Extraction and incorporation of cellulose microfibers from textile wastes into MXene-enhanced PVA-borax hydrogel for multifunctional wearable sensors

Conductive hydrogel has drawn great concern in wearable sensors, human-machine interfaces, artificial intelligence (AI), health monitoring, et al. But it still remains challenge to develop hydrogel through facile and sustainable methods. In this work, a conductive, flexible, bendable and self-healin...

Full description

Saved in:
Bibliographic Details
Published in:International journal of biological macromolecules Vol. 295; p. 139640
Main Authors: Hasan, Md. Zahid, Xu, Chuanghua, Motaleb, K.Z.M. Abdul, Ahmed, Md Foysal, Zhuang, Jie, Tan, Sirui, Janutėnienė, Jolanta, Bashar, M. Mahbubul, Tu, Hu, Luo, Lei, Zhang, Ruquan
Format: Journal Article
Language:English
Published: Netherlands Elsevier B.V 01.03.2025
Subjects:
ISSN:0141-8130, 1879-0003, 1879-0003
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Conductive hydrogel has drawn great concern in wearable sensors, human-machine interfaces, artificial intelligence (AI), health monitoring, et al. But it still remains challenge to develop hydrogel through facile and sustainable methods. In this work, a conductive, flexible, bendable and self-healing hydrogel (PBCM) composed of polyvinyl alcohol (PVA), borax, cellulose microfibers (CMFs) and MXene nanosheets was fabricated by a simple and efficient strategy. The carboxylated CMFs were extracted from waste ramie fibers via a one-pot ammonium persulfate oxidation method. The crystallinity and tensile strength were increased 70 % and 4 times due to the addition of CMFs and MXene compared to the pristine PVA-borax hydrogel. The incorporation of MXene nanosheets acts as multifunctional cross-linkers and energy transfer platform, promoting the electrical conductivity, stretchability and bendability of hydrogel remarkably. The PBCM-2 hydrogel exhibited the maximum electrical conductivity of 0.81 S/cm. Additionally, the dynamic borate ester linkage imparts self-healing ability to the hydrogel. The resulting PBCM-2 hydrogel demonstrated excellent resistance to fire and pH response properties. Moreover, it showed sensitivity in monitoring various human physiological movements, including finger, wrist, elbow, knee bending and drinking water, indicating its potential for wearable sensing applications like health care and sports training.
AbstractList Conductive hydrogel has drawn great concern in wearable sensors, human-machine interfaces, artificial intelligence (AI), health monitoring, et al. But it still remains challenge to develop hydrogel through facile and sustainable methods. In this work, a conductive, flexible, bendable and self-healing hydrogel (PBCM) composed of polyvinyl alcohol (PVA), borax, cellulose microfibers (CMFs) and MXene nanosheets was fabricated by a simple and efficient strategy. The carboxylated CMFs were extracted from waste ramie fibers via a one-pot ammonium persulfate oxidation method. The crystallinity and tensile strength were increased 70 % and 4 times due to the addition of CMFs and MXene compared to the pristine PVA-borax hydrogel. The incorporation of MXene nanosheets acts as multifunctional cross-linkers and energy transfer platform, promoting the electrical conductivity, stretchability and bendability of hydrogel remarkably. The PBCM-2 hydrogel exhibited the maximum electrical conductivity of 0.81 S/cm. Additionally, the dynamic borate ester linkage imparts self-healing ability to the hydrogel. The resulting PBCM-2 hydrogel demonstrated excellent resistance to fire and pH response properties. Moreover, it showed sensitivity in monitoring various human physiological movements, including finger, wrist, elbow, knee bending and drinking water, indicating its potential for wearable sensing applications like health care and sports training.Conductive hydrogel has drawn great concern in wearable sensors, human-machine interfaces, artificial intelligence (AI), health monitoring, et al. But it still remains challenge to develop hydrogel through facile and sustainable methods. In this work, a conductive, flexible, bendable and self-healing hydrogel (PBCM) composed of polyvinyl alcohol (PVA), borax, cellulose microfibers (CMFs) and MXene nanosheets was fabricated by a simple and efficient strategy. The carboxylated CMFs were extracted from waste ramie fibers via a one-pot ammonium persulfate oxidation method. The crystallinity and tensile strength were increased 70 % and 4 times due to the addition of CMFs and MXene compared to the pristine PVA-borax hydrogel. The incorporation of MXene nanosheets acts as multifunctional cross-linkers and energy transfer platform, promoting the electrical conductivity, stretchability and bendability of hydrogel remarkably. The PBCM-2 hydrogel exhibited the maximum electrical conductivity of 0.81 S/cm. Additionally, the dynamic borate ester linkage imparts self-healing ability to the hydrogel. The resulting PBCM-2 hydrogel demonstrated excellent resistance to fire and pH response properties. Moreover, it showed sensitivity in monitoring various human physiological movements, including finger, wrist, elbow, knee bending and drinking water, indicating its potential for wearable sensing applications like health care and sports training.
Conductive hydrogel has drawn great concern in wearable sensors, human-machine interfaces, artificial intelligence (AI), health monitoring, et al. But it still remains challenge to develop hydrogel through facile and sustainable methods. In this work, a conductive, flexible, bendable and self-healing hydrogel (PBCM) composed of polyvinyl alcohol (PVA), borax, cellulose microfibers (CMFs) and MXene nanosheets was fabricated by a simple and efficient strategy. The carboxylated CMFs were extracted from waste ramie fibers via a one-pot ammonium persulfate oxidation method. The crystallinity and tensile strength were increased 70 % and 4 times due to the addition of CMFs and MXene compared to the pristine PVA-borax hydrogel. The incorporation of MXene nanosheets acts as multifunctional cross-linkers and energy transfer platform, promoting the electrical conductivity, stretchability and bendability of hydrogel remarkably. The PBCM-2 hydrogel exhibited the maximum electrical conductivity of 0.81 S/cm. Additionally, the dynamic borate ester linkage imparts self-healing ability to the hydrogel. The resulting PBCM-2 hydrogel demonstrated excellent resistance to fire and pH response properties. Moreover, it showed sensitivity in monitoring various human physiological movements, including finger, wrist, elbow, knee bending and drinking water, indicating its potential for wearable sensing applications like health care and sports training.
Conductive hydrogel has drawn great concern in wearable sensors, human-machine interfaces, artificial intelligence (AI), health monitoring, et al. But it still remains challenge to develop hydrogel through facile and sustainable methods. In this work, a conductive, flexible, bendable and self-healing hydrogel (PBCM) composed of polyvinyl alcohol (PVA), borax, cellulose microfibers (CMFs) and MXene nanosheets was fabricated by a simple and efficient strategy. The carboxylated CMFs were extracted from waste ramie fibers via a one-pot ammonium persulfate oxidation method. The crystallinity and tensile strength were increased 70 % and 4 times due to the addition of CMFs and MXene compared to the pristine PVA-borax hydrogel. The incorporation of MXene nanosheets acts as multifunctional cross-linkers and energy transfer platform, promoting the electrical conductivity, stretchability and bendability of hydrogel remarkably. The PBCM-2 hydrogel exhibited the maximum electrical conductivity of 0.81 S/cm. Additionally, the dynamic borate ester linkage imparts self-healing ability to the hydrogel. The resulting PBCM-2 hydrogel demonstrated excellent resistance to fire and pH response properties. Moreover, it showed sensitivity in monitoring various human physiological movements, including finger, wrist, elbow, knee bending and drinking water, indicating its potential for wearable sensing applications like health care and sports training.
ArticleNumber 139640
Author Hasan, Md. Zahid
Xu, Chuanghua
Bashar, M. Mahbubul
Tan, Sirui
Motaleb, K.Z.M. Abdul
Ahmed, Md Foysal
Janutėnienė, Jolanta
Zhang, Ruquan
Zhuang, Jie
Tu, Hu
Luo, Lei
Author_xml – sequence: 1
  givenname: Md. Zahid
  surname: Hasan
  fullname: Hasan, Md. Zahid
  organization: State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
– sequence: 2
  givenname: Chuanghua
  surname: Xu
  fullname: Xu, Chuanghua
  organization: State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
– sequence: 3
  givenname: K.Z.M. Abdul
  surname: Motaleb
  fullname: Motaleb, K.Z.M. Abdul
  organization: Department of Engineering, Faculty of Marine Technologies and Natural Sciences, Klaipeda University, Klaipėda 91224, Lithuania
– sequence: 4
  givenname: Md Foysal
  surname: Ahmed
  fullname: Ahmed, Md Foysal
  organization: State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
– sequence: 5
  givenname: Jie
  surname: Zhuang
  fullname: Zhuang, Jie
  organization: State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
– sequence: 6
  givenname: Sirui
  surname: Tan
  fullname: Tan, Sirui
  organization: State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
– sequence: 7
  givenname: Jolanta
  surname: Janutėnienė
  fullname: Janutėnienė, Jolanta
  organization: Department of Engineering, Faculty of Marine Technologies and Natural Sciences, Klaipeda University, Klaipėda 91224, Lithuania
– sequence: 8
  givenname: M. Mahbubul
  surname: Bashar
  fullname: Bashar, M. Mahbubul
  organization: Department of Textile Engineering, Mawlana Bhashani Science and Technology University, Tangail 1902, Bangladesh
– sequence: 9
  givenname: Hu
  surname: Tu
  fullname: Tu, Hu
  organization: State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
– sequence: 10
  givenname: Lei
  surname: Luo
  fullname: Luo, Lei
  email: leiluo@wtu.edu.cn
  organization: State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
– sequence: 11
  givenname: Ruquan
  surname: Zhang
  fullname: Zhang, Ruquan
  email: zhangruquan@wtu.edu.cn
  organization: State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39788271$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1OHDEQhK2IKCyQV0A-5jKb9nh-pRyCEPmRiMKBRNwsj90OXs3YG9sDy4PkfePdhRxy2VNLrapqdX0n5Mh5h4ScM1gyYM371dKuBusnqZYllPWS8b6p4BVZsK7tCwDgR2QBrGJFxzgck5MYV3nb1Kx7Q45533Zd2bIF-XO1SUGqZL2j0mlqnfJh7YPcbbyhCsdxHn1EOlkVvLEDhkhN8BNNuEl2RPooY8KYrcnTb3fosEB3L51CTW9-XhRDTtvQ-ycd_C8cqfGBTvOYrJnd7q4c6SPKIIccFdFFH-IZeW3kGPHt8zwlPz5d3V5-Ka6_f_56eXFdqApYKlDLttMc8p-G9aAbLpFxZlAqw2Vfoayh4lgBh77udTmoVnUAKIG3oOuGn5J3-9x18L9njElMNm4_lg79HAUvc5ElsBIOS1nNe9Y1vM3S82fpPEyoxTrYSYYn8dJ6FjR7QS40xoDmn4SB2OIVK_GCV2zxij3ebPzwn1HZtEOVIdrxsP3j3o650weLQURlcQvKBlRJaG8PRfwF1hvH9g
CitedBy_id crossref_primary_10_1016_j_ijbiomac_2025_144054
crossref_primary_10_1016_j_ijbiomac_2025_142580
crossref_primary_10_1016_j_cej_2025_165403
crossref_primary_10_1002_mame_202500097
crossref_primary_10_3390_gels11070550
Cites_doi 10.1039/D0TC00491J
10.1186/s40824-016-0078-y
10.3390/polym13111894
10.1039/c3ta01150j
10.1016/j.compscitech.2023.110130
10.1016/j.carbpol.2023.120929
10.3390/nano9070937
10.1016/j.ijbiomac.2023.125471
10.1016/j.carbpol.2022.119572
10.1016/j.ijbiomac.2023.127612
10.1016/j.supmat.2023.100045
10.1002/adfm.202303511
10.1007/s10570-020-03396-z
10.1002/smll.202303038
10.1021/la804306w
10.1016/j.ijbiomac.2024.136949
10.1021/acsnano.3c08859
10.1039/c2sm26102b
10.1021/acsami.3c07989
10.1016/j.carbpol.2024.122048
10.1007/s10570-015-0575-5
10.1021/acsnano.3c07319
10.1016/j.ijbiomac.2021.01.038
10.1021/bm500628g
10.1007/s10924-023-02796-z
10.1016/j.surfin.2024.104628
10.1016/j.carbpol.2013.11.045
10.1002/adfm.201903960
10.1007/s12274-022-4944-8
10.1039/D0NJ04897F
10.1021/acsami.1c01343
10.1039/D0CS00022A
10.1021/acs.chemrev.2c00477
10.1021/acsanm.4c04164
10.1007/s13399-022-03700-w
10.1016/j.coco.2021.100677
10.1016/j.indcrop.2005.01.006
10.1016/j.eurpolymj.2020.110038
10.1016/j.compositesb.2024.111191
10.1007/s10570-019-02363-7
10.1021/acssuschemeng.6b02279
10.1002/adfm.201703852
10.1007/s00339-021-04525-6
10.1016/j.cej.2020.124941
10.1016/j.compscitech.2021.109208
10.1126/sciadv.ade3240
10.3390/polym13050688
10.15376/biores.8.2.2752-2767
10.1016/j.pmatsci.2022.101001
10.1007/s003960050031
10.1016/j.cej.2020.126129
10.1039/D2TB01979E
10.1016/j.jmrt.2023.09.141
10.1016/j.carres.2005.08.007
10.1016/j.cis.2023.102988
10.1016/j.carres.2010.10.020
10.1002/adhm.202000872
10.1155/2021/2225426
10.1016/j.mee.2024.112197
10.1021/acsanm.4c03056
10.1039/D2TB02019J
10.1039/c4nr01214c
10.1016/j.carbpol.2017.06.080
10.1016/j.trac.2020.116130
10.1016/j.compositesb.2024.111826
10.3390/gels10040258
10.3389/fchem.2024.1376799
10.1039/D4TB00933A
10.1016/j.cej.2022.137136
10.1016/j.ijbiomac.2023.126473
10.1002/smll.202401622
10.1016/j.optmat.2021.111325
10.1016/j.eml.2020.100691
10.1515/epoly-2023-0081
10.1177/08853282221131137
10.1016/j.polymer.2024.127952
10.1021/acsami.0c10430
10.1039/c3py01266b
10.1039/C8GC00205C
10.1002/aisy.202300631
10.1016/j.jcis.2024.08.117
ContentType Journal Article
Copyright 2025 Elsevier B.V.
