CAMIL: channel attention-based multiple instance learning for whole slide image classification

Motivation The classification task based on whole-slide images (WSIs) is a classic problem in computational pathology. Multiple instance learning (MIL) provides a robust framework for analyzing whole slide images with slide-level labels at gigapixel resolution. However, existing MIL models typically...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Bioinformatics (Oxford, England) Ročník 41; číslo 2
Hlavní autori: Mao, Jinyang, Xu, Junlin, Tang, Xianfang, Liu, Yongjin, Zhao, Heaven, Tian, Geng, Yang, Jialiang
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: England Oxford University Press 04.02.2025
Predmet:
ISSN:1367-4811, 1367-4811
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Motivation The classification task based on whole-slide images (WSIs) is a classic problem in computational pathology. Multiple instance learning (MIL) provides a robust framework for analyzing whole slide images with slide-level labels at gigapixel resolution. However, existing MIL models typically focus on modeling the relationships between instances while neglecting the variability across the channel dimensions of instances, which prevents the model from fully capturing critical information in the channel dimension. Results To address this issue, we propose a plug-and-play module called Multi-scale Channel Attention Block (MCAB), which models the interdependencies between channels by leveraging local features with different receptive fields. By alternately stacking four layers of Transformer and MCAB, we designed a channel attention-based MIL model (CAMIL) capable of simultaneously modeling both inter-instance relationships and intra-channel dependencies. To verify the performance of the proposed CAMIL in classification tasks, several comprehensive experiments were conducted across three datasets: Camelyon16, TCGA-NSCLC, and TCGA-RCC. Empirical results demonstrate that, whether the feature extractor is pretrained on natural images or on WSIs, our CAMIL surpasses current state-of-the-art MIL models across multiple evaluation metrics. Availability and implementation All implementation code is available at https://github.com/maojy0914/CAMIL.
AbstractList The classification task based on whole-slide images (WSIs) is a classic problem in computational pathology. Multiple instance learning (MIL) provides a robust framework for analyzing whole slide images with slide-level labels at gigapixel resolution. However, existing MIL models typically focus on modeling the relationships between instances while neglecting the variability across the channel dimensions of instances, which prevents the model from fully capturing critical information in the channel dimension. To address this issue, we propose a plug-and-play module called Multi-scale Channel Attention Block (MCAB), which models the interdependencies between channels by leveraging local features with different receptive fields. By alternately stacking four layers of Transformer and MCAB, we designed a channel attention-based MIL model (CAMIL) capable of simultaneously modeling both inter-instance relationships and intra-channel dependencies. To verify the performance of the proposed CAMIL in classification tasks, several comprehensive experiments were conducted across three datasets: Camelyon16, TCGA-NSCLC, and TCGA-RCC. Empirical results demonstrate that, whether the feature extractor is pretrained on natural images or on WSIs, our CAMIL surpasses current state-of-the-art MIL models across multiple evaluation metrics. All implementation code is available at https://github.com/maojy0914/CAMIL.
Motivation The classification task based on whole-slide images (WSIs) is a classic problem in computational pathology. Multiple instance learning (MIL) provides a robust framework for analyzing whole slide images with slide-level labels at gigapixel resolution. However, existing MIL models typically focus on modeling the relationships between instances while neglecting the variability across the channel dimensions of instances, which prevents the model from fully capturing critical information in the channel dimension. Results To address this issue, we propose a plug-and-play module called Multi-scale Channel Attention Block (MCAB), which models the interdependencies between channels by leveraging local features with different receptive fields. By alternately stacking four layers of Transformer and MCAB, we designed a channel attention-based MIL model (CAMIL) capable of simultaneously modeling both inter-instance relationships and intra-channel dependencies. To verify the performance of the proposed CAMIL in classification tasks, several comprehensive experiments were conducted across three datasets: Camelyon16, TCGA-NSCLC, and TCGA-RCC. Empirical results demonstrate that, whether the feature extractor is pretrained on natural images or on WSIs, our CAMIL surpasses current state-of-the-art MIL models across multiple evaluation metrics. Availability and implementation All implementation code is available at https://github.com/maojy0914/CAMIL.
