Anomaly Detection Using Convolutional Adversarial Autoencoder and One-class SVM for Landslide Area Detection from Synthetic Aperture Radar Images

An anomaly detection model using deep learning for detecting disaster-stricken (landslide) areas in synthetic aperture radar images is proposed. Since it is difficult to obtain a large number of training images, especially disaster area images, with annotations, we design an anomaly detection model...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of robotics, networking and artificial life Jg. 8; H. 2; S. 139 - 144
Hauptverfasser: Mabu, Shingo, Hirata, Soichiro, Kuremoto, Takashi
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Dordrecht Springer Netherlands 2021
Schlagworte:
ISSN:2405-9021, 2352-6386
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!