Copyright © 2025 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2025 Elsevier B.V.
– notice: Copyright © 2025 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.ijbiomac.2025.139640
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic

AGRICOLA
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1879-0003
ExternalDocumentID 39788271
10_1016_j_ijbiomac_2025_139640
S0141813025001898
Genre Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29J
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9DU
9JM
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABFNM
ABFRF
ABGSF
ABJNI
ABMAC
ABUDA
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACIUM
ACLOT
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADUVX
AEBSH
AEFWE
AEHWI
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AFXIZ
AGHFR
AGQPQ
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLW
HVGLF
HZ~
IHE
J1W
KOM
LX3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SBG
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SSU
SSZ
T5K
UHS
UNMZH
WUQ
~02
~G-
~HD
AAYXX
CITATION
AACTN
AGCQF
BNPGV
CGR
CUY
CVF
ECM
EIF
NPM
RIG
SSH
7X8
7S9
L.6
ID FETCH-LOGICAL-c401t-eda78d30014f190d63ae131feacf3a94ea5043e4030959d2bc7c800ea0370d563
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001398520400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0141-8130
1879-0003
IngestDate Thu Oct 02 21:44:10 EDT 2025
Wed Oct 01 14:06:13 EDT 2025
Fri May 02 01:40:38 EDT 2025
Tue Nov 18 22:34:20 EST 2025
Sat Nov 29 06:52:14 EST 2025
Sat Nov 29 17:07:45 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords Wearable sensor
Cellulose microfibers
Hydrogel
Language English
License Copyright © 2025 Elsevier B.V. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c401t-eda78d30014f190d63ae131feacf3a94ea5043e4030959d2bc7c800ea0370d563
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 39788271
PQID 3153918637
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3200320120
proquest_miscellaneous_3153918637
pubmed_primary_39788271
crossref_primary_10_1016_j_ijbiomac_2025_139640
crossref_citationtrail_10_1016_j_ijbiomac_2025_139640
elsevier_sciencedirect_doi_10_1016_j_ijbiomac_2025_139640
PublicationCentury 2000
PublicationDate March 2025
2025-03-00
2025-Mar
20250301
PublicationDateYYYYMMDD 2025-03-01
PublicationDate_xml – month: 03
  year: 2025
  text: March 2025
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle International journal of biological macromolecules
PublicationTitleAlternate Int J Biol Macromol
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Wang, Xu, Zhang (bb0410) 2021; 134
Wu, Han, Yan, Zeng (bb0090) 2023; 2
Wolfel, Alvarez Igarzabal, Romero (bb0080) 2020; 140
Zheng, Li, Wang, Xu, Han (bb0185) 2024; 291
Yang, Li, Fang, Liu (bb0065) 2023; 253
Sain, Panthapulakkal (bb0255) 2006; 23
Sun, Hou, Liu, Ni (bb0280) 2015; 22
Nascimento, Nunes, Figueirêdo, De Azeredo, Aouada, Feitosa, Rosa, Dufresne (bb0340) 2018; 20
Wan, Liu, Zhang, Fang, Ding, Xiang, He, Liu, Lin, Tang, Li, Tang, Zhou (bb0320) 2023; 314
Lei, Chen, Guo, Fang, Zhang, Liu, Wang, Li, Hu, Ma, Jiang, Cui, Li (bb0040) 2023; 33
Zou, Jing, Li, Feng, Chen, Liu (bb0060) 2024; 20
Zheng, Li, Wang, Xu, Han (bb0470) 2024; 291
Han, Lei, Wu (bb0300) 2014; 102
Lin, Yu, Cheng (bb0355) 2000; 278
.
Etale, Onyianta, Turner, Eichhorn (bb0200) 2023; 123
Fang, Tian, Hu, Qing, Wang, Gao, Qin, Sun (bb0485) 2022; 32
Zhang, Zhang, Zhang, Huangfu, Yang, Qin, Zhang, Zhou (bb0130) 2023; 11
Mao, Hu, Gao, Wang, Zhao, Fu, Cheng, Xia, Xie, Ye, Shi, Yang (bb0020) 2020; 9
Wang, Bai, Shao, Tang, Zhao, Lin, Huang, Chen, Ding, Ye (bb0405) 2021; 2021
Haque, Whyte, Naebe (bb0295) 2023; 26
Zhan, Feng, Li, Chen, Chen, Kong, Chen, Zhang, Jiang (bb0175) 2024
Zhang, Ma, Huang, Guo, Li, Bian, Ma (bb0475) 2021; 306
Zhong, Lin, Yu, Shao, Cui, Pang, Zhu, Hou (bb0240) 2024; 12
Qian, Zhou, Miao, Thaiboonrod, Fang, Feng (bb0450) 2024; 287
Yang, Han, Xu, Sun (bb0235) 2014; 6
Wang, Pan, Lin, Gao, Cao, Ni, Ma (bb0055) 2020; 401
Huang, Wang, Shen, Ren, Chen, Li, Zhou (bb0140) 2022; 446
Hussain, Mehboob, Ahmad, Mumtaz, Khan, Mujtaba-ul-Hassan, Mehran, Iqbal, Ahmad, Mehmood, Shahzad (bb0305) 2021; 127
Xu, Wang, Zhang, Zhang, Liu (bb0430) 2021; 24
Shang, Lin, Qi, Liu, Li, Tao, Wu, Li, Simon, Yang (bb0155) 2019; 29
Sarkar, Hossain, Chakraborty, Ghosh, Bhattacharya, Mukherjee, Das (bb0180) 2024; 51
M. Marwanto, M.I. Maulana, F. Febrianto, N.J. Wistara, S. Nikmatin, N. Masruchin, L.H. Zaini, S.H. Lee, N.H. Kim, Effect of Oxidation Time on the Properties of Cellulose Nanocrystals Prepared from Balsa and Kapok Fibers Using Ammonium Persulfate, Polymers 2021, Vol. 13, Page 1894 13 (2021) 1894. doi
Audebeau, Oikonomou, Norvez, Iliopoulos (bb0360) 2014; 5
Kaushik, Singh (bb0250) 2011; 346
Li, Ji, Chen (bb0435) 2023; 37
P.C. Lai, S.S. Yu, Cationic Cellulose Nanocrystals-Based Nanocomposite Hydrogels: Achieving 3D Printable Capacitive Sensors with High Transparency and Mechanical Strength, Polymers 2021, Vol. 13, Page 688 13 (2021) 688. doi
Zhang, Jing, Zou, Feng, Wang, Zeng, Lin, Liu, Mi, Nie (bb0005) 2024
Ratwani, Kamali, Abdelkader (bb0075) 2023; 131
Xu, Zhou, Liu, Sharma (bb0385) 2023; 9
C. Zheng, Y. Yue, L. Gan, X. Xu, C. Mei, J. Han, Highly Stretchable and Self-Healing Strain Sensors Based on Nanocellulose-Supported Graphene Dispersed in Electro-Conductive Hydrogels, Nanomaterials 2019, Vol. 9, Page 937 9 (2019) 937. doi
Kassie, Getahun, Azanaw, Ferede, Tassew (bb0190) 2024; 282
Kusmono, Listyanda, Wildan (bb0205) 2020; 6
Cao, Wang, Liu, Zhou, Zhang, He, Cui, Chen (bb0015) 2022; 14
Yang, Choe, Yang, Jo, Lee (bb0145) 2016; 20
Wang, Chen, Jing, Yi, Zou, Feng, Zhang, Liu (bb0095) 2024; 335
Wan, Chen, Tao, Chen, Wang, Jiang, Lu (bb0350) 2023; 17
Liu, Shen, Zhang, Zhang, Lv, Shang, Li, Zhou, Cheng (bb0345) 2024; 12
Dong, Song, Ren, Dai, Leng, Wang, Wang, Sun, Liu, Zhang, Zhang, Li, Wang (bb0125) 2022; 31
Liu, Yao, Lu, Gao, Dong (bb0120) 2024; 35
Xu, Zhang, Li, Wang, Li, Cheng, Chang (bb0445) 2024
Mazlan, Kian, Fouad, Jawaid, Karim, Saba (bb0230) 2024; 14
Carretti, Grassi, Cossalter, Natali, Caminati, Weiss, Baglioni, Dei (bb0400) 2009; 25
Chen, Wei, Qi, Xie, Huang (bb0370) 2023; 15
M. Li, Y. Wang, Q. Wei, J. Zhang, X. Chen, Y. An, A High-Stretching, Rapid-Self-Healing, and Printable Composite Hydrogel Based on Poly(Vinyl Alcohol), Nanocellulose, and Sodium Alginate, Gels 2024, Vol. 10, Page 258 10 (2024) 258. doi
Oh, Dong, Shin, Hwan, Hak, Yong, Won, Ji (bb0260) 2005; 340
Zhang, Liu, Li, Zhang, Meng (bb0030) 2023; 320
Wang, Liu, Wang, Fu, Fatehi (bb0115) 2020; 27
Song, Yi, Wu, He (bb0085) 2025; 317
M.M. El Sayed, Production of Polymer Hydrogel Composites and Their Applications, Journal of Polymers and the Environment 2023 31:7 31 (2023) 2855–2879. doi
Zeng, Jing, Lin, Wang, Zhang, Feng (bb0010) 2025; 677
Zhao, Ren, Liu, Ling, Li, Gu, Multifunctional (bb0100) 2021; 13
Hou, Gao, Liu, Guo, Bai, Wang, Yang, Yang, Wei (bb0035) 2023; 252
Tran, Mredha, Jeon (bb0395) 2020; 37
Hasan, Arafat, Bashar, Niloy, Islam, Khandaker, Chowdhury (bb0210) 2022; 31
Liu, Ju, Zhang, Jiang, Cui, Liu, Han, Wang (bb0025) 2024; 282
Zhai, Wang, Yue, Zhang, Ma, Li, Wang, Yang (bb0425) 2023; 35
Tran, Mredha, Na, Seon, Cui, Jeon (bb0070) 2020; 394
Zhang, Zou, Wang, Hu, Liu, Feng, Jing, Liu (bb0480) 2024; 272
Kougkolos, Golzio, Laudebat, Valdez-Nava, Flahaut (bb0390) 2023; 11
Zhang, El-Demellawi, Jiang, Ge, Liang, Lee, Dong, Alshareef (bb0270) 2020; 49
Li, Chen, He, Xiang, Heinze, Qi (bb0365) 2022; 431
Sammons, Harper, Labbé, Bozell, Elder, Rials (bb0245) 2013; 8
Lee, Kwak, Keum, Sik Kim, Kim, Lee, Kim, Park (bb0050) 2024; 6
Deng, Lan, He, Ding, Chen, Zheng, Zhao, Chen, Zhong, Li, Tao, Peng, Cao (bb0460) 2020; 8
Deshmukh, Ghosh, Pykal, Otyepka, Pumera (bb0165) 2023; 17
Bashar, Zhu, Yamamoto, Mitsuishi (bb0195) 2019; 26
Jiang, Wu, Han, Zhang (bb0265) 2017; 174
Jayaramaiah, Shuvro, Das, Kumar, Sen (bb0160) 2023
Zhou, Liu, Tan, Zhou, Wang, Shi, Gong, Li (bb0490) 2023; 241
He, Deng, Wang, Zhao, Chen (bb0465) 2022; 291
Liao, Wan, Wen, Gong, Wu, Wang, Shi, Zhang (bb0150) 2017; 27
Qin, Zhao, Zhang, Gu, Tang, Aladejana, Ren, Jiang, Guo, Peng, Zhang, Bin Xu, Chen (bb0315) 2023; 19
Ning, Ma, Zhang, Zhang, Wang (bb0380) 2021; 45
Li, Sui, Zhao, Cheng, Zang, Wen, Sang, Zhou, Zhao, Yan, He, Wang (bb0375) 2024; 496
Kim, Yoon, Kim, Park, Song, Myung, Jung, Lee, Yoon, An (bb0170) 2021; 31
Visanko, Liimatainen, Sirviö, Heiskanen, Niinimäki, Hormi (bb0285) 2014; 15
Ratwani, Demko, Bakhit, Kamali, Abdelkader (bb0440) 2024; 7
Shan, Li, Yu, Wang, Cui, Yang, Cui (bb0045) 2022; 218
Cheng, Fan, Wang, Guo, Jiang, Xie (bb0110) 2023; 245
Zhang, Zeng, Qiao, Wang, Jiang, Zhang, Yang (bb0220) 2020; 12
Zhang, Zhao, Zhu, He, Wang (bb0215) 2012; 8
Hu, Luo, Luo, Fei, Song, Qin (bb0335) 2023; 23
Miao, Song, Dong, Ge, Shui, He, Yu (bb0325) 2023; 16
Lu, Lin, Jiang, Cheng, Lu, Song, Chen, Huang (bb0420) 2017; 5
Shaalan, Hanafy, Rashad (bb0290) 2021; 119
Wu, Chen, Weng, He, Chang, Pan, Liu, Huang, Huang, Lei (bb0135) 2022; 18
Yu, Qin, Liang, Liu, Zhou, Chen (bb0275) 2013; 1
Ai, Li, Li, Yu, Ma (bb0415) 2021; 172
10.1016/j.ijbiomac.2025.139640_bb0330
Deshmukh (10.1016/j.ijbiomac.2025.139640_bb0165) 2023; 17
Wu (10.1016/j.ijbiomac.2025.139640_bb0090) 2023; 2
Deng (10.1016/j.ijbiomac.2025.139640_bb0460) 2020; 8
Sun (10.1016/j.ijbiomac.2025.139640_bb0280) 2015; 22
Kusmono (10.1016/j.ijbiomac.2025.139640_bb0205) 2020; 6
Zhang (10.1016/j.ijbiomac.2025.139640_bb0130) 2023; 11
Miao (10.1016/j.ijbiomac.2025.139640_bb0325) 2023; 16
Zhang (10.1016/j.ijbiomac.2025.139640_bb0220) 2020; 12
Lei (10.1016/j.ijbiomac.2025.139640_bb0040) 2023; 33
Yang (10.1016/j.ijbiomac.2025.139640_bb0145) 2016; 20
Zhou (10.1016/j.ijbiomac.2025.139640_bb0490) 2023; 241
Hussain (10.1016/j.ijbiomac.2025.139640_bb0305) 2021; 127
Sarkar (10.1016/j.ijbiomac.2025.139640_bb0180) 2024; 51
Qian (10.1016/j.ijbiomac.2025.139640_bb0450) 2024; 287
Bashar (10.1016/j.ijbiomac.2025.139640_bb0195) 2019; 26
Zhang (10.1016/j.ijbiomac.2025.139640_bb0480) 2024; 272
Mao (10.1016/j.ijbiomac.2025.139640_bb0020) 2020; 9
Cao (10.1016/j.ijbiomac.2025.139640_bb0015) 2022; 14
Hu (10.1016/j.ijbiomac.2025.139640_bb0335) 2023; 23
Oh (10.1016/j.ijbiomac.2025.139640_bb0260) 2005; 340
Lin (10.1016/j.ijbiomac.2025.139640_bb0355) 2000; 278
Xu (10.1016/j.ijbiomac.2025.139640_bb0385) 2023; 9
Zeng (10.1016/j.ijbiomac.2025.139640_bb0010) 2025; 677
10.1016/j.ijbiomac.2025.139640_bb0455
10.1016/j.ijbiomac.2025.139640_bb0310
Yu (10.1016/j.ijbiomac.2025.139640_bb0275) 2013; 1
Haque (10.1016/j.ijbiomac.2025.139640_bb0295) 2023; 26
Li (10.1016/j.ijbiomac.2025.139640_bb0365) 2022; 431
Xu (10.1016/j.ijbiomac.2025.139640_bb0430) 2021; 24
Jayaramaiah (10.1016/j.ijbiomac.2025.139640_bb0160) 2023
He (10.1016/j.ijbiomac.2025.139640_bb0465) 2022; 291
Visanko (10.1016/j.ijbiomac.2025.139640_bb0285) 2014; 15
Shaalan (10.1016/j.ijbiomac.2025.139640_bb0290) 2021; 119
Huang (10.1016/j.ijbiomac.2025.139640_bb0140) 2022; 446
Wang (10.1016/j.ijbiomac.2025.139640_bb0115) 2020; 27
Etale (10.1016/j.ijbiomac.2025.139640_bb0200) 2023; 123
Audebeau (10.1016/j.ijbiomac.2025.139640_bb0360) 2014; 5
Ai (10.1016/j.ijbiomac.2025.139640_bb0415) 2021; 172
Liu (10.1016/j.ijbiomac.2025.139640_bb0025) 2024; 282
Lee (10.1016/j.ijbiomac.2025.139640_bb0050) 2024; 6
Wang (10.1016/j.ijbiomac.2025.139640_bb0095) 2024; 335
Tran (10.1016/j.ijbiomac.2025.139640_bb0395) 2020; 37
Shang (10.1016/j.ijbiomac.2025.139640_bb0155) 2019; 29
Jiang (10.1016/j.ijbiomac.2025.139640_bb0265) 2017; 174
Zhang (10.1016/j.ijbiomac.2025.139640_bb0030) 2023; 320
Wang (10.1016/j.ijbiomac.2025.139640_bb0055) 2020; 401
Wan (10.1016/j.ijbiomac.2025.139640_bb0320) 2023; 314
Wang (10.1016/j.ijbiomac.2025.139640_bb0410) 2021; 134
Nascimento (10.1016/j.ijbiomac.2025.139640_bb0340) 2018; 20
Zheng (10.1016/j.ijbiomac.2025.139640_bb0470) 2024; 291
Cheng (10.1016/j.ijbiomac.2025.139640_bb0110) 2023; 245
Sammons (10.1016/j.ijbiomac.2025.139640_bb0245) 2013; 8
Liao (10.1016/j.ijbiomac.2025.139640_bb0150) 2017; 27
Li (10.1016/j.ijbiomac.2025.139640_bb0435) 2023; 37
Yang (10.1016/j.ijbiomac.2025.139640_bb0065) 2023; 253
Wang (10.1016/j.ijbiomac.2025.139640_bb0405) 2021; 2021
Liu (10.1016/j.ijbiomac.2025.139640_bb0120) 2024; 35
Yang (10.1016/j.ijbiomac.2025.139640_bb0235) 2014; 6
Kaushik (10.1016/j.ijbiomac.2025.139640_bb0250) 2011; 346
Zhao (10.1016/j.ijbiomac.2025.139640_bb0100) 2021; 13
Sain (10.1016/j.ijbiomac.2025.139640_bb0255) 2006; 23
Ning (10.1016/j.ijbiomac.2025.139640_bb0380) 2021; 45
Hou (10.1016/j.ijbiomac.2025.139640_bb0035) 2023; 252
Zheng (10.1016/j.ijbiomac.2025.139640_bb0185) 2024; 291
Kassie (10.1016/j.ijbiomac.2025.139640_bb0190) 2024; 282
Zhang (10.1016/j.ijbiomac.2025.139640_bb0215) 2012; 8
Shan (10.1016/j.ijbiomac.2025.139640_bb0045) 2022; 218
Zhong (10.1016/j.ijbiomac.2025.139640_bb0240) 2024; 12
Wan (10.1016/j.ijbiomac.2025.139640_bb0350) 2023; 17
Chen (10.1016/j.ijbiomac.2025.139640_bb0370) 2023; 15
Xu (10.1016/j.ijbiomac.2025.139640_bb0445) 2024
Zhang (10.1016/j.ijbiomac.2025.139640_bb0005) 2024
Zhang (10.1016/j.ijbiomac.2025.139640_bb0270) 2020; 49
Zhang (10.1016/j.ijbiomac.2025.139640_bb0475) 2021; 306
Zhan (10.1016/j.ijbiomac.2025.139640_bb0175) 2024
Song (10.1016/j.ijbiomac.2025.139640_bb0085) 2025; 317
Kougkolos (10.1016/j.ijbiomac.2025.139640_bb0390) 2023; 11
Zou (10.1016/j.ijbiomac.2025.139640_bb0060) 2024; 20
10.1016/j.ijbiomac.2025.139640_bb0105
Lu (10.1016/j.ijbiomac.2025.139640_bb0420) 2017; 5
10.1016/j.ijbiomac.2025.139640_bb0225
Fang (10.1016/j.ijbiomac.2025.139640_bb0485) 2022; 32
Qin (10.1016/j.ijbiomac.2025.139640_bb0315) 2023; 19
Carretti (10.1016/j.ijbiomac.2025.139640_bb0400) 2009; 25
Mazlan (10.1016/j.ijbiomac.2025.139640_bb0230) 2024; 14
Ratwani (10.1016/j.ijbiomac.2025.139640_bb0440) 2024; 7
Hasan (10.1016/j.ijbiomac.2025.139640_bb0210) 2022; 31
Li (10.1016/j.ijbiomac.2025.139640_bb0375) 2024; 496
Wolfel (10.1016/j.ijbiomac.2025.139640_bb0080) 2020; 140
Kim (10.1016/j.ijbiomac.2025.139640_bb0170) 2021; 31
Liu (10.1016/j.ijbiomac.2025.139640_bb0345) 2024; 12
Tran (10.1016/j.ijbiomac.2025.139640_bb0070) 2020; 394
Zhai (10.1016/j.ijbiomac.2025.139640_bb0425) 2023; 35
Wu (10.1016/j.ijbiomac.2025.139640_bb0135) 2022; 18
Dong (10.1016/j.ijbiomac.2025.139640_bb0125) 2022; 31
Han (10.1016/j.ijbiomac.2025.139640_bb0300) 2014; 102
Ratwani (10.1016/j.ijbiomac.2025.139640_bb0075) 2023; 131
References_xml – volume: 26
  start-page: 3671
  year: 2019
  end-page: 3684
  ident: bb0195
  article-title: Highly carboxylated and crystalline cellulose nanocrystals from jute fiber by facile ammonium persulfate oxidation
  publication-title: Cellulose
– volume: 346
  start-page: 76
  year: 2011
  end-page: 85
  ident: bb0250
  article-title: Isolation and characterization of cellulose nanofibrils from wheat straw using steam explosion coupled with high shear homogenization
  publication-title: Carbohydr. Res.
– volume: 31
  year: 2022
  ident: bb0210
  article-title: Poly-(vinyl alcohol) composite films reinforced with carboxylated functional microcrystalline cellulose from jute fiber
  publication-title: Doi:10.1177/26349833221103888
– volume: 31
  year: 2022
  ident: bb0125
  article-title: Preparation of wearable strain sensor based on PVA/MWCNTs hydrogel composite
  publication-title: Mater Today Commun
– volume: 401
  year: 2020
  ident: bb0055
  article-title: Modified Ti3C2TX (MXene) nanosheet-catalyzed self-assembled, anti-aggregated, ultra-stretchable, conductive hydrogels for wearable bioelectronics
  publication-title: Chem. Eng. J.
– volume: 245
  year: 2023
  ident: bb0110
  article-title: Highly stretchable, fast self-healing nanocellulose hydrogel combining borate ester bonds and acylhydrazone bonds
  publication-title: Int. J. Biol. Macromol.
– volume: 17
  start-page: 20699
  year: 2023
  end-page: 20710
  ident: bb0350
  article-title: MXene-mediated cellulose conductive hydrogel with Ultrastretchability and self-healing ability
  publication-title: ACS Nano
– volume: 134
  year: 2021
  ident: bb0410
  article-title: Multifunctional conductive hydrogel-based flexible wearable sensors
  publication-title: TrAC Trends Anal. Chem.
– volume: 20
  year: 2024
  ident: bb0060
  article-title: MXene crosslinked hydrogels with low hysteresis conferred by sliding Tangle Island strategy
  publication-title: Small
– volume: 25
  start-page: 8656
  year: 2009
  end-page: 8662
  ident: bb0400
  article-title: Poly (vinyl alcohol)-borate hydro/cosolvent gels: viscoelastic properties, solubilizing power, and application to art conservation
  publication-title: Langmuir
– year: 2023
  ident: bb0160
  article-title: Low power flexible MXene-graphene oxide based heaters for wearable clothing
  publication-title: Proceedings of IEEE Sensors
– volume: 20
  start-page: 2428
  year: 2018
  end-page: 2448
  ident: bb0340
  article-title: Nanocellulose nanocomposite hydrogels: technological and environmental issues
  publication-title: Green Chem.
– volume: 241
  year: 2023
  ident: bb0490
  article-title: A high-performance, full-degradable bioinspired newspaper-based composite enhanced by borate ester bonds
  publication-title: Compos Sci Technol
– volume: 49
  start-page: 7229
  year: 2020
  end-page: 7251
  ident: bb0270
  article-title: MXene hydrogels: fundamentals and applications
  publication-title: Chem. Soc. Rev.
– year: 2024
  ident: bb0445
  article-title: Self-healing PVA/chitosan/MXene triple network hydrogel for strain and temperature sensors
  publication-title: Int. J. Biol. Macromol.
– volume: 335
  year: 2024
  ident: bb0095
  article-title: Ultrastable and supersensitive conductive hydrogels conferred by “sodium alginate stencil” anchoring strategy
  publication-title: Carbohydr. Polym.
– volume: 22
  start-page: 1135
  year: 2015
  end-page: 1146
  ident: bb0280
  article-title: Sodium periodate oxidation of cellulose nanocrystal and its application as a paper wet strength additive
  publication-title: Cellulose
– volume: 37
  year: 2020
  ident: bb0395
  article-title: High-water-content hydrogels exhibiting superior stiffness, strength, and toughness
  publication-title: Extreme Mech. Lett.
– volume: 32
  year: 2022
  ident: bb0485
  article-title: Dynamically cross-linking soybean oil and low-molecular-weight Polylactic acid toward mechanically robust
  publication-title: Degradable, and Recyclable Supramolecular Plastics, Adv Funct Mater
– volume: 26
  start-page: 7998
  year: 2023
  end-page: 8009
  ident: bb0295
  article-title: Utilisation of waste wool through fabrication of 3D water-resistant polyvinyl alcohol composite: impact of micro-sized wool powders
  publication-title: J. Mater. Res. Technol.
– volume: 33
  year: 2023
  ident: bb0040
  article-title: Environmentally adaptive polymer hydrogels: maintaining wet-soft features in extreme conditions
  publication-title: Adv. Funct. Mater.
– volume: 131
  year: 2023
  ident: bb0075
  article-title: Self-healing by Diels-Alder cycloaddition in advanced functional polymers: a review
  publication-title: Prog. Mater. Sci.
– volume: 35
  start-page: 1
  year: 2024
  end-page: 13
  ident: bb0120
  article-title: Highly sensitive strain sensors based on PVA hydrogels with a conductive surface layer of graphene
  publication-title: J. Mater. Sci. Mater. Electron.
– volume: 27
  start-page: 8725
  year: 2020
  end-page: 8743
  ident: bb0115
  article-title: Performance of polyvinyl alcohol hydrogel reinforced with lignin-containing cellulose nanocrystals
  publication-title: Cellulose
– volume: 314
  year: 2023
  ident: bb0320
  article-title: Water-dispersible and stable polydopamine coated cellulose nanocrystal-MXene composites for high transparent, adhesive and conductive hydrogels
  publication-title: Carbohydr. Polym.
– reference: M. Li, Y. Wang, Q. Wei, J. Zhang, X. Chen, Y. An, A High-Stretching, Rapid-Self-Healing, and Printable Composite Hydrogel Based on Poly(Vinyl Alcohol), Nanocellulose, and Sodium Alginate, Gels 2024, Vol. 10, Page 258 10 (2024) 258. doi:
– volume: 2021
  year: 2021
  ident: bb0405
  article-title: Poly(vinyl alcohol) hydrogels: the old and new functional materials
  publication-title: Int. J. Polym. Sci.
– volume: 320
  year: 2023
  ident: bb0030
  article-title: Flexible tactile sensors with biomimetic microstructures: mechanisms, fabrication, and applications
  publication-title: Adv. Colloid Interface Sci.
– volume: 252
  year: 2023
  ident: bb0035
  article-title: Dual detection of human motion and glucose in sweat with polydopamine and glucose oxidase doped self-healing nanocomposite hydrogels
  publication-title: Int. J. Biol. Macromol.
– volume: 27
  year: 2017
  ident: bb0150
  article-title: Wearable, healable, and adhesive epidermal sensors assembled from mussel-inspired conductive hybrid hydrogel framework
  publication-title: Adv. Funct. Mater.
– volume: 287
  year: 2024
  ident: bb0450
  article-title: Stretchable supramolecular hydrogel with instantaneous self-healing for electromagnetic interference shielding control and sensing
  publication-title: Compos B Eng
– volume: 8
  start-page: 10439
  year: 2012
  end-page: 10447
  ident: bb0215
  article-title: Anisotropic tough poly(vinyl alcohol) hydrogels
  publication-title: Soft Matter
– volume: 123
  start-page: 2016
  year: 2023
  end-page: 2048
  ident: bb0200
  article-title: Cellulose: a review of water interactions, applications in composites, and water treatment
  publication-title: Chem. Rev.
– volume: 306
  year: 2021
  ident: bb0475
  article-title: Stretchable
  publication-title: Antifreezing, Non-Drying, and Fast-Response Sensors Based on Cellulose Nanocomposite Hydrogels for Signal Detection, Macromol Mater Eng
– volume: 174
  start-page: 291
  year: 2017
  end-page: 298
  ident: bb0265
  article-title: Effect of oxidation time on the properties of cellulose nanocrystals from hybrid poplar residues using the ammonium persulfate
  publication-title: Carbohydr. Polym.
– volume: 677
  start-page: 816
  year: 2025
  end-page: 826
  ident: bb0010
  article-title: Smart sensing hydrogel actuators conferred by MXene gradient arrangement
  publication-title: J. Colloid Interface Sci.
– volume: 18
  start-page: 113
  year: 2022
  end-page: 120
  ident: bb0135
  article-title: Conductive polyvinyl alcohol/silver nanoparticles hydrogel sensor with large draw ratio, high sensitivity and high stability for human behavior monitoring, engineered
  publication-title: Science
– volume: 119
  year: 2021
  ident: bb0290
  article-title: Dual optical properties of NiO-doped PVA nanocomposite films
  publication-title: Opt Mater (Amst)
– volume: 11
  start-page: 2036
  year: 2023
  end-page: 2062
  ident: bb0390
  article-title: Hydrogels with electrically conductive nanomaterials for biomedical applications
  publication-title: J. Mater. Chem. B
– volume: 253
  year: 2023
  ident: bb0065
  article-title: Self-healing hydrogels based on biological macromolecules in wound healing: a review
  publication-title: Int. J. Biol. Macromol.
– year: 2024
  ident: bb0175
  article-title: Review of MXene Nanosheet-based composites for fire-retardant applications
  publication-title: ACS Appl Nano Mater
– volume: 2
  year: 2023
  ident: bb0090
  article-title: Self-healing hydrogels based on reversible noncovalent and dynamic covalent interactions: a short review
  publication-title: Supramolecular Materials
– volume: 35
  year: 2023
  ident: bb0425
  article-title: Self-healing, adhesive, and antioxidant MXene-reinforced conductive hydrogels for stain sensor
  publication-title: Mater Today Commun
– volume: 496
  year: 2024
  ident: bb0375
  article-title: Lightweight, high-strength and fireproof borax-crosslinked graphene/hydroxyethyl cellulose hybrid aerogels fabricated via ice template method
  publication-title: Chem. Eng. J.
– volume: 45
  start-page: 4292
  year: 2021
  end-page: 4302
  ident: bb0380
  article-title: A novel multifunctional flame retardant MXene/nanosilica hybrid for poly(vinyl alcohol) with simultaneously improved mechanical properties
  publication-title: New J. Chem.
– volume: 5
  start-page: 948
  year: 2017
  end-page: 956
  ident: bb0420
  article-title: One-pot assembly of microfibrillated cellulose reinforced PVA-borax hydrogels with self-healing and pH-responsive properties
  publication-title: ACS Sustain. Chem. Eng.
– volume: 446
  year: 2022
  ident: bb0140
  article-title: Super-stretchable and self-healing hydrogel with a three-dimensional silver nanowires network structure for wearable sensor and electromagnetic interference shielding
  publication-title: Chem. Eng. J.
– volume: 291
  year: 2024
  ident: bb0185
  article-title: A wearable strain sensor based on self-healable MXene/PVA hydrogel for bodily motion detection
  publication-title: Microelectron. Eng.
– volume: 317
  year: 2025
  ident: bb0085
  article-title: Dynamic borate ester bonds mediated patterned anisotropic hydrogels for information encryption
  publication-title: Polymer (Guildf)
– reference: M.M. El Sayed, Production of Polymer Hydrogel Composites and Their Applications, Journal of Polymers and the Environment 2023 31:7 31 (2023) 2855–2879. doi:
– volume: 51
  year: 2024
  ident: bb0180
  article-title: MXene: recent advances in synthesis, characterization and emerging applications in energy, biomedical and environmental remediation
  publication-title: Surfaces and Interfaces
– volume: 6
  start-page: 5934
  year: 2014
  end-page: 5943
  ident: bb0235
  article-title: Simple approach to reinforce hydrogels with cellulose nanocrystals
  publication-title: Nanoscale
– volume: 272
  year: 2024
  ident: bb0480
  article-title: Tailoring nanostructured MXene to adjust its dispersibility in conductive hydrogel for self-powered sensors
  publication-title: Compos B Eng
– volume: 140
  year: 2020
  ident: bb0080
  article-title: Imine bonding self-repair hydrogels after periodate-triggered breakage of their cross-links
  publication-title: Eur. Polym. J.
– volume: 29
  year: 2019
  ident: bb0155
  article-title: 3D macroscopic architectures from self-assembled MXene hydrogels
  publication-title: Adv. Funct. Mater.
– volume: 6
  year: 2024
  ident: bb0050
  article-title: Recent advances in smart tactile sensory systems with brain-inspired neural networks
  publication-title: Adv. Intell. Syst.
– volume: 17
  start-page: 20537
  year: 2023
  end-page: 20550
  ident: bb0165
  article-title: Laser-induced MXene-functionalized graphene Nanoarchitectonics-based microsupercapacitor for health monitoring application
  publication-title: ACS Nano
– volume: 278
  start-page: 187
  year: 2000
  end-page: 194
  ident: bb0355
  article-title: Reentrant behavior of poly(vinyl alcohol) - borax semidilute aqueous solutions
  publication-title: Colloid Polym. Sci.
– volume: 8
  start-page: 2752
  year: 2013
  end-page: 2767
  ident: bb0245
  article-title: Characterization of organosolv lignins using thermal and FT-IR spectroscopic analysis
  publication-title: Bioresources
– volume: 23
  start-page: 1
  year: 2006
  end-page: 8
  ident: bb0255
  article-title: Bioprocess preparation of wheat straw fibers and their characterization
  publication-title: Ind. Crop. Prod.
– volume: 5
  start-page: 2273
  year: 2014
  end-page: 2281
  ident: bb0360
  article-title: One-pot synthesis and gelation by borax of glycopolymers in water
  publication-title: Polym. Chem.
– reference: P.C. Lai, S.S. Yu, Cationic Cellulose Nanocrystals-Based Nanocomposite Hydrogels: Achieving 3D Printable Capacitive Sensors with High Transparency and Mechanical Strength, Polymers 2021, Vol. 13, Page 688 13 (2021) 688. doi:
– volume: 12
  year: 2024
  ident: bb0240
  article-title: Construction methods and biomedical applications of PVA-based hydrogels
  publication-title: Front. Chem.
– volume: 282
  year: 2024
  ident: bb0190
  article-title: Surface modification of cellulose nanocrystals for biomedical and personal hygiene applications
  publication-title: Int. J. Biol. Macromol.
– volume: 291
  year: 2024
  ident: bb0470
  article-title: A wearable strain sensor based on self-healable MXene/PVA hydrogel for bodily motion detection
  publication-title: Microelectron. Eng.
– volume: 23
  year: 2023
  ident: bb0335
  article-title: High-strength polyvinyl alcohol-based hydrogel by vermiculite and lignocellulosic nanofibrils for electronic sensing
  publication-title: E-Polymers
– volume: 24
  year: 2021
  ident: bb0430
  article-title: Stretchable and self-healing polyvinyl alcohol/cellulose nanofiber nanocomposite hydrogels for strain sensors with high sensitivity and linearity
  publication-title: Composites Communications
– volume: 12
  start-page: 6605
  year: 2024
  end-page: 6616
  ident: bb0345
  article-title: Tough and elastic hydrogels based on robust hydrophobicity-assisted metal ion coordination for flexible wearable devices
  publication-title: J. Mater. Chem. B
– volume: 1
  start-page: 3938
  year: 2013
  end-page: 3944
  ident: bb0275
  article-title: Facile extraction of thermally stable cellulose nanocrystals with a high yield of 93% through hydrochloric acid hydrolysis under hydrothermal conditions
  publication-title: J Mater Chem A Mater
– volume: 172
  start-page: 66
  year: 2021
  end-page: 73
  ident: bb0415
  article-title: Super flexible, fatigue resistant, self-healing PVA/xylan/borax hydrogel with dual-crosslinked network
  publication-title: Int. J. Biol. Macromol.
– volume: 20
  start-page: 1
  year: 2016
  end-page: 7
  ident: bb0145
  article-title: Polypyrrole-incorporated conductive hyaluronic acid hydrogels
  publication-title: Biomater Res
– volume: 15
  start-page: 2769
  year: 2014
  end-page: 2775
  ident: bb0285
  article-title: Amphiphilic cellulose nanocrystals from acid-free oxidative treatment: physicochemical characteristics and use as an oil-water stabilizer
  publication-title: Biomacromolecules
– volume: 9
  year: 2023
  ident: bb0385
  article-title: Concurrent stiffening and softening in hydrogels under dehydration
  publication-title: Sci. Adv.
– volume: 13
  start-page: 11344
  year: 2021
  end-page: 11355
  ident: bb0100
  article-title: Self-healing, self-adhesive, and conductive sodium alginate/poly(vinyl alcohol) composite hydrogel as a flexible strain sensor
  publication-title: ACS Appl. Mater. Interfaces
– volume: 340
  start-page: 2376
  year: 2005
  end-page: 2391
  ident: bb0260
  article-title: Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy
  publication-title: Carbohydr. Res.
– volume: 282
  year: 2024
  ident: bb0025
  article-title: Temperature-sensitive injectable chitosan-based hydrogel for endoscopic submucosal dissection
  publication-title: Int. J. Biol. Macromol.
– volume: 14
  start-page: 14653
  year: 2024
  end-page: 14663
  ident: bb0230
  article-title: Synthesis and characterization of carboxymethyl cellulose from pineapple leaf and kenaf core biomass: a comparative study of new raw materials
  publication-title: Biomass Convers. Biorefinery
– volume: 16
  start-page: 3156
  year: 2023
  end-page: 3167
  ident: bb0325
  article-title: Intrinsic conductive cellulose nanofiber induce room-temperature reversible and robust polyvinyl alcohol hydrogel for multifunctional self-healable biosensors
  publication-title: Nano Res.
– volume: 6
  year: 2020
  ident: bb0205
  article-title: Ilman
  publication-title: Preparation and characterization of cellulose nanocrystal extracted from ramie fibers by sulfuric acid hydrolysis, Heliyon
– volume: 291
  year: 2022
  ident: bb0465
  article-title: Polysaccharide/Ti3C2Tx MXene adhesive hydrogels with self-healing ability for multifunctional and sensitive sensors
  publication-title: Carbohydr. Polym.
– volume: 37
  start-page: 1169
  year: 2023
  end-page: 1181
  ident: bb0435
  article-title: Conductive, self-healing, and antibacterial ag/MXene-PVA hydrogel as wearable skin-like sensors
  publication-title: J. Biomater. Appl.
– volume: 218
  year: 2022
  ident: bb0045
  article-title: Self-healing strain sensor based on silicone elastomer for human motion detection
  publication-title: Compos. Sci. Technol.
– volume: 19
  year: 2023
  ident: bb0315
  article-title: A simple and effective physical ball-milling strategy to prepare super-tough and stretchable PVA@MXene@PPy hydrogel for flexible capacitive electronics
  publication-title: Small
– reference: C. Zheng, Y. Yue, L. Gan, X. Xu, C. Mei, J. Han, Highly Stretchable and Self-Healing Strain Sensors Based on Nanocellulose-Supported Graphene Dispersed in Electro-Conductive Hydrogels, Nanomaterials 2019, Vol. 9, Page 937 9 (2019) 937. doi:
– volume: 102
  start-page: 306
  year: 2014
  end-page: 316
  ident: bb0300
  article-title: High-water-content mouldable polyvinyl alcohol-borax hydrogels reinforced by well-dispersed cellulose nanoparticles: dynamic rheological properties and hydrogel formation mechanism
  publication-title: Carbohydr. Polym.
– reference: M. Marwanto, M.I. Maulana, F. Febrianto, N.J. Wistara, S. Nikmatin, N. Masruchin, L.H. Zaini, S.H. Lee, N.H. Kim, Effect of Oxidation Time on the Properties of Cellulose Nanocrystals Prepared from Balsa and Kapok Fibers Using Ammonium Persulfate, Polymers 2021, Vol. 13, Page 1894 13 (2021) 1894. doi:
– volume: 15
  start-page: 39883
  year: 2023
  end-page: 39895
  ident: bb0370
  article-title: Water-induced cellulose nanofibers/poly(vinyl alcohol) hydrogels regulated by hydrogen bonding for in situ water shutoff
  publication-title: ACS Appl. Mater. Interfaces
– volume: 8
  start-page: 5541
  year: 2020
  end-page: 5546
  ident: bb0460
  article-title: High-performance capacitive strain sensors with highly stretchable vertical graphene electrodes
  publication-title: J Mater Chem C Mater
– volume: 11
  start-page: 1288
  year: 2023
  end-page: 1301
  ident: bb0130
  article-title: 3D printed reduced graphene oxide-GelMA hybrid hydrogel scaffolds for potential neuralized bone regeneration
  publication-title: J. Mater. Chem. B
– volume: 12
  start-page: 30247
  year: 2020
  end-page: 30258
  ident: bb0220
  article-title: Functionalizing double-network hydrogels for applications in remote actuation and in low-temperature strain sensing
  publication-title: ACS Appl. Mater. Interfaces
– reference: .
