volume: 31
  start-page: 1189
  issue: 6
  year: 2016
  ident: 1229_CR27
  publication-title: Optim. Methods Softw.
  doi: 10.1080/10556788.2016.1209500
– volume-title: Fundamentals of Computerized Tomography: Image Reconstruction from Projections
  year: 2009
  ident: 1229_CR19
  doi: 10.1007/978-1-84628-723-7
– volume: 38
  start-page: 367
  issue: 3
  year: 1996
  ident: 1229_CR1
  publication-title: SIAM Rev.
  doi: 10.1137/S0036144593251710
– volume: 20
  start-page: 1050
  issue: 10
  year: 2001
  ident: 1229_CR14
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/42.959302
– volume: 33
  start-page: 044009
  issue: 4
  year: 2017
  ident: 1229_CR7
  publication-title: Inv. Probl.
  doi: 10.1088/1361-6420/aa5d79
– volume: 160
  start-page: 730
  issue: 3
  year: 2014
  ident: 1229_CR11
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-013-0408-3
– volume: 33
  start-page: 044006
  issue: 4
  year: 2017
  ident: 1229_CR9
  publication-title: Inv. Probl.
  doi: 10.1088/1361-6420/33/4/044006
– volume: 53
  start-page: 390
  issue: 1
  year: 2015
  ident: 1229_CR24
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/14095724X
– volume-title: Discrete Inverse Problems: Insight and Algorithms
  year: 2010
  ident: 1229_CR17
  doi: 10.1137/1.9780898718836
– volume: 2
  start-page: 183
  issue: 1
  year: 2009
  ident: 1229_CR3
  publication-title: SIAM J. Imaging Sci.
  doi: 10.1137/080716542
SSID ssj0010027
Score 2.3267617
Snippet In this paper, we consider a regularized least squares problem subject to convex constraints. Our algorithm is based on the superiorization technique, equipped...
SourceID swepub
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1253
SubjectTerms Algebra
Algorithms
Computed tomography
Computer Science
Conjugate gradient method
Convergence
Iterative methods
Least squares method
Numeric Computing
Numerical Analysis
Original Paper
Regularization
Theory of Computation
Tomography
SummonAdditionalLinks – databaseName: Computer Science Database
  dbid: K7-
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB2VlgM9tKWAuqWt5oC4gIXjJJvkhFa0VSWg4gBVb5a_giIt2WWT7WF_fceJNwsc9sI5jh1lZjxvPJ43AG8SMiAVx4ZxN3YsSTPDdGEJyCluyV-RE-yqXO--ZLe3-f198S0cuDXhWuV6T-w2ajsz_oz8gyii3JOHF9nH-W_mu0b57GpoofEE9iIhIq_nnzM2ZBF8zNVlO2knJqSTh6KZvnSO4h5fm-yDaSEKtvrbMW3Q5pAg_YdMtHNA14f_--lHcBCgJ056XXkOO64-hsMAQzEYeXMM-18HKtfmBegJEvJGUoY5NtXK4WI5dUhQF2kQNkvPlEyL9dWc2DekRlVbrNoG_0iPY1WjCS0kaBqL7exXoMt-CT-ur75_umGhMQMzFI61rNTaqLzkWsWKK5uPVTEu_Q8tuSC4lbi0zHjibJHrVEdc80z5ruF6HEW2jMssfgW79ax2J4CRElaTwxSJSRNhU-0RJMXNStnSJYqPIFpLRZrAWu6bZ0zlhm_ZS1KSJGUnSbkawbvhnXnP2bF19NlaajLYbyM3IhvB-7UCbB5vm-1tryTDyp6_-7K6m8jZ4qecVktJmCrJ-On2ZV_DM-ELLbqLwWew2y6W7hyemoe2ahYXnZo_Aqt2Ayo
  priority: 102
  providerName: ProQuest
Title A new step size rule for the superiorization method and its application in computerized tomography
URI https://link.springer.com/article/10.1007/s11075-021-01229-z
https://www.proquest.com/docview/2918617097
https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-181470