The classification task based on whole-slide images (WSIs) is a classic problem in computational pathology. Multiple instance learning (MIL) provides a robust framework for analyzing whole slide images with slide-level labels at gigapixel resolution. However, existing MIL models typically focus on modeling the relationships between instances while neglecting the variability across the channel dimensions of instances, which prevents the model from fully capturing critical information in the channel dimension.MOTIVATIONThe classification task based on whole-slide images (WSIs) is a classic problem in computational pathology. Multiple instance learning (MIL) provides a robust framework for analyzing whole slide images with slide-level labels at gigapixel resolution. However, existing MIL models typically focus on modeling the relationships between instances while neglecting the variability across the channel dimensions of instances, which prevents the model from fully capturing critical information in the channel dimension.To address this issue, we propose a plug-and-play module called Multi-scale Channel Attention Block (MCAB), which models the interdependencies between channels by leveraging local features with different receptive fields. By alternately stacking four layers of Transformer and MCAB, we designed a channel attention-based MIL model (CAMIL) capable of simultaneously modeling both inter-instance relationships and intra-channel dependencies. To verify the performance of the proposed CAMIL in classification tasks, several comprehensive experiments were conducted across three datasets: Camelyon16, TCGA-NSCLC, and TCGA-RCC. Empirical results demonstrate that, whether the feature extractor is pretrained on natural images or on WSIs, our CAMIL surpasses current state-of-the-art MIL models across multiple evaluation metrics.RESULTSTo address this issue, we propose a plug-and-play module called Multi-scale Channel Attention Block (MCAB), which models the interdependencies between channels by leveraging local features with different receptive fields. By alternately stacking four layers of Transformer and MCAB, we designed a channel attention-based MIL model (CAMIL) capable of simultaneously modeling both inter-instance relationships and intra-channel dependencies. To verify the performance of the proposed CAMIL in classification tasks, several comprehensive experiments were conducted across three datasets: Camelyon16, TCGA-NSCLC, and TCGA-RCC. Empirical results demonstrate that, whether the feature extractor is pretrained on natural images or on WSIs, our CAMIL surpasses current state-of-the-art MIL models across multiple evaluation metrics.All implementation code is available at https://github.com/maojy0914/CAMIL.AVAILABILITY AND IMPLEMENTATIONAll implementation code is available at https://github.com/maojy0914/CAMIL.
Author Liu, Yongjin
Xu, Junlin
Yang, Jialiang
Mao, Jinyang
Tang, Xianfang
Tian, Geng
Zhao, Heaven
Author_xml – sequence: 1
  givenname: Jinyang
  orcidid: 0009-0009-7264-2225
  surname: Mao
  fullname: Mao, Jinyang
– sequence: 2
  givenname: Junlin
  orcidid: 0000-0003-1057-1504
  surname: Xu
  fullname: Xu, Junlin
  email: xjl@hnu.edu.cn
– sequence: 3