– volume: 14
  year: 2022
  ident: bb0015
  article-title: Bioinspired MXene-based user-interactive electronic skin for digital and visual Dual-Channel sensing
  publication-title: Nanomicro Lett
– volume: 31
  year: 2021
  ident: bb0170
  article-title: Chemically stabilized and functionalized 2D-MXene with deep eutectic solvents as versatile dispersion Medium
  publication-title: Adv. Funct. Mater.
– volume: 9
  year: 2020
  ident: bb0020
  article-title: Biodegradable and electroactive regenerated bacterial cellulose/MXene (Ti3C2Tx) composite hydrogel as wound dressing for accelerating skin wound healing under electrical stimulation
  publication-title: Adv. Healthc. Mater.
– volume: 431
  year: 2022
  ident: bb0365
  article-title: Lignocellulose nanofibril/gelatin/MXene composite aerogel with fire-warning properties for enhanced electromagnetic interference shielding performance
  publication-title: Chem. Eng. J.
– volume: 394
  year: 2020
  ident: bb0070
  article-title: Multifunctional poly(disulfide) hydrogels with extremely fast self-healing ability and degradability
  publication-title: Chem. Eng. J.
– volume: 7
  start-page: 20196
  year: 2024
  end-page: 20205
  ident: bb0440
  article-title: Tuning surface terminations and hydration interactions in MXene Nanosheet-based hydrogel composites for self-healable strain sensors
  publication-title: ACS Appl Nano Mater
– year: 2024
  ident: bb0005
  article-title: Mechanically robust and anti-swelling anisotropic conductive hydrogel with fluorescence for Multifunctional sensing
  publication-title: Adv. Funct. Mater.
– volume: 127
  start-page: 1
  year: 2021
  end-page: 8
  ident: bb0305
  article-title: Terahertz time-domain spectroscopy of thin and flexible CNT-modified MXene/polymer composites
  publication-title: Appl. Phys. A Mater. Sci. Process.
– volume: 8
  start-page: 5541
  year: 2020
  ident: 10.1016/j.ijbiomac.2025.139640_bb0460
  article-title: High-performance capacitive strain sensors with highly stretchable vertical graphene electrodes
  publication-title: J Mater Chem C Mater
  doi: 10.1039/D0TC00491J
– volume: 20
  start-page: 1
  year: 2016
  ident: 10.1016/j.ijbiomac.2025.139640_bb0145
  article-title: Polypyrrole-incorporated conductive hyaluronic acid hydrogels
  publication-title: Biomater Res
  doi: 10.1186/s40824-016-0078-y
– ident: 10.1016/j.ijbiomac.2025.139640_bb0225
  doi: 10.3390/polym13111894
– volume: 1
  start-page: 3938
  year: 2013
  ident: 10.1016/j.ijbiomac.2025.139640_bb0275
  article-title: Facile extraction of thermally stable cellulose nanocrystals with a high yield of 93% through hydrochloric acid hydrolysis under hydrothermal conditions
  publication-title: J Mater Chem A Mater
  doi: 10.1039/c3ta01150j
– volume: 18
  start-page: 113
  year: 2022
  ident: 10.1016/j.ijbiomac.2025.139640_bb0135
  article-title: Conductive polyvinyl alcohol/silver nanoparticles hydrogel sensor with large draw ratio, high sensitivity and high stability for human behavior monitoring, engineered
  publication-title: Science
– volume: 241
  year: 2023
  ident: 10.1016/j.ijbiomac.2025.139640_bb0490
  article-title: A high-performance, full-degradable bioinspired newspaper-based composite enhanced by borate ester bonds
  publication-title: Compos Sci Technol
  doi: 10.1016/j.compscitech.2023.110130
– volume: 314
  year: 2023
  ident: 10.1016/j.ijbiomac.2025.139640_bb0320
  article-title: Water-dispersible and stable polydopamine coated cellulose nanocrystal-MXene composites for high transparent, adhesive and conductive hydrogels
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2023.120929
– ident: 10.1016/j.ijbiomac.2025.139640_bb0330
  doi: 10.3390/nano9070937
– volume: 245
  year: 2023
  ident: 10.1016/j.ijbiomac.2025.139640_bb0110
  article-title: Highly stretchable, fast self-healing nanocellulose hydrogel combining borate ester bonds and acylhydrazone bonds
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2023.125471
– volume: 291
  year: 2022
  ident: 10.1016/j.ijbiomac.2025.139640_bb0465
  article-title: Polysaccharide/Ti3C2Tx MXene adhesive hydrogels with self-healing ability for multifunctional and sensitive sensors
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2022.119572
– volume: 253
  year: 2023
  ident: 10.1016/j.ijbiomac.2025.139640_bb0065
  article-title: Self-healing hydrogels based on biological macromolecules in wound healing: a review
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2023.127612
– volume: 2
  year: 2023
  ident: 10.1016/j.ijbiomac.2025.139640_bb0090
  article-title: Self-healing hydrogels based on reversible noncovalent and dynamic covalent interactions: a short review
  publication-title: Supramolecular Materials
  doi: 10.1016/j.supmat.2023.100045
– year: 2023
  ident: 10.1016/j.ijbiomac.2025.139640_bb0160
  article-title: Low power flexible MXene-graphene oxide based heaters for wearable clothing
  publication-title: Proceedings of IEEE Sensors
– volume: 33
  year: 2023
  ident: 10.1016/j.ijbiomac.2025.139640_bb0040
  article-title: Environmentally adaptive polymer hydrogels: maintaining wet-soft features in extreme conditions
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202303511
– volume: 27
  start-page: 8725
  year: 2020
  ident: 10.1016/j.ijbiomac.2025.139640_bb0115
  article-title: Performance of polyvinyl alcohol hydrogel reinforced with lignin-containing cellulose nanocrystals
  publication-title: Cellulose
  doi: 10.1007/s10570-020-03396-z
– volume: 19
  year: 2023
  ident: 10.1016/j.ijbiomac.2025.139640_bb0315
  article-title: A simple and effective physical ball-milling strategy to prepare super-tough and stretchable PVA@MXene@PPy hydrogel for flexible capacitive electronics
  publication-title: Small
  doi: 10.1002/smll.202303038
– volume: 25
  start-page: 8656
  year: 2009
  ident: 10.1016/j.ijbiomac.2025.139640_bb0400
  article-title: Poly (vinyl alcohol)-borate hydro/cosolvent gels: viscoelastic properties, solubilizing power, and application to art conservation
  publication-title: Langmuir
  doi: 10.1021/la804306w
– volume: 282
  year: 2024
  ident: 10.1016/j.ijbiomac.2025.139640_bb0190
  article-title: Surface modification of cellulose nanocrystals for biomedical and personal hygiene applications
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2024.136949
– volume: 35
  year: 2023
  ident: 10.1016/j.ijbiomac.2025.139640_bb0425
  article-title: Self-healing, adhesive, and antioxidant MXene-reinforced conductive hydrogels for stain sensor
  publication-title: Mater Today Commun
– volume: 17
  start-page: 20699
  year: 2023
  ident: 10.1016/j.ijbiomac.2025.139640_bb0350
  article-title: MXene-mediated cellulose conductive hydrogel with Ultrastretchability and self-healing ability
  publication-title: ACS Nano
  doi: 10.1021/acsnano.3c08859
– volume: 8
  start-page: 10439
  year: 2012
  ident: 10.1016/j.ijbiomac.2025.139640_bb0215
  article-title: Anisotropic tough poly(vinyl alcohol) hydrogels
  publication-title: Soft Matter
  doi: 10.1039/c2sm26102b
– volume: 15
  start-page: 39883
  year: 2023
  ident: 10.1016/j.ijbiomac.2025.139640_bb0370
  article-title: Water-induced cellulose nanofibers/poly(vinyl alcohol) hydrogels regulated by hydrogen bonding for in situ water shutoff
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.3c07989
– volume: 335
  year: 2024
  ident: 10.1016/j.ijbiomac.2025.139640_bb0095
  article-title: Ultrastable and supersensitive conductive hydrogels conferred by “sodium alginate stencil” anchoring strategy
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2024.122048
– volume: 31
  year: 2021
  ident: 10.1016/j.ijbiomac.2025.139640_bb0170
  article-title: Chemically stabilized and functionalized 2D-MXene with deep eutectic solvents as versatile dispersion Medium
  publication-title: Adv. Funct. Mater.
– volume: 22
  start-page: 1135
  year: 2015
  ident: 10.1016/j.ijbiomac.2025.139640_bb0280
  article-title: Sodium periodate oxidation of cellulose nanocrystal and its application as a paper wet strength additive
  publication-title: Cellulose
  doi: 10.1007/s10570-015-0575-5
– volume: 17
  start-page: 20537
  year: 2023
  ident: 10.1016/j.ijbiomac.2025.139640_bb0165
  article-title: Laser-induced MXene-functionalized graphene Nanoarchitectonics-based microsupercapacitor for health monitoring application
  publication-title: ACS Nano
  doi: 10.1021/acsnano.3c07319
– year: 2024
  ident: 10.1016/j.ijbiomac.2025.139640_bb0445
  article-title: Self-healing PVA/chitosan/MXene triple network hydrogel for strain and temperature sensors
  publication-title: Int. J. Biol. Macromol.
