Extraction and incorporation of cellulose microfibers from textile wastes into MXene-enhanced PVA-borax hydrogel for multifunctional wearable sensors
Conductive hydrogel has drawn great concern in wearable sensors, human-machine interfaces, artificial intelligence (AI), health monitoring, et al. But it still remains challenge to develop hydrogel through facile and sustainable methods. In this work, a conductive, flexible, bendable and self-healin...
Saved in:
| Published in: | International journal of biological macromolecules Vol. 295; p. 139640 |
|---|---|
| Main Authors: | , , , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Netherlands
Elsevier B.V
01.03.2025
|
| Subjects: | |
| ISSN: | 0141-8130, 1879-0003, 1879-0003 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Conductive hydrogel has drawn great concern in wearable sensors, human-machine interfaces, artificial intelligence (AI), health monitoring, et al. But it still remains challenge to develop hydrogel through facile and sustainable methods. In this work, a conductive, flexible, bendable and self-healing hydrogel (PBCM) composed of polyvinyl alcohol (PVA), borax, cellulose microfibers (CMFs) and MXene nanosheets was fabricated by a simple and efficient strategy. The carboxylated CMFs were extracted from waste ramie fibers via a one-pot ammonium persulfate oxidation method. The crystallinity and tensile strength were increased 70 % and 4 times due to the addition of CMFs and MXene compared to the pristine PVA-borax hydrogel. The incorporation of MXene nanosheets acts as multifunctional cross-linkers and energy transfer platform, promoting the electrical conductivity, stretchability and bendability of hydrogel remarkably. The PBCM-2 hydrogel exhibited the maximum electrical conductivity of 0.81 S/cm. Additionally, the dynamic borate ester linkage imparts self-healing ability to the hydrogel. The resulting PBCM-2 hydrogel demonstrated excellent resistance to fire and pH response properties. Moreover, it showed sensitivity in monitoring various human physiological movements, including finger, wrist, elbow, knee bending and drinking water, indicating its potential for wearable sensing applications like health care and sports training. |
|---|---|
| AbstractList | Conductive hydrogel has drawn great concern in wearable sensors, human-machine interfaces, artificial intelligence (AI), health monitoring, et al. But it still remains challenge to develop hydrogel through facile and sustainable methods. In this work, a conductive, flexible, bendable and self-healing hydrogel (PBCM) composed of polyvinyl alcohol (PVA), borax, cellulose microfibers (CMFs) and MXene nanosheets was fabricated by a simple and efficient strategy. The carboxylated CMFs were extracted from waste ramie fibers via a one-pot ammonium persulfate oxidation method. The crystallinity and tensile strength were increased 70 % and 4 times due to the addition of CMFs and MXene compared to the pristine PVA-borax hydrogel. The incorporation of MXene nanosheets acts as multifunctional cross-linkers and energy transfer platform, promoting the electrical conductivity, stretchability and bendability of hydrogel remarkably. The PBCM-2 hydrogel exhibited the maximum electrical conductivity of 0.81 S/cm. Additionally, the dynamic borate ester linkage imparts self-healing ability to the hydrogel. The resulting PBCM-2 hydrogel demonstrated excellent resistance to fire and pH response properties. Moreover, it showed sensitivity in monitoring various human physiological movements, including finger, wrist, elbow, knee bending and drinking water, indicating its potential for wearable sensing applications like health care and sports training.Conductive hydrogel has drawn great concern in wearable sensors, human-machine interfaces, artificial intelligence (AI), health monitoring, et al. But it still remains challenge to develop hydrogel through facile and sustainable methods. In this work, a conductive, flexible, bendable and self-healing hydrogel (PBCM) composed of polyvinyl alcohol (PVA), borax, cellulose microfibers (CMFs) and MXene nanosheets was fabricated by a simple and efficient strategy. The carboxylated CMFs were extracted from waste ramie fibers via a one-pot ammonium persulfate oxidation method. The crystallinity and tensile strength were increased 70 % and 4 times due to the addition of CMFs and MXene compared to the pristine PVA-borax hydrogel. The incorporation of MXene nanosheets acts as multifunctional cross-linkers and energy transfer platform, promoting the electrical conductivity, stretchability and bendability of hydrogel remarkably. The PBCM-2 hydrogel exhibited the maximum electrical conductivity of 0.81 S/cm. Additionally, the dynamic borate ester linkage imparts self-healing ability to the hydrogel. The resulting PBCM-2 hydrogel demonstrated excellent resistance to fire and pH response properties. Moreover, it showed sensitivity in monitoring various human physiological movements, including finger, wrist, elbow, knee bending and drinking water, indicating its potential for wearable sensing applications like health care and sports training. Conductive hydrogel has drawn great concern in wearable sensors, human-machine interfaces, artificial intelligence (AI), health monitoring, et al. But it still remains challenge to develop hydrogel through facile and sustainable methods. In this work, a conductive, flexible, bendable and self-healing hydrogel (PBCM) composed of polyvinyl alcohol (PVA), borax, cellulose microfibers (CMFs) and MXene nanosheets was fabricated by a simple and efficient strategy. The carboxylated CMFs were extracted from waste ramie fibers via a one-pot ammonium persulfate oxidation method. The crystallinity and tensile strength were increased 70 % and 4 times due to the addition of CMFs and MXene compared to the pristine PVA-borax hydrogel. The incorporation of MXene nanosheets acts as multifunctional cross-linkers and energy transfer platform, promoting the electrical conductivity, stretchability and bendability of hydrogel remarkably. The PBCM-2 hydrogel exhibited the maximum electrical conductivity of 0.81 S/cm. Additionally, the dynamic borate ester linkage imparts self-healing ability to the hydrogel. The resulting PBCM-2 hydrogel demonstrated excellent resistance to fire and pH response properties. Moreover, it showed sensitivity in monitoring various human physiological movements, including finger, wrist, elbow, knee bending and drinking water, indicating its potential for wearable sensing applications like health care and sports training. Conductive hydrogel has drawn great concern in wearable sensors, human-machine interfaces, artificial intelligence (AI), health monitoring, et al. But it still remains challenge to develop hydrogel through facile and sustainable methods. In this work, a conductive, flexible, bendable and self-healing hydrogel (PBCM) composed of polyvinyl alcohol (PVA), borax, cellulose microfibers (CMFs) and MXene nanosheets was fabricated by a simple and efficient strategy. The carboxylated CMFs were extracted from waste ramie fibers via a one-pot ammonium persulfate oxidation method. The crystallinity and tensile strength were increased 70 % and 4 times due to the addition of CMFs and MXene compared to the pristine PVA-borax hydrogel. The incorporation of MXene nