A Fuzzy Clustering Approach Toward Hidden Markov Random Field Models for Enhanced Spatially Constrained Image Segmentation

Hidden Markov random field (HMRF) models have been widely used for image segmentation, as they appear naturally in problems where a spatially constrained clustering scheme, taking into account the mutual influences of neighboring sites, is asked for. Fuzzy c -means (FCM) clustering has also been suc...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on fuzzy systems Ročník 16; číslo 5; s. 1351 - 1361
Hlavní autoři: Chatzis, S.P., Varvarigou, T.A.
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.10.2008
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1063-6706, 1941-0034
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Hidden Markov random field (HMRF) models have been widely used for image segmentation, as they appear naturally in problems where a spatially constrained clustering scheme, taking into account the mutual influences of neighboring sites, is asked for. Fuzzy c -means (FCM) clustering has also been successfully applied in several image segmentation applications. In this paper, we combine the benefits of these two approaches, by proposing a novel treatment of HMRF models, formulated on the basis of a fuzzy clustering principle. We approach the HMRF model treatment problem as an FCM-type clustering problem, effected by introducing the explicit assumptions of the HMRF model into the fuzzy clustering procedure. Our approach utilizes a fuzzy objective function regularized by Kullback--Leibler divergence information, and is facilitated by application of a mean-field-like approximation of the MRF prior. We experimentally demonstrate the superiority of the proposed approach over competing methodologies, considering a series of synthetic and real-world image segmentation applications.
AbstractList Hidden Markov random field (HMRF) models have been widely used for image segmentation, as they appear naturally in problems where a spatially constrained clustering scheme, taking into account the mutual influences of neighboring sites, is asked for. Fuzzy c -means (FCM) clustering has also been successfully applied in several image segmentation applications. In this paper, we combine the benefits of these two approaches, by proposing a novel treatment of HMRF models, formulated on the basis of a fuzzy clustering principle. We approach the HMRF model treatment problem as an FCM-type clustering problem, effected by introducing the explicit assumptions of the HMRF model into the fuzzy clustering procedure. Our approach utilizes a fuzzy objective function regularized by Kullback--Leibler divergence information, and is facilitated by application of a mean-field-like approximation of the MRF prior. We experimentally demonstrate the superiority of the proposed approach over competing methodologies, considering a series of synthetic and real-world image segmentation applications.
Hidden Markov random field (HMRF) models have been widely used for image segmentation, as they appear naturally in problems where a spatially constrained clustering scheme, taking into account the mutual influences of neighboring sites, is asked for.
Author Chatzis, S.P.
Varvarigou, T.A.
Author_xml – sequence: 1
  givenname: S.P.
  surname: Chatzis
  fullname: Chatzis, S.P.
  organization: Nat. Tech. Univ. of Athens, Athens
– sequence: 2
  givenname: T.A.
  surname: Varvarigou
  fullname: Varvarigou, T.A.