  givenname: Xianfang
  surname: Tang
  fullname: Tang, Xianfang
– sequence: 4
  givenname: Yongjin
  surname: Liu
  fullname: Liu, Yongjin
  email: yjliu@fzu.edu.cn
– sequence: 5
  givenname: Heaven
  surname: Zhao
  fullname: Zhao, Heaven
– sequence: 6
  givenname: Geng
  surname: Tian
  fullname: Tian, Geng
– sequence: 7
  givenname: Jialiang
  surname: Yang
  fullname: Yang, Jialiang
  email: yangjl@geneis.cn
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39820310$$D View this record in MEDLINE/PubMed
BookMark eNqNkMtOwzAQRS1URB_wC1WWbELHeQexQRWPSkVsYEvkOOPWyLFL7Ajx97i0IGADK4_sc2c8Z0wG2mgkZErhjEIZz2pppBama5mT3M5qxwREyQEZ0TjLw6SgdPCtHpKxtc8AkEKaHZFhXBYRxBRG5Gl-ebdYngd8zbRGFTDnUDtpdFgzi03Q9srJjcJAauuY5hgoZJ2WehX46cHr2vg3q2TjiZatMOCKWSuF5Gzb5ZgcCqYsnuzPCXm8vnqY34bL-5vF_HIZ8gSoC0UWAa1pk1PIaVpimmSAOYjtZVkD-o0zZAUA4zxiTR5HUSnKrIBGYMEbGk_I6a7vpjMvPVpXtdJyVIppNL2tYpp6GtK09Oh0j_Z1i0216fzHu7fq04kHsh3AO2Nth-ILoVBt5Vc_5Vd7-T548SvIpfvQ4Dom1d9xuoubfvPfke-n4KT0
CitedBy_id crossref_primary_10_1002_jemt_70069
Cites_doi 10.1016/j.media.2020.101814
10.1016/j.media.2020.101813
10.1038/s41591-018-0177-5
10.1016/j.ccell.2023.08.002
10.1001/jama.2017.14585
10.1016/j.bspc.2021.103406
10.48550/arXiv.2404.00351
10.1016/j.cmpb.2011.12.007
10.1016/j.compbiomed.2022.106199
10.1038/s41551-020-00682-w
10.1038/s41586-021-03512-4
10.1038/s41587-021-01094-0
10.1109/TMI.2021.3077079
10.1016/j.media.2022.102559
10.1093/bioinformatics/btac641
10.48550/arXiv.1612.03217,
10.1016/j.patcog.2022.108785
10.1038/s41591-024-02857-3
10.1609/aaai.v35i16.17664
10.1109/TCYB.2019.2935141
10.1016/j.compbiomed.2020.103639
10.1093/bib/bbac448
10.1016/j.media.2019.101563
10.1016/j.compbiomed.2024.107938
10.1109/TMM.2020.2997192
ContentType Journal Article
Copyright The Author(s) 2025. Published by Oxford University Press. 2025
The Author(s) 2025. Published by Oxford University Press.
Copyright_xml – notice: The Author(s) 2025. Published by Oxford University Press. 2025
– notice: The Author(s) 2025. Published by Oxford University Press.
DBID TOX
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1093/bioinformatics/btaf024
DatabaseName Oxford Journals Open Access Collection
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: TOX
  name: Oxford Journals Open Access Collection
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1367-4811
ExternalDocumentID 39820310
10_1093_bioinformatics_btaf024
10.1093/bioinformatics/btaf024
Genre Journal Article
GrantInformation_xml – fundername: Natural Science Foundation of Hunan Province
  grantid: 2023JJ40180
– fundername: Wuhan Textile University Foundation
  grantid: 20230612
GroupedDBID ---
-E4
-~X
.-4
.2P
.DC
.GJ
.I3
0R~
1TH
23N
2WC
4.4
48X
53G
5GY
5WA
70D
AAIJN
AAIMJ
AAJKP
AAJQQ
AAKPC
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AAUQX
AAVAP
AAVLN
ABEFU
ABEJV
ABEUO
ABGNP
ABIXL
ABNGD
ABNKS
ABPQP
ABPTD
ABQLI
ABWST
ABXVV
ABZBJ
ACGFS
ACIWK
ACPRK
ACUFI
ACUKT
ACUXJ
ACYTK
ADBBV
ADEYI
ADEZT
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADMLS
ADOCK
ADPDF
ADRDM
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AECKG
AEGPL
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFNX
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AGINJ
AGKEF
AGQPQ
AGQXC
AGSYK
AHMBA
AHXPO
AI.