Volume 90
WOSCitedRecordID wos000719752400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1572-9265
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0010027
  issn: 1572-9265
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDCb6OnSH9bEOy9oGPAy7rAbkV2wf0xcGtAuKdgt6EyRLLgxkTmA7PeTXl3Jkpy2KAttVlilbEsWPoPgR4FtACiR8P3WYHmgnCKPUkYkiICeYIntFRrDJch1fR6NRfH-f3NiksKq97d6GJJuTepXsRp6KySY27q_nJc5iHTbJ3MVGHW_vxl3swHhaTYyTzl_CN7FNlXlbxktztMKYXVj0FYVoY3Yud_7vg3fho4WZOFzuiz1Y08U-7FjIiVahK2pqqzq0bfvw4VfH5Fp9AjlEAt5Ie2GGVb7QWM4nGgnpInXCam6IkqelTebEZT1qFIXCvK7wWXQc8wJTOxaJUVhP_1q27AP4c3nx--ynY-syOCl5Y7WTSZmKOGNS-IIJFQ9EMsjMz2bMI7QV6DCLWKBVEstQukyySJii4XLguirzs8j_DBvFtNBfAF3hKUn20gvSMPBUKA2AJLdZCJXpQLAeuO3y8NSSlpvaGRO-ols2s8xplnkzy3zRgx_dO7MlZce7vY_aVedWfSvuJW5smOqTqAcn7eKuHr8n7ftyt3QjG_ru83w85NPygU_yOSdIFUTs67_JPYRtz-RdNPeEj2CjLuf6GLbSxzqvyj5snl6Mbm77sH4VOX1zffWu3-jEE_ZEA78
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEB2VggQcKBRQAwXmAFzAYv0V2weEIkrVqmmERKl6W_bLyFLqhNgBkR_Fb2TWXjvAIbceOHu9K9tvZ954dt4API9oA4kwVB4zQ-NFcaI8mWkicoJp8lfkBJsq1_NxMpmkFxfZxy341dXC2GOVnU1sDLWeKfuP_E2Q-akVD8-Sd_Nvnu0aZbOrXQuNFhYn5ucPCtmqt8cH9H1fBMHhh7P3R57rKuApiiVqL5dSiTRnUoSCCZ0ORTbMbRSUs4C4QmTiPGGR0VkqY-kzyRJhW17Loe_rPMyTkOa9Btcja_2bo4Kf-qyFjfGa7CpZfmJWqSvSaUv1aAVbC22Dd5rPW_3tCNfstk_I_iNe2ji8w53_7VXdhTuOWuOo3Qv3YMuUu7DjaDY6I1btwu3TXqq2ug9yhBRZIIF9jlWxMrhYTg0SlUcahNXSKkHTw7XVqtg23EZRaizqCv9I_2NRonItMmgajfXs0smBP4DPV_LcD2G7nJVmD9AXgZZECIJIxVGgY2kZsh-GQujcRIINwO9QwJVTZbfNQaZ8rSdtkcMJObxBDl8N4FV_z7zVJNk4er9DCXf2qeJriAzgdQe49eVNs71sQdmvbPXJD4rzEZ8tvvJpseTEGaOEPdq87DO4eXR2Oubj48nJY7gV2KKS5hD0PmzXi6V5AjfU97qoFk-bLYbw5aqB-hvuZmDu
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Rb9MwED7BQAgeGAwQhQH3gHiBaE7iNMljxahAjGoSUO3NsmN7ilTSKkl56K_nnDjpQGgS4tVJzol9l_tO5_sO4DUnA5JxXATMTE3Ak7QIVK4JyEmmyV-RE-yqXJdn6WKRXVzk51eq-LvT7kNKsq9pcCxNVXuy0fZkX_hGUYurLHahcBTlwe4m3OKuaZCL178uxzyCi7q6fCf9iwnrZL5s5u8yfndNe7w5pkj_oBPtXND88P9f_gHc9_ATZ72-PIQbpjqCQw9F0Rt6Q0NDt4dh7AjufRkZXptHoGZIgBxJRzbYlDuD9XZlkBAw0k3YbB2B8rr2RZ7Y96lGWWks2wavZM2xrLDwc5EYje36h2fRfgzf5x--vf8Y-H4NQUFRWhtYpQqZWaZkLJnU2VTmU-s-1rKIUBg3iU0ZNzrPVKJCplgqXTNxNQ1DbWObxk_goFpX5ilgKCOtyI9GvEh4pBPlgCWF01Jqa7hkEwiHrRKFJzN3PTVWYk_D7FZZ0CqLbpXFbgJvx2c2PZXHtXcfDxogvFk3IsrDzDHY5-kE3g0bvb98nbQ3veaMMzta79NyORPr-lKsyq0gqMVT9uzf5L6CO-enc3H2afH5OdyNXGlGd5T4GA7aemtewO3iZ1s29cvOLH4Bs0UMJQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+step+size+rule+for+the+superiorization+method+and+its+application+in+computerized+tomography&rft.jtitle=Numerical+algorithms&rft.au=Nikazad%2C+T.&rft.au=Abbasi%2C+M.&rft.au=Afzalipour%2C+L.&rft.au=Elfving%2C+Tommy&rft.date=2022-07-01&rft.issn=1572-9265&rft.volume=90&rft.issue=3&rft.spage=1253&rft_id=info:doi/10.1007%2Fs11075-021-01229-z&rft.externalDocID=oai_DiVA_org_liu_181470
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1017-1398&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1017-1398&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1017-1398&client=summon