  organization: Nat. Tech. Univ. of Athens, Athens
BookMark eNp9kU9P3DAQxaMKpALlC7QXq4f2FDr-m-S4WrEFCVQJlguXyBtPFlPH3tpJK_bT42VRDxy4eCz7995o5h0XBz54LIrPFM4ohebHcnF3f3_GAOrdIXP9UBzRRtASgIuDfAfFS1WB-lgcp_QIQIWk9VGxnZHFtN0-kbmb0ojR-jWZbTYx6O6BLMM_HQ25sMagJ9c6_g5_yY32JgxkYdEZch0MukT6EMm5f9C-Q0NuN3q02rnsGXwao7Y-v14Oeo3kFtcD-jEDwX8qDnvtEp6-1pNiuThfzi_Kq18_L-ezq7ITQMeyZxIYSiMbhoi9rjvg3KBi-UPJSlWryghqGqZ6bgBWlaSrlRQKK9oboPyk-L63zUP9mTCN7WBTh85pj2FKbV2DErXiVSa_vUtyIbNfIzL49Q34GKbo8xBtQxmHmjGeIbaHuhhSiti3m2gHHZ9aCu0utPYltHYXWvsaWhbVb0Sd3W9rt0f3vvTLXmrzmv73EgoqJil_BgsXp0k
CODEN IEFSEV
CitedBy_id crossref_primary_10_32604_cmc_2024_046094
crossref_primary_10_1007_s40815_017_0411_1
crossref_primary_10_1109_ACCESS_2020_3039742
crossref_primary_10_1109_TPAMI_2012_208
crossref_primary_10_1016_j_eswa_2024_124943
crossref_primary_10_1109_TFUZZ_2020_2966173
crossref_primary_10_1007_s11265_014_0898_8
crossref_primary_10_1109_TFUZZ_2019_2930030
crossref_primary_10_1016_j_patrec_2016_11_019
crossref_primary_10_1007_s10278_016_9934_5
crossref_primary_10_1109_JSTARS_2025_3542469
crossref_primary_10_1109_LGRS_2020_3010696
crossref_primary_10_1109_TGRS_2013_2287273
crossref_primary_10_3390_rs14143490
crossref_primary_10_3390_math9192383
crossref_primary_10_1109_ACCESS_2018_2889326
crossref_primary_10_1109_TGRS_2023_3328334
crossref_primary_10_1049_iet_ipr_2017_0166
crossref_primary_10_1016_j_eswa_2013_01_051
crossref_primary_10_1109_TGRS_2013_2281854
crossref_primary_10_1007_s11042_015_2795_y
crossref_primary_10_1007_s10044_020_00897_2
crossref_primary_10_1007_s11042_022_11904_5
crossref_primary_10_1155_2019_5984649
crossref_primary_10_3390_rs15030828
crossref_primary_10_1155_2010_167942
crossref_primary_10_3390_rs12050783
crossref_primary_10_3390_rs11232772
crossref_primary_10_1016_j_eswa_2022_118811
crossref_primary_10_1016_j_neucom_2012_10_022
crossref_primary_10_1007_s11063_017_9672_9
crossref_primary_10_1016_j_patcog_2012_04_019
crossref_primary_10_1155_2015_240354
crossref_primary_10_1109_TFUZZ_2015_2505328
crossref_primary_10_3233_JIFS_211340
crossref_primary_10_1016_j_trc_2014_12_001
crossref_primary_10_1007_s10044_019_00826_y
crossref_primary_10_1007_s12065_019_00266_x
crossref_primary_10_1109_ACCESS_2019_2906332
crossref_primary_10_1109_TNNLS_2012_2228227
crossref_primary_10_1109_ACCESS_2022_3192967
crossref_primary_10_1109_TNN_2010_2054109
crossref_primary_10_1016_j_asoc_2019_105928
crossref_primary_10_1016_j_patcog_2012_11_026
crossref_primary_10_1109_ACCESS_2025_3540971
crossref_primary_10_3390_s18041299
crossref_primary_10_1016_j_asoc_2020_106318
crossref_primary_10_1109_TNNLS_2022_3190836
crossref_primary_10_1016_j_ijleo_2022_169039
crossref_primary_10_1109_TFUZZ_2023_3235392
crossref_primary_10_1109_TFUZZ_2013_2240689
crossref_primary_10_1109_TGRS_2018_2829630
crossref_primary_10_1049_iet_ipr_2016_0271
crossref_primary_10_3390_rs10050710
crossref_primary_10_1109_ACCESS_2018_2800058
crossref_primary_10_1016_j_patcog_2014_01_017
crossref_primary_10_3390_rs14153704
crossref_primary_10_1109_TIP_2015_2456505
crossref_primary_10_1016_j_engappai_2012_09_010
crossref_primary_10_1109_TGRS_2020_3035665