AIJHB
AJEEA
AJEUX
AKHUL
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
AMNDL
APIBT
APWMN
AQDSO
ARIXL
ASPBG
ATTQO
AVWKF
AXUDD
AYOIW
AZFZN
AZVOD
BAWUL
BAYMD
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
C1A
C45
CAG
CDBKE
COF
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
EBD
EBS
EE~
EJD
ELUNK
EMOBN
F5P
F9B
FEDTE
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GROUPED_DOAJ
GX1
H13
H5~
HAR
HVGLF
HW0
HZ~
IOX
J21
JXSIZ
KAQDR
KOP
KQ8
KSI
KSN
M-Z
MK~
ML0
N9A
NGC
NLBLG
NMDNZ
NOMLY
NTWIH
NU-
NVLIB
O0~
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
O~Y
P2P
PAFKI
PB-
PEELM
PQQKQ
Q1.
Q5Y
R44
RD5
RIG
RNI
RNS
ROL
RPM
RUSNO
RW1
RXO
RZF
RZO
SV3
TEORI
TJP
TLC
TOX
TR2
VH1
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZGI
ZKX
~91
~KM
AAYXX
CITATION
ROX
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c401t-f6201b1d7107159e5460e70f01b19b0e0936ea800acc2ad73229f9680dfe8cd13
IEDL.DBID TOX
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001414845800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1367-4811
IngestDate Sun Nov 09 12:46:34 EST 2025
Thu May 29 04:59:34 EDT 2025
Sat Nov 29 08:13:42 EST 2025
Tue Nov 18 21:21:01 EST 2025
Mon Jun 30 08:34:51 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
https://creativecommons.org/licenses/by/4.0
The Author(s) 2025. Published by Oxford University Press.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c401t-f6201b1d7107159e5460e70f01b19b0e0936ea800acc2ad73229f9680dfe8cd13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0009-0009-7264-2225
0000-0003-1057-1504
OpenAccessLink https://dx.doi.org/10.1093/bioinformatics/btaf024
PMID 39820310
PQID 3156800559
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3156800559
pubmed_primary_39820310
crossref_primary_10_1093_bioinformatics_btaf024
crossref_citationtrail_10_1093_bioinformatics_btaf024
oup_primary_10_1093_bioinformatics_btaf024
PublicationCentury 2000
PublicationDate 2025-Feb-04
PublicationDateYYYYMMDD 2025-02-04
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-Feb-04
  day: 04
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Bioinformatics (Oxford, England)
PublicationTitleAlternate Bioinformatics
PublicationYear 2025
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Li (2025030422283808300_btaf024-B22) 2021; 23
Zhang (2025030422283808300_btaf024-B42) 2022
Pan (2025030422283808300_btaf024-B29) 2022; 150
Qu (2025030422283808300_btaf024-B31) 2022
Srinidhi (2025030422283808300_btaf024-B33) 2021; 67
Wang (2025030422283808300_btaf024-B37) 2020
Wang (2025030422283808300_btaf024-B39) 2020; 50
Fu (2025030422283808300_btaf024-B11) 2024; 170
Woo (2025030422283808300_btaf024-B40) 2018
Yao (2025030422283808300_btaf024-B41) 2022; 23
Tang (2025030422283808300_btaf024-B34) 2024
Fang (2025030422283808300_btaf024-B10)
Greenwald (2025030422283808300_btaf024-B13) 2022; 40
Shao (2025030422283808300_btaf024-B32) 2021
Coudray (2025030422283808300_btaf024-B7) 2018; 24
Ilse (2025030422283808300_btaf024-B18) 2018
Javed (2025030422283808300_btaf024-B19) 2022
Karthik (2025030422283808300_btaf024-B20) 2022; 73
Chollet (2025030422283808300_btaf024-B6) 2017
He (2025030422283808300_btaf024-B14) 2012; 107
Zhu (2025030422283808300_btaf024-B43) 2021; 40
Huang (2025030422283808300_btaf024-B16)
Maron (2025030422283808300_btaf024-B26) 1997
Li (2025030422283808300_btaf024-B21) 2021
Lu (2025030422283808300_btaf024-B25) 2021; 5
Chi (2025030422283808300_btaf024-B5) 2023
Mou (2025030422283808300_btaf024-B27) 2019
Cai (2025030422283808300_btaf024-B1)
Chen (2025030422283808300_btaf024-B4) 2024; 30
Xiong (2025030422283808300_btaf024-B52499774) 2021; 35
Li (2025030422283808300_btaf024-B23) 2022; 129
Graham (2025030422283808300_btaf024-B12) 2019; 58
Vaswani (2025030422283808300_btaf024-B35) 2017
Chen (2025030422283808300_btaf024-B3) 2022
Chen (2025030422283808300_btaf024-B2)
Huang (2025030422283808300_btaf024-B17) 2022; 38
Ni (2025030422283808300_btaf024-B28) 2020; 118
Wagner (2025030422283808300_btaf024-B36) 2023; 41
Dov (2025030422283808300_btaf024-B8) 2021; 67
Ehteshami Bejnordi (2025030422283808300_btaf024-B9) 2017; 318
Qin (2025030422283808300_btaf024-B30) 2021
Lu (2025030422283808300_btaf024-B24) 2021; 594
