Anomaly Detection Using Convolutional Adversarial Autoencoder and One-class SVM for Landslide Area Detection from Synthetic Aperture Radar Images

An anomaly detection model using deep learning for detecting disaster-stricken (landslide) areas in synthetic aperture radar images is proposed. Since it is difficult to obtain a large number of training images, especially disaster area images, with annotations, we design an anomaly detection model...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of robotics, networking and artificial life Ročník 8; číslo 2; s. 139 - 144
Hlavní autoři: Mabu, Shingo, Hirata, Soichiro, Kuremoto, Takashi
Médium: Journal Article
Jazyk:angličtina
Vydáno: Dordrecht Springer Netherlands 2021
Témata:
ISSN:2405-9021, 2352-6386
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:An anomaly detection model using deep learning for detecting disaster-stricken (landslide) areas in synthetic aperture radar images is proposed. Since it is difficult to obtain a large number of training images, especially disaster area images, with annotations, we design an anomaly detection model that only uses normal area images for the training, where the proposed model combines a convolutional adversarial autoencoder, principal component analysis, and one-class support vector machine. In the experiments, the ability in detecting normal and abnormal areas is evaluated.
ISSN:2405-9021
2352-6386
DOI:10.2991/jrnal.k.210713.014