crossref_primary_10_1016_j_knosys_2021_108008
crossref_primary_10_1016_j_engappai_2022_104672
crossref_primary_10_1080_15732479_2015_1113300
crossref_primary_10_1049_iet_ipr_2012_0340
crossref_primary_10_1007_s40747_023_01129_w
crossref_primary_10_1109_TMI_2011_2165342
crossref_primary_10_1016_j_patrec_2012_10_004
crossref_primary_10_1109_TITS_2018_2875159
crossref_primary_10_1109_TFUZZ_2013_2249072
crossref_primary_10_1145_3009967
crossref_primary_10_1007_s11042_023_16569_2
crossref_primary_10_1016_j_eswa_2012_05_097
crossref_primary_10_1109_TFUZZ_2018_2814591
crossref_primary_10_1016_j_optlastec_2013_10_003
crossref_primary_10_1049_iet_ipr_2017_0407
crossref_primary_10_3390_su151310374
crossref_primary_10_1016_j_imavis_2011_09_001
crossref_primary_10_1016_j_spasta_2019_03_002
crossref_primary_10_1109_TFUZZ_2015_2513091
crossref_primary_10_1016_j_cviu_2023_103765
crossref_primary_10_1088_1742_6596_1325_1_012064
crossref_primary_10_1155_2013_401413
crossref_primary_10_1109_TGRS_2021_3131272
crossref_primary_10_1111_rssc_12568
crossref_primary_10_1109_LGRS_2010_2040800
crossref_primary_10_1080_2150704X_2015_1093185
crossref_primary_10_1016_j_cag_2023_12_003
crossref_primary_10_1049_iet_ipr_2013_0178
crossref_primary_10_1109_LGRS_2015_2425225
crossref_primary_10_1016_j_media_2018_10_007
crossref_primary_10_3390_rs12071219
crossref_primary_10_1016_j_patcog_2020_107333
crossref_primary_10_1016_j_neucom_2015_10_087
crossref_primary_10_1016_j_protcy_2016_05_134
crossref_primary_10_1109_TMI_2017_2737232
crossref_primary_10_1016_j_dsp_2015_04_009
crossref_primary_10_1016_j_eswa_2016_07_039
crossref_primary_10_1016_j_asoc_2021_107245
crossref_primary_10_1016_j_rse_2017_10_001
crossref_primary_10_1080_01431161_2019_1629718
crossref_primary_10_1109_LSP_2012_2230626
crossref_primary_10_1109_TFUZZ_2014_2298244
crossref_primary_10_1109_TFUZZ_2018_2889018
crossref_primary_10_1007_s10044_017_0672_1
crossref_primary_10_1016_j_ins_2021_06_034
crossref_primary_10_1109_TFUZZ_2021_3099560
crossref_primary_10_1080_1206212X_2024_2380975
crossref_primary_10_3390_sym11060753
crossref_primary_10_1016_j_strusafe_2015_05_002
crossref_primary_10_1016_j_patcog_2011_10_010
crossref_primary_10_1080_24699322_2017_1389398
crossref_primary_10_1186_1687_5281_2013_63
crossref_primary_10_1007_s10916_016_0623_1
crossref_primary_10_1007_s12530_012_9066_1
crossref_primary_10_1016_j_ins_2015_10_031
crossref_primary_10_1109_TNN_2010_2046910
crossref_primary_10_1007_s13042_021_01429_y
crossref_primary_10_3390_s17051114
crossref_primary_10_1109_TFUZZ_2018_2796074
crossref_primary_10_1016_j_psep_2019_01_005
crossref_primary_10_3390_app142311227
crossref_primary_10_3390_rs12244115
crossref_primary_10_1016_j_ins_2021_11_056
crossref_primary_10_3390_s19153285
crossref_primary_10_1109_JSTARS_2018_2875935
crossref_primary_10_1016_j_patcog_2016_06_020
crossref_primary_10_1016_j_ins_2018_08_015
Cites_doi 10.1109/TFUZZ.2004.841748
10.1109/TSMCB.2004.831165
10.1111/j.2517-6161.1986.tb01412.x
10.1109/83.210863
10.1016/S0165-0114(02)00372-X
10.1109/TFUZZ.2008.924317
10.1016/0031-3203(89)90011-3