Hu (2025030422283808300_btaf024-B15) 2018
Wang (2025030422283808300_btaf024-B38) 2022; 81
References_xml – start-page: 721
  volume-title: Medical Image Computing and Computer Assisted Intervention—MICCAI 2019, Lecture Notes in Computer Science
  year: 2019
  ident: 2025030422283808300_btaf024-B27
– year: 2018
  ident: 2025030422283808300_btaf024-B40
– volume: 67
  start-page: 101814
  year: 2021
  ident: 2025030422283808300_btaf024-B8
  article-title: Weakly supervised instance learning for thyroid malignancy prediction from whole slide cytopathology images
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2020.101814
– volume: 67
  start-page: 101813
  year: 2021
  ident: 2025030422283808300_btaf024-B33
  article-title: Deep neural network models for computational histopathology: a survey
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2020.101813
– volume: 24
  start-page: 1559
  year: 2018
  ident: 2025030422283808300_btaf024-B7
  article-title: Classification and mutation prediction from non–small cell lung cancer histopathology images using deep learning
  publication-title: Nat Med
  doi: 10.1038/s41591-018-0177-5
– year: 1997
  ident: 2025030422283808300_btaf024-B26
– volume: 41
  start-page: 1650
  year: 2023
  ident: 2025030422283808300_btaf024-B36
  article-title: Transformer-based biomarker prediction from colorectal cancer histology: a large-scale multicentric study
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2023.08.002
– volume: 318
  start-page: 2199
  year: 2017
  ident: 2025030422283808300_btaf024-B9
  article-title: Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer
  publication-title: JAMA
  doi: 10.1001/jama.2017.14585
– volume: 73
  start-page: 103406
  year: 2022
  ident: 2025030422283808300_btaf024-B20
  article-title: Eff2Net: an efficient channel attention-based convolutional neural network for skin disease classification
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2021.103406
– start-page: 763
  year: 2021
  ident: 2025030422283808300_btaf024-B30
– ident: 2025030422283808300_btaf024-B1
  doi: 10.48550/arXiv.2404.00351
– volume: 107
  start-page: 538
  year: 2012
  ident: 2025030422283808300_btaf024-B14
  article-title: Histology image analysis for carcinoma detection and grading
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2011.12.007
– year: 2018
  ident: 2025030422283808300_btaf024-B15
– start-page: 24
  volume-title: Medical Image Computing and Computer Assisted Intervention—MICCAI 2022, Lecture Notes in Computer Science
  year: 2022
  ident: 2025030422283808300_btaf024-B31
– start-page: 18780
  year: 2022
  ident: 2025030422283808300_btaf024-B42
– start-page: 11531
  year: 2020
  ident: 2025030422283808300_btaf024-B37
– start-page: 16123
  year: 2022
  ident: 2025030422283808300_btaf024-B3
– volume: 150
  start-page: 106199
  year: 2022
  ident: 2025030422283808300_btaf024-B29
  article-title: MCA-net: a multi-task channel attention network for Myocardial infarction detection and location using 12-lead ECGs
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2022.106199
– start-page: 20689
  volume-title: Advances in Neural Information Processing Systems
  year: 2022
  ident: 2025030422283808300_btaf024-B19
– volume: 5
  start-page: 555
  year: 2021
  ident: 2025030422283808300_btaf024-B25
  article-title: Data-efficient and weakly supervised computational pathology on whole-slide images
  publication-title: Nat Biomed Eng
  doi: 10.1038/s41551-020-00682-w
– volume: 594
  start-page: 106
  year: 2021
  ident: 2025030422283808300_btaf024-B24
  article-title: AI-based pathology predicts origins for cancers of unknown primary
  publication-title: Nature
  doi: 10.1038/s41586-021-03512-4
– volume: 40
  start-page: 555
  year: 2022
  ident: 2025030422283808300_btaf024-B13
  article-title: Whole-cell segmentation of tissue images with human-level performance using large-scale data annotation and deep learning
  publication-title: Nat Biotechnol
  doi: 10.1038/s41587-021-01094-0
– volume: 40
  start-page: 2354
  year: 2021
  ident: 2025030422283808300_btaf024-B43
  article-title: Dual attention multi-instance deep learning for Alzheimer’s disease diagnosis with structural MRI