– volume: 172
  start-page: 66
  year: 2021
  ident: 10.1016/j.ijbiomac.2025.139640_bb0415
  article-title: Super flexible, fatigue resistant, self-healing PVA/xylan/borax hydrogel with dual-crosslinked network
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2021.01.038
– volume: 15
  start-page: 2769
  year: 2014
  ident: 10.1016/j.ijbiomac.2025.139640_bb0285
  article-title: Amphiphilic cellulose nanocrystals from acid-free oxidative treatment: physicochemical characteristics and use as an oil-water stabilizer
  publication-title: Biomacromolecules
  doi: 10.1021/bm500628g
– ident: 10.1016/j.ijbiomac.2025.139640_bb0105
  doi: 10.1007/s10924-023-02796-z
– volume: 51
  year: 2024
  ident: 10.1016/j.ijbiomac.2025.139640_bb0180
  article-title: MXene: recent advances in synthesis, characterization and emerging applications in energy, biomedical and environmental remediation
  publication-title: Surfaces and Interfaces
  doi: 10.1016/j.surfin.2024.104628
– volume: 102
  start-page: 306
  year: 2014
  ident: 10.1016/j.ijbiomac.2025.139640_bb0300
  article-title: High-water-content mouldable polyvinyl alcohol-borax hydrogels reinforced by well-dispersed cellulose nanoparticles: dynamic rheological properties and hydrogel formation mechanism
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2013.11.045
– volume: 29
  year: 2019
  ident: 10.1016/j.ijbiomac.2025.139640_bb0155
  article-title: 3D macroscopic architectures from self-assembled MXene hydrogels
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201903960
– volume: 16
  start-page: 3156
  year: 2023
  ident: 10.1016/j.ijbiomac.2025.139640_bb0325
  article-title: Intrinsic conductive cellulose nanofiber induce room-temperature reversible and robust polyvinyl alcohol hydrogel for multifunctional self-healable biosensors
  publication-title: Nano Res.
  doi: 10.1007/s12274-022-4944-8
– volume: 45
  start-page: 4292
  year: 2021
  ident: 10.1016/j.ijbiomac.2025.139640_bb0380
  article-title: A novel multifunctional flame retardant MXene/nanosilica hybrid for poly(vinyl alcohol) with simultaneously improved mechanical properties
  publication-title: New J. Chem.
  doi: 10.1039/D0NJ04897F
– volume: 13
  start-page: 11344
  year: 2021
  ident: 10.1016/j.ijbiomac.2025.139640_bb0100
  article-title: Self-healing, self-adhesive, and conductive sodium alginate/poly(vinyl alcohol) composite hydrogel as a flexible strain sensor
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c01343
– volume: 49
  start-page: 7229
  year: 2020
  ident: 10.1016/j.ijbiomac.2025.139640_bb0270
  article-title: MXene hydrogels: fundamentals and applications
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D0CS00022A
– volume: 123
  start-page: 2016
  year: 2023
  ident: 10.1016/j.ijbiomac.2025.139640_bb0200
  article-title: Cellulose: a review of water interactions, applications in composites, and water treatment
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.2c00477
– year: 2024
  ident: 10.1016/j.ijbiomac.2025.139640_bb0175
  article-title: Review of MXene Nanosheet-based composites for fire-retardant applications
  publication-title: ACS Appl Nano Mater
  doi: 10.1021/acsanm.4c04164
– volume: 14
  start-page: 14653
  year: 2024
  ident: 10.1016/j.ijbiomac.2025.139640_bb0230
  article-title: Synthesis and characterization of carboxymethyl cellulose from pineapple leaf and kenaf core biomass: a comparative study of new raw materials
  publication-title: Biomass Convers. Biorefinery
  doi: 10.1007/s13399-022-03700-w
– volume: 24
  year: 2021
  ident: 10.1016/j.ijbiomac.2025.139640_bb0430
  article-title: Stretchable and self-healing polyvinyl alcohol/cellulose nanofiber nanocomposite hydrogels for strain sensors with high sensitivity and linearity
  publication-title: Composites Communications
  doi: 10.1016/j.coco.2021.100677
– volume: 23
  start-page: 1
  year: 2006
  ident: 10.1016/j.ijbiomac.2025.139640_bb0255
  article-title: Bioprocess preparation of wheat straw fibers and their characterization
  publication-title: Ind. Crop. Prod.
  doi: 10.1016/j.indcrop.2005.01.006
– volume: 140
  year: 2020
  ident: 10.1016/j.ijbiomac.2025.139640_bb0080
  article-title: Imine bonding self-repair hydrogels after periodate-triggered breakage of their cross-links
  publication-title: Eur. Polym. J.
  doi: 10.1016/j.eurpolymj.2020.110038
– volume: 272
  year: 2024
  ident: 10.1016/j.ijbiomac.2025.139640_bb0480
  article-title: Tailoring nanostructured MXene to adjust its dispersibility in conductive hydrogel for self-powered sensors
  publication-title: Compos B Eng
  doi: 10.1016/j.compositesb.2024.111191
– volume: 26
  start-page: 3671
  year: 2019
  ident: 10.1016/j.ijbiomac.2025.139640_bb0195
  article-title: Highly carboxylated and crystalline cellulose nanocrystals from jute fiber by facile ammonium persulfate oxidation
  publication-title: Cellulose
  doi: 10.1007/s10570-019-02363-7
– volume: 5
  start-page: 948
  year: 2017
  ident: 10.1016/j.ijbiomac.2025.139640_bb0420
  article-title: One-pot assembly of microfibrillated cellulose reinforced PVA-borax hydrogels with self-healing and pH-responsive properties
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.6b02279
– volume: 27
  year: 2017
  ident: 10.1016/j.ijbiomac.2025.139640_bb0150
  article-title: Wearable, healable, and adhesive epidermal sensors assembled from mussel-inspired conductive hybrid hydrogel framework
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201703852
– volume: 127
  start-page: 1
  year: 2021
  ident: 10.1016/j.ijbiomac.2025.139640_bb0305
  article-title: Terahertz time-domain spectroscopy of thin and flexible CNT-modified MXene/polymer composites
  publication-title: Appl. Phys. A Mater. Sci. Process.
  doi: 10.1007/s00339-021-04525-6
– volume: 394
  year: 2020
  ident: 10.1016/j.ijbiomac.2025.139640_bb0070
  article-title: Multifunctional poly(disulfide) hydrogels with extremely fast self-healing ability and degradability
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.124941
– volume: 218
  year: 2022
  ident: 10.1016/j.ijbiomac.2025.139640_bb0045
  article-title: Self-healing strain sensor based on silicone elastomer for human motion detection
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/j.compscitech.2021.109208
– volume: 9
  year: 2023
  ident: 10.1016/j.ijbiomac.2025.139640_bb0385
  article-title: Concurrent stiffening and softening in hydrogels under dehydration
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.ade3240
– ident: 10.1016/j.ijbiomac.2025.139640_bb0455
  doi: 10.3390/polym13050688
– year: 2024
  ident: 10.1016/j.ijbiomac.2025.139640_bb0005
  article-title: Mechanically robust and anti-swelling anisotropic conductive hydrogel with fluorescence for Multifunctional sensing
  publication-title: Adv. Funct. Mater.
– volume: 431
  year: 2022
  ident: 10.1016/j.ijbiomac.2025.139640_bb0365
  article-title: Lignocellulose nanofibril/gelatin/MXene composite aerogel with fire-warning properties for enhanced electromagnetic interference shielding performance
  publication-title: Chem. Eng. J.
– volume: 8
  start-page: 2752
  year: 2013
  ident: 10.1016/j.ijbiomac.2025.139640_bb0245
  article-title: Characterization of organosolv lignins using thermal and FT-IR spectroscopic analysis
  publication-title: Bioresources
  doi: 10.15376/biores.8.2.2752-2767
– volume: 131
  year: 2023
  ident: 10.1016/j.ijbiomac.2025.139640_bb0075
  article-title: Self-healing by Diels-Alder cycloaddition in advanced functional polymers: a review
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/j.pmatsci.2022.101001
– volume: 278
  start-page: 187
  year: 2000
  ident: 10.1016/j.ijbiomac.2025.139640_bb0355
  article-title: Reentrant behavior of poly(vinyl alcohol) - borax semidilute aqueous solutions
  publication-title: Colloid Polym. Sci.
  doi: 10.1007/s003960050031
– volume: 401
  year: 2020
  ident: 10.1016/j.ijbiomac.2025.139640_bb0055
  article-title: Modified Ti3C2TX (MXene) nanosheet-catalyzed self-assembled, anti-aggregated, ultra-stretchable, conductive hydrogels for wearable bioelectronics
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.126129
– volume: 496
  year: 2024
  ident: 10.1016/j.ijbiomac.2025.139640_bb0375
  article-title: Lightweight, high-strength and fireproof borax-crosslinked graphene/hydroxyethyl cellulose hybrid aerogels fabricated via ice template method
  publication-title: Chem. Eng. J.
– volume: 6
  year: 2020
  ident: 10.1016/j.ijbiomac.2025.139640_bb0205
  article-title: Ilman
  publication-title: Preparation and characterization of cellulose nanocrystal extracted from ramie fibers by sulfuric acid hydrolysis, Heliyon
– volume: 11
  start-page: 1288
  year: 2023
  ident: 10.1016/j.ijbiomac.2025.139640_bb0130
  article-title: 3D printed reduced graphene oxide-GelMA hybrid hydrogel scaffolds for potential neuralized bone regeneration
  publication-title: J. Mater. Chem. B
  doi: 10.1039/D2TB01979E
– volume: 26
  start-page: 7998
  year: 2023
  ident: 10.1016/j.ijbiomac.2025.139640_bb0295
  article-title: Utilisation of waste wool through fabrication of 3D water-resistant polyvinyl alcohol composite: impact of micro-sized wool powders
  publication-title: J. Mater. Res. Technol.
  doi: 10.1016/j.jmrt.2023.09.141
– volume: 31
  year: 2022
  ident: 10.1016/j.ijbiomac.2025.139640_bb0210
  article-title: Poly-(vinyl alcohol) composite films reinforced with carboxylated functional microcrystalline cellulose from jute fiber
  publication-title: Doi:10.1177/26349833221103888
– volume: 340
  start-page: 2376
  year: 2005
  ident: 10.1016/j.ijbiomac.2025.139640_bb0260
  article-title: Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy
  publication-title: Carbohydr. Res.
  doi: 10.1016/j.carres.2005.08.007
– volume: 320
  year: 2023
  ident: 10.1016/j.ijbiomac.2025.139640_bb0030
  article-title: Flexible tactile sensors with biomimetic microstructures: mechanisms, fabrication, and applications
  publication-title: Adv. Colloid Interface Sci.
  doi: 10.1016/j.cis.2023.102988
– volume: 346
  start-page: 76
  year: 2011
  ident: 10.1016/j.ijbiomac.2025.139640_bb0250
  article-title: Isolation and characterization of cellulose nanofibrils from wheat straw using steam explosion coupled with high shear homogenization
  publication-title: Carbohydr. Res.
  doi: 10.1016/j.carres.2010.10.020
– volume: 9
  year: 2020
  ident: 10.1016/j.ijbiomac.2025.139640_bb0020
  article-title: Biodegradable and electroactive regenerated bacterial cellulose/MXene (Ti3C2Tx) composite hydrogel as wound dressing for accelerating skin wound healing under electrical stimulation
  publication-title: Adv. Healthc. Mater.
  doi: 10.1002/adhm.202000872
– volume: 2021
  year: 2021
  ident: 10.1016/j.ijbiomac.2025.139640_bb0405
  article-title: Poly(vinyl alcohol) hydrogels: the old and new functional materials
  publication-title: Int. J. Polym. Sci.
  doi: 10.1155/2021/2225426
– volume: 291
  year: 2024
  ident: 10.1016/j.ijbiomac.2025.139640_bb0185
  article-title: A wearable strain sensor based on self-healable MXene/PVA hydrogel for bodily motion detection
  publication-title: Microelectron. Eng.
  doi: 10.1016/j.mee.2024.112197
– volume: 7
  start-page: 20196
  year: 2024
  ident: 10.1016/j.ijbiomac.2025.139640_bb0440
  article-title: Tuning surface terminations and hydration interactions in MXene Nanosheet-based hydrogel composites for self-healable strain sensors
  publication-title: ACS Appl Nano Mater
  doi: 10.1021/acsanm.4c03056
– volume: 32
  year: 2022
  ident: 10.1016/j.ijbiomac.2025.139640_bb0485
  article-title: Dynamically cross-linking soybean oil and low-molecular-weight Polylactic acid toward mechanically robust
  publication-title: Degradable, and Recyclable Supramolecular Plastics, Adv Funct Mater
– volume: 11
  start-page: 2036
  year: 2023
  ident: 10.1016/j.ijbiomac.2025.139640_bb0390
  article-title: Hydrogels with electrically conductive nanomaterials for biomedical applications
  publication-title: J. Mater. Chem. B
  doi: 10.1039/D2TB02019J
– volume: 6
  start-page: 5934
  year: 2014
  ident: 10.1016/j.ijbiomac.2025.139640_bb0235
  article-title: Simple approach to reinforce hydrogels with cellulose nanocrystals
  publication-title: Nanoscale
  doi: 10.1039/c4nr01214c
– volume: 174
  start-page: 291
  year: 2017
  ident: 10.1016/j.ijbiomac.2025.139640_bb0265
  article-title: Effect of oxidation time on the properties of cellulose nanocrystals from hybrid poplar residues using the ammonium persulfate
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2017.06.080
– volume: 134
  year: 2021
  ident: 10.1016/j.ijbiomac.2025.139640_bb0410
  article-title: Multifunctional conductive hydrogel-based flexible wearable sensors
  publication-title: TrAC Trends Anal. Chem.