10.1016/S0167-8655(98)00121-4
10.1109/TFUZZ.2006.889957
10.1109/91.873580
10.1109/TPAMI.2003.1227985
10.1016/S0019-9958(65)90241-X
10.1109/FUZZ.2001.1009107
10.1098/rsta.1991.0132
10.1109/TFUZZ.2007.902011
10.1109/3468.668967
10.1007/b106267
10.1007/978-1-4757-0450-1
10.1002/0471721182
10.1109/ICIP.2002.1039888
10.1109/TFUZZ.2004.840099
10.1109/ACVMOT.2005.71
10.1109/ICCV.2001.937655
10.1109/TIP.2007.891771
10.1109/TPAMI.1984.4767596
10.1016/0167-7152(90)90111-J
10.1109/CVPR.2005.390
10.1109/TGRS.1987.289751
10.1016/S0019-9958(69)90591-9
10.1016/S0031-3203(02)00027-4
10.2307/2987782
10.1109/TFUZZ.2006.876740
10.1109/42.996338
10.2307/2289127
10.1109/42.906424
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
7SP
F28
FR3
DOI 10.1109/TFUZZ.2008.2005008
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Electronics & Communications Abstracts
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
Electronics & Communications Abstracts
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList
Technology Research Database
Computer and Information Systems Abstracts
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1941-0034
EndPage 1361
ExternalDocumentID 2545341471
10_1109_TFUZZ_2008_2005008
4607251
Genre orig-research
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
RIG
7SP
F28
FR3
ID FETCH-LOGICAL-c401t-f2502e5d592eeefa8c033de62f2565767b7d41d926f3d00b751bb546e71fd013
IEDL.DBID RIE
ISICitedReferencesCount 178
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000260046700019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1063-6706
IngestDate Sun Sep 28 03:26:06 EDT 2025
Sat Sep 27 23:12:45 EDT 2025
Sun Jun 29 16:32:27 EDT 2025
Tue Nov 18 22:32:49 EST 2025
Sat Nov 29 06:46:21 EST 2025
Tue Aug 26 16:47:29 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c401t-f2502e5d592eeefa8c033de62f2565767b7d41d926f3d00b751bb546e71fd013
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
OpenAccessLink http://doi.org/10.1109/TFUZZ.2008.2005008
PQID 912308223
PQPubID 23500
PageCount 11
ParticipantIDs proquest_miscellaneous_880648637
proquest_miscellaneous_34501394
crossref_primary_10_1109_TFUZZ_2008_2005008
crossref_citationtrail_10_1109_TFUZZ_2008_2005008
ieee_primary_4607251
proquest_journals_912308223
PublicationCentury 2000
PublicationDate 2008-10-01
PublicationDateYYYYMMDD 2008-10-01
PublicationDate_xml – month: 10
  year: 2008
  text: 2008-10-01
  day: 01
PublicationDecade 2000
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on fuzzy systems
PublicationTitleAbbrev TFUZZ
PublicationYear 2008
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref12
ref37
ref15
ref14
mclachlan (ref29) 2000
ref30
chandler (ref34) 1987
ref33
ref11
ref32
ref10
ref2
ref39
ref38
ref16
ref19
ref18
miyamoto (ref36) 1997; 2
geman (ref31) 1987
clifford (ref28) 1990
ref24
ref23
ref26
hjort (ref7) 1987; ge 25
ref25
ref20
ref42
ref41
ref22
ref21
ref43
winkler (ref1) 2006
ref27
dunmur (ref8) 2007
leski (ref17) 2001; 11
ref9
ref4
ref6
besag (ref3) 1986; 48
ref5
stanford (ref40) 1999
References_xml – ident: ref26
  doi: 10.1109/TFUZZ.2004.841748
– ident: ref13
  doi: 10.1109/TSMCB.2004.831165