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2021.3077079
– volume: 81
  start-page: 102559
  year: 2022
  ident: 2025030422283808300_btaf024-B38
  article-title: Transformer-based unsupervised contrastive learning for histopathological image classification
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2022.102559
– start-page: 2136
  volume-title: Advances in Neural Information Processing Systems
  year: 2021
  ident: 2025030422283808300_btaf024-B32
– start-page: 98
  volume-title: Medical Image Computing and Computer Assisted Intervention—MICCAI 2023, Lecture Notes in Computer Science
  year: 2023
  ident: 2025030422283808300_btaf024-B5
– volume: 38
  start-page: 5108
  year: 2022
  ident: 2025030422283808300_btaf024-B17
  article-title: Predicting colorectal cancer tumor mutational burden from histopathological images and clinical information using multi-modal deep learning
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btac641
– ident: 2025030422283808300_btaf024-B2
  doi: 10.48550/arXiv.1612.03217,
– ident: 2025030422283808300_btaf024-B16
– volume: 129
  start-page: 108785
  year: 2022
  ident: 2025030422283808300_btaf024-B23
  article-title: HAM: hybrid attention module in deep convolutional neural networks for image classification
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2022.108785
– start-page: 11343
  year: 2024
  ident: 2025030422283808300_btaf024-B34
– volume: 30
  start-page: 850
  year: 2024
  ident: 2025030422283808300_btaf024-B4
  article-title: Towards a general-purpose foundation model for computational pathology
  publication-title: Nat Med
  doi: 10.1038/s41591-024-02857-3
– start-page: 14313
  year: 2021
  ident: 2025030422283808300_btaf024-B21
– volume: 35
  start-page: 14138
  year: 2021
  ident: 2025030422283808300_btaf024-B52499774
  article-title: Nyströmformer: A nyström-based algorithm for approximating self-attention
  publication-title: AAAI
  doi: 10.1609/aaai.v35i16.17664
– volume-title: Advances in Neural Information Processing Systems
  year: 2017
  ident: 2025030422283808300_btaf024-B35
– start-page: 1800
  year: 2017
  ident: 2025030422283808300_btaf024-B6
– start-page: 2127
  volume-title: Proceedings of the 35th International Conference on Machine Learning, Proceedings of Machine Learning Research
  year: 2018
  ident: 2025030422283808300_btaf024-B18
– volume: 50
  start-page: 3950
  year: 2020
  ident: 2025030422283808300_btaf024-B39
  article-title: Weakly supervised deep learning for whole slide lung cancer image analysis
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2019.2935141
– volume: 118
  start-page: 103639
  year: 2020
  ident: 2025030422283808300_btaf024-B28
  article-title: Global channel attention networks for intracranial vessel segmentation
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2020.103639
– volume: 23
  start-page: bbac448
  year: 2022
  ident: 2025030422283808300_btaf024-B41
  article-title: ICSDA: a multi-modal deep learning model to predict breast cancer recurrence and metastasis risk by integrating pathological, clinical and gene expression data
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbac448
– volume: 58
  start-page: 101563
  year: 2019
  ident: 2025030422283808300_btaf024-B12
  article-title: Hover-net: simultaneous segmentation and classification of nuclei in multi-tissue histology images
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2019.101563
– ident: 2025030422283808300_btaf024-B10
– volume: 170
  start-page: 107938
  year: 2024
  ident: 2025030422283808300_btaf024-B11
  article-title: TSCA-Net: transformer based spatial-channel attention segmentation network for medical images
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2024.107938
– volume: 23
  start-page: 1397
  year: 2021
  ident: 2025030422283808300_btaf024-B22
  article-title: Stacked U-shape network with channel-wise attention for salient object detection
  publication-title: IEEE Trans Multimedia
  doi: 10.1109/TMM.2020.2997192
SSID ssj0005056
Score 2.4937341
Snippet Motivation The classification task based on whole-slide images (WSIs) is a classic problem in computational pathology. Multiple instance learning (MIL)...
