Anomaly Detection Using Convolutional Adversarial Autoencoder and One-class SVM for Landslide Area Detection from Synthetic Aperture Radar Images
An anomaly detection model using deep learning for detecting disaster-stricken (landslide) areas in synthetic aperture radar images is proposed. Since it is difficult to obtain a large number of training images, especially disaster area images, with annotations, we design an anomaly detection model...
Uloženo v:
| Vydáno v: | Journal of robotics, networking and artificial life Ročník 8; číslo 2; s. 139 - 144 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Dordrecht
Springer Netherlands
2021
|
| Témata: | |
| ISSN: | 2405-9021, 2352-6386 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | An anomaly detection model using deep learning for detecting disaster-stricken (landslide) areas in synthetic aperture radar images is proposed. Since it is difficult to obtain a large number of training images, especially disaster area images, with annotations, we design an anomaly detection model that only uses normal area images for the training, where the proposed model combines a convolutional adversarial autoencoder, principal component analysis, and one-class support vector machine. In the experiments, the ability in detecting normal and abnormal areas is evaluated. |
|---|---|
| ISSN: | 2405-9021 2352-6386 |
| DOI: | 10.2991/jrnal.k.210713.014 |