– volume: 48
  start-page: 259
  year: 1986
  ident: ref3
  article-title: on the statistical analysis of dirty pictures
  publication-title: J Roy Stat Soc B
  doi: 10.1111/j.2517-6161.1986.tb01412.x
– ident: ref33
  doi: 10.1109/83.210863
– ident: ref15
  doi: 10.1016/S0165-0114(02)00372-X
– year: 1999
  ident: ref40
  publication-title: Fast automatic unsupervised image segmentation and curve detection in spatial point patterns
– ident: ref18
  doi: 10.1109/TFUZZ.2008.924317
– ident: ref32
  doi: 10.1016/0031-3203(89)90011-3
– ident: ref14
  doi: 10.1016/S0167-8655(98)00121-4
– ident: ref21
  doi: 10.1109/TFUZZ.2006.889957
– ident: ref16
  doi: 10.1109/91.873580
– start-page: 371
  year: 2007
  ident: ref8
  article-title: parameter estimation in latent profile models
  publication-title: Comput Stat Data Anal
– year: 1987
  ident: ref34
  publication-title: Introduction to Modern Statistical Mechanics
– year: 2006
  ident: ref1
  publication-title: Image Analysis Random Fields and Markov Chain Monte Carlo Methods
– ident: ref35
  doi: 10.1109/TPAMI.2003.1227985
– ident: ref10
  doi: 10.1016/S0019-9958(65)90241-X
– volume: 11
  start-page: 993
  year: 2001
  ident: ref17
  article-title: an -insensitive approach to fuzzy clustering
  publication-title: Int J Appl Math Comput Sci
– year: 1990
  ident: ref28
  article-title: markov random fields in statistics
  publication-title: Disorder in Physical Systems A Volume in Honour of John M Hammersley on the Occasion of his 70th Birthday
– ident: ref37
  doi: 10.1109/FUZZ.2001.1009107
– ident: ref6
  doi: 10.1098/rsta.1991.0132
– ident: ref22
  doi: 10.1109/TFUZZ.2007.902011
– ident: ref24
  doi: 10.1109/3468.668967
– ident: ref12
  doi: 10.1007/b106267
– ident: ref11
  doi: 10.1007/978-1-4757-0450-1
– year: 2000
  ident: ref29
  publication-title: Finite Mixture Models
  doi: 10.1002/0471721182
– ident: ref25
  doi: 10.1109/ICIP.2002.1039888
– ident: ref19
  doi: 10.1109/TFUZZ.2004.840099
– ident: ref43
  doi: 10.1109/ACVMOT.2005.71
– ident: ref41
  doi: 10.1109/ICCV.2001.937655
– ident: ref39
  doi: 10.1109/TIP.2007.891771
– ident: ref4
  doi: 10.1109/TPAMI.1984.4767596
– ident: ref2
  doi: 10.1016/0167-7152(90)90111-J
– ident: ref42
  doi: 10.1109/CVPR.2005.390
– start-page: 1498
  year: 1987
  ident: ref31
  publication-title: Proc Int Conf Math
– volume: ge 25
  start-page: 796
  year: 1987
  ident: ref7
  article-title: a simulation study of some contextual classification methods for remotely sensed data
  publication-title: IEEE Trans Geosci Electron
  doi: 10.1109/TGRS.1987.289751
– ident: ref38
  doi: 10.1016/S0019-9958(69)90591-9
– ident: ref9
  doi: 10.1016/S0031-3203(02)00027-4
– ident: ref5
  doi: 10.2307/2987782
– volume: 2
  start-page: 86
  year: 1997
  ident: ref36
  article-title: fuzzy -means as a regularization and maximum entropy approach
  publication-title: Proc 7th Int Fuzzy Syst Assoc World Congr
– ident: ref20
  doi: 10.1109/TFUZZ.2006.876740
– ident: ref23
  doi: 10.1109/42.996338
– ident: ref27
  doi: 10.2307/2289127
– ident: ref30
  doi: 10.1109/42.906424
SSID ssj0014518