  doi: 10.1016/j.trac.2020.116130
– volume: 287
  year: 2024
  ident: 10.1016/j.ijbiomac.2025.139640_bb0450
  article-title: Stretchable supramolecular hydrogel with instantaneous self-healing for electromagnetic interference shielding control and sensing
  publication-title: Compos B Eng
  doi: 10.1016/j.compositesb.2024.111826
– volume: 14
  year: 2022
  ident: 10.1016/j.ijbiomac.2025.139640_bb0015
  article-title: Bioinspired MXene-based user-interactive electronic skin for digital and visual Dual-Channel sensing
  publication-title: Nanomicro Lett
– ident: 10.1016/j.ijbiomac.2025.139640_bb0310
  doi: 10.3390/gels10040258
– volume: 35
  start-page: 1
  year: 2024
  ident: 10.1016/j.ijbiomac.2025.139640_bb0120
  article-title: Highly sensitive strain sensors based on PVA hydrogels with a conductive surface layer of graphene
  publication-title: J. Mater. Sci. Mater. Electron.
– volume: 12
  year: 2024
  ident: 10.1016/j.ijbiomac.2025.139640_bb0240
  article-title: Construction methods and biomedical applications of PVA-based hydrogels
  publication-title: Front. Chem.
  doi: 10.3389/fchem.2024.1376799
– volume: 12
  start-page: 6605
  year: 2024
  ident: 10.1016/j.ijbiomac.2025.139640_bb0345
  article-title: Tough and elastic hydrogels based on robust hydrophobicity-assisted metal ion coordination for flexible wearable devices
  publication-title: J. Mater. Chem. B
  doi: 10.1039/D4TB00933A
– volume: 306
  year: 2021
  ident: 10.1016/j.ijbiomac.2025.139640_bb0475
  article-title: Stretchable
  publication-title: Antifreezing, Non-Drying, and Fast-Response Sensors Based on Cellulose Nanocomposite Hydrogels for Signal Detection, Macromol Mater Eng
– volume: 291
  year: 2024
  ident: 10.1016/j.ijbiomac.2025.139640_bb0470
  article-title: A wearable strain sensor based on self-healable MXene/PVA hydrogel for bodily motion detection
  publication-title: Microelectron. Eng.
  doi: 10.1016/j.mee.2024.112197
– volume: 31
  year: 2022
  ident: 10.1016/j.ijbiomac.2025.139640_bb0125
  article-title: Preparation of wearable strain sensor based on PVA/MWCNTs hydrogel composite
  publication-title: Mater Today Commun
– volume: 446
  year: 2022
  ident: 10.1016/j.ijbiomac.2025.139640_bb0140
  article-title: Super-stretchable and self-healing hydrogel with a three-dimensional silver nanowires network structure for wearable sensor and electromagnetic interference shielding
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.137136
– volume: 252
  year: 2023
  ident: 10.1016/j.ijbiomac.2025.139640_bb0035
  article-title: Dual detection of human motion and glucose in sweat with polydopamine and glucose oxidase doped self-healing nanocomposite hydrogels
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2023.126473
– volume: 20
  year: 2024
  ident: 10.1016/j.ijbiomac.2025.139640_bb0060
  article-title: MXene crosslinked hydrogels with low hysteresis conferred by sliding Tangle Island strategy
  publication-title: Small
  doi: 10.1002/smll.202401622
– volume: 119
  year: 2021
  ident: 10.1016/j.ijbiomac.2025.139640_bb0290
  article-title: Dual optical properties of NiO-doped PVA nanocomposite films
  publication-title: Opt Mater (Amst)
  doi: 10.1016/j.optmat.2021.111325
– volume: 37
  year: 2020
  ident: 10.1016/j.ijbiomac.2025.139640_bb0395
  article-title: High-water-content hydrogels exhibiting superior stiffness, strength, and toughness
  publication-title: Extreme Mech. Lett.
  doi: 10.1016/j.eml.2020.100691
– volume: 282
  year: 2024
  ident: 10.1016/j.ijbiomac.2025.139640_bb0025
  article-title: Temperature-sensitive injectable chitosan-based hydrogel for endoscopic submucosal dissection
  publication-title: Int. J. Biol. Macromol.
– volume: 23
  year: 2023
  ident: 10.1016/j.ijbiomac.2025.139640_bb0335
  article-title: High-strength polyvinyl alcohol-based hydrogel by vermiculite and lignocellulosic nanofibrils for electronic sensing
  publication-title: E-Polymers
  doi: 10.1515/epoly-2023-0081
– volume: 37
  start-page: 1169
  year: 2023
  ident: 10.1016/j.ijbiomac.2025.139640_bb0435
  article-title: Conductive, self-healing, and antibacterial ag/MXene-PVA hydrogel as wearable skin-like sensors
  publication-title: J. Biomater. Appl.
  doi: 10.1177/08853282221131137
– volume: 317
  year: 2025
  ident: 10.1016/j.ijbiomac.2025.139640_bb0085
  article-title: Dynamic borate ester bonds mediated patterned anisotropic hydrogels for information encryption
  publication-title: Polymer (Guildf)
  doi: 10.1016/j.polymer.2024.127952
– volume: 12
  start-page: 30247
  year: 2020
  ident: 10.1016/j.ijbiomac.2025.139640_bb0220
  article-title: Functionalizing double-network hydrogels for applications in remote actuation and in low-temperature strain sensing
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c10430
– volume: 5
  start-page: 2273
  year: 2014
  ident: 10.1016/j.ijbiomac.2025.139640_bb0360
  article-title: One-pot synthesis and gelation by borax of glycopolymers in water
  publication-title: Polym. Chem.
  doi: 10.1039/c3py01266b
– volume: 20
  start-page: 2428
  year: 2018
  ident: 10.1016/j.ijbiomac.2025.139640_bb0340
  article-title: Nanocellulose nanocomposite hydrogels: technological and environmental issues
  publication-title: Green Chem.
  doi: 10.1039/C8GC00205C
– volume: 6
  year: 2024
  ident: 10.1016/j.ijbiomac.2025.139640_bb0050
  article-title: Recent advances in smart tactile sensory systems with brain-inspired neural networks
  publication-title: Adv. Intell. Syst.
  doi: 10.1002/aisy.202300631
– volume: 677
  start-page: 816
  year: 2025
  ident: 10.1016/j.ijbiomac.2025.139640_bb0010
  article-title: Smart sensing hydrogel actuators conferred by MXene gradient arrangement
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2024.08.117
SSID ssj0006518
Score 2.4810765
Snippet Conductive hydrogel has drawn great concern in wearable sensors, human-machine interfaces, artificial intelligence (AI), health monitoring, et al. But it still...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 139640
SubjectTerms ammonium persulfate
artificial intelligence
Borates - chemistry
borax
carboxylation
cellulose
Cellulose - chemistry
Cellulose microfibers
crystal structure
Electric Conductivity
electrical conductivity
energy transfer
fabrics
health services
human physiology
Humans
Hydrogel
hydrogels
Hydrogels - chemistry
nanosheets
Nitrites
oxidation
polyvinyl alcohol
Polyvinyl Alcohol - chemistry
ramie
Tensile Strength
Textiles
Transition Elements
Wearable Electronic Devices
Wearable sensor
Title Extraction and incorporation of cellulose microfibers from textile wastes into MXene-enhanced PVA-borax hydrogel for multifunctional wearable sensors
URI https://dx.doi.org/10.1016/j.ijbiomac.2025.139640
https://www.ncbi.nlm.nih.gov/pubmed/39788271
https://www.proquest.com/docview/3153918637
https://www.proquest.com/docview/3200320120
Volume 295
WOSCitedRecordID wos001398520400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-0003
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006518
  issn: 0141-8130
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbptAFB05SaV2U_Vd9xFNpe4sqHnOsOjCihylD0dZpBHKBo1hiGPZEBmTOB_SD-qf9V5mACdpmlZVN8hCgBH3MJx759wzhLz3JZBWbzw2XK_fN1zHdQ0ee7GBVnM2wybmykj76Cvb3-dhGBx0Oj_qXpjzGcsyvloFZ_811LAPgo2ts38R7uaisAN-Q9BhC2GH7R8FfrhaLuoFwCtnpVibFWtqiKX6coYy9TmK8VKUjBS6zQRGahgleheiWFZCLSCmoxBGQ0NmEyUVODgaGAibVW9ymSzyE1n1PypdIn4jdWnxAp5q1ZRVQJqc6xmjaauab4uQa9YVyhCqQs1cVDrBauneVuW4JwpVrx0lZu9YTGo1fvkxLJV2oBTZCWwaGOWQW8hqyumLeWyOzN5gnLRSyMFkrmq9o6S3m18W-tHqIojttSowVZm70Z2ji6WWwS0976NHe1ut6Xnjy6GKGFPzdIq-BwLdLW3PBH7sKzupa67cKIqz8NpAIfsWD_gG2bKZF8DAujX4NAw_N3TA96oic3Mza23qv_632xjSbRlQxYQOH5GHOoWhAwW9x6Qjsyfk_k69cuBT8r2FIAUI0isQpHlKGwjSNQhShCDVEKQKghQhSK9CkDYQpDUEKUCQXoMgrSFINQSfkW-7w8OdPUMv_2HEkPQvDZkIxhMHk_gUaGviO0JajpUCVUgdEbhSoPuedHGS0AsSexyzGNIfKfoO6yee7zwnm1meyZeExozFbCxT4Nepy_0EvjoisdPYFdxiqet0iVc_8ijW3vi4RMssqkWQ06gOVYShilSouuRDc96Zcoe584ygjmikOa7irhEA8c5z39UQiCCiGCuRybwsIgd4S2Bx32G_OQZlqDb2ynfJC4Wf5p4hKYFMm1mv_uHuXpMH7Zv5hmwuF6V8S-7F58vTYrFNNljIt_W78RNM1_im
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Extraction+and+incorporation+of+cellulose+microfibers+from+textile+wastes+into+MXene-enhanced+PVA-borax+hydrogel+for+multifunctional+wearable+sensors&rft.jtitle=International+journal+of+biological+macromolecules&rft.au=Hasan%2C+Md.+Zahid&rft.au=Xu%2C+Chuanghua&rft.au=Motaleb%2C+K.Z.M.+Abdul&rft.au=Ahmed%2C+Md+Foysal&rft.date=2025-03-01&rft.pub=Elsevier+B.V&rft.issn=0141-8130&rft.volume=295&rft_id=info:doi/10.1016%2Fj.ijbiomac.2025.139640&rft.externalDocID=S0141813025001898
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0141-8130&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0141-8130&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0141-8130&client=summon