The classification task based on whole-slide images (WSIs) is a classic problem in computational pathology. Multiple instance learning (MIL) provides a robust...
SourceID proquest
pubmed
crossref
oup
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
SubjectTerms Algorithms
Computational Biology - methods
Humans
Image Processing, Computer-Assisted - methods
Multiple-Instance Learning Algorithms
Title CAMIL: channel attention-based multiple instance learning for whole slide image classification
URI https://www.ncbi.nlm.nih.gov/pubmed/39820310
https://www.proquest.com/docview/3156800559
Volume 41
WOSCitedRecordID wos001414845800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals (DOAJ)
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: DOA
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVASL
  databaseName: Oxford Journals Open Access Collection
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: TOX
  dateStart: 19850101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZSwMxEB5qUfDF-6hHieCTsHTb7BXfSlEUtPqg0CeXJJtIQbdit4r_3pk9KlXE43VJ9kgmmS87M98HcKgsWoXS2uFJRGFGPLOKRFAWofCt5Ny6vs3FJsJ-PxoMxHUN2lUtzOcQvuAtNRyVJKJEXNxSmbToWHDXbfsRaRbcXA0-kjrQn1d1wN92nXFBM2VtX9Bl7mVOl__xfiuwVEJK1i1sYBVqJl2DhUJk8m0d7nrdy_OLY0Ylvql5YESomac4OuTBElalFLJhjhS1YaWSxD3Dx7FXEtBliEYTbPGIuw_TBLgpwyif1A24PT256Z05paqCo_EslTk2QJ-v2glCixCxjPG9wDWha-miUK7BTwqMRBwpte7IJMQVL6wIIjexJtJJm29CPR2lZhuY4h1LfIYisNLjnlY8VL4UXge3ET9UsgF-NdCxLinHSfniIS5C3zyeHbu4HLsGtKb9ngrSjR97HOE8_rrxQTXdMS4mipDI1Iwm45jjaTYiWjLRgK3CDqb35ALBEoLhnb88ahcWOyQYTGne3h7Us-eJ2Yd5_ZINx89NmAsHUTP_DdDM7fgdkiH53g
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CAMIL%3A+channel+attention-based+multiple+instance+learning+for+whole+slide+image+classification&rft.jtitle=Bioinformatics+%28Oxford%2C+England%29&rft.au=Mao%2C+Jinyang&rft.au=Xu%2C+Junlin&rft.au=Tang%2C+Xianfang&rft.au=Liu%2C+Yongjin&rft.date=2025-02-04&rft.eissn=1367-4811&rft.volume=41&rft.issue=2&rft_id=info:doi/10.1093%2Fbioinformatics%2Fbtaf024&rft_id=info%3Apmid%2F39820310&rft.externalDocID=39820310
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-4811&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-4811&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-4811&client=summon