Score 2.392393
Snippet Hidden Markov random field (HMRF) models have been widely used for image segmentation, as they appear naturally in problems where a spatially constrained...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1351
SubjectTerms Clustering
Context modeling
Fuzzy
Fuzzy clustering
Fuzzy logic
Fuzzy set theory
Hidden Markov models
Image color analysis
Image edge detection
Image restoration
Image segmentation
Magnetorheological fluids
Markov processes
Markov random fields
Mathematical models
mean-field approximation
Parameter estimation
Pixel
Stochastic processes
Studies
Title A Fuzzy Clustering Approach Toward Hidden Markov Random Field Models for Enhanced Spatially Constrained Image Segmentation
URI https://ieeexplore.ieee.org/document/4607251
https://www.proquest.com/docview/912308223
https://www.proquest.com/docview/34501394
https://www.proquest.com/docview/880648637
Volume 16
WOSCitedRecordID wos000260046700019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0034
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014518
  issn: 1063-6706
  databaseCode: RIE
  dateStart: 19930101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VigMcKLQgQnn4wA1CHTuxneOqalQuFYJFqnqJEtuBSrsJ6m4qsb-eGeehSjwkbpEfiaPP9szYM_MBvK0EyqHEmzhzWYMGilNxraSKXU3EsDhjjLeBbEJfXJjLy_zTHryfY2G898H5zH-gx3CX7zrb01HZSaq4FhQvfU9rPcRqzTcGaZYMYW9KxkpzNQXI8PxkWXy9uhrcJukMhROV5B0hFFhVftuKg3wpDv5vZI_h0ahHssUA_BPY8-0hHEwcDWxcsofw8E7CwSPYLVjR73Y_2emqpwwJWMgWY1ZxtgwetOyckoq0jIJ4ulv2uWpdt2YFOboxIk5bbRjqueys_R58BxhxGuMcXuE7SdUkxgks_bjGfYp98d_WY2xT-xSWxdny9Dwe2RdiizbXNm5QORIeIcwF_m5TGculdF4JrFBopehauzRxuVCNdJzXCHldZ6nyOmkcKpbPYL_tWv8cmDC-yhInKlmb1GprGmHqhmM_L3xueQTJhEZpx8zkNNxVGSwUnpcBwYExc0Qwgndznx9DXo5_tj4izOaWI1wRHE-gl-PS3ZQ5ynJKgy8jeDPX4pqji5Sq9V2_KWWakeacRsD-0gJ3RZUaJfWLP3_5GB6IKbFu8hL2tze9fwX37e32enPzOszsXzTi9tU
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5VBQk4UGhBhAL1gRuEOo7jOMdV1WgrygpBkKpeoiR2AGk3qbqbSt1fz4zzUCUeErfIj8TRZ3tm7Jn5AN4WAuVQYLUfmahGA8Uov1Sh8k1JxLA4Y7StHNlEvFjoi4vk8w68n2JhrLXO-cx-oEd3l2_aqqOjsmOpeCwoXvpeJKUI-mit6c5ARkEf-KZCX8VcjSEyPDnO0m-Xl73jJJ2icCKTvCOGHK_Kb5uxkzDp3v-N7Qk8HjRJNuuhfwo7ttmHvZGlgQ2Ldh8e3Uk5eADbGUu77faWnSw7ypGAhWw25BVnmfOhZXNKK9IwCuNpb9iXojHtiqXk6saIOm25ZqjpstPmh_MeYMRqjLN4ie8kZZM4J7D0bIU7Fftqv6-G6KbmGWTpaXYy9wf-Bb9Cq2vj16geCYsgJgJ_ty50xcPQWCWwQqGdEpexkYFJhKpDw3mJoJdlJJWNg9qgavkcdpu2sS-ACW2LKDCiCEstq7jStdBlzbGfFTapuAfBiEZeDbnJabjL3NkoPMkdgj1n5oCgB--mPld9Zo5_tj4gzKaWA1weHI6g58PiXecJSnNKhB96cDTV4qqjq5SisW23zkMZke4sPWB_aYH7opJahfHLP3_5CB7Ms0_n-fnZ4uMhPBRjmt3gFexurjv7Gu5XN5uf6-s3bpb_AipP-hw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Fuzzy+Clustering+Approach+Toward+Hidden+Markov+Random+Field+Models+for+Enhanced+Spatially+Constrained+Image+Segmentation&rft.jtitle=IEEE+transactions+on+fuzzy+systems&rft.au=Chatzis%2C+S+P&rft.au=Varvarigou%2C+T+A&rft.date=2008-10-01&rft.issn=1063-6706&rft.volume=16&rft.issue=5&rft_id=info:doi/10.1109%2FTFUZZ.2008.2005008&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6706&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6706&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6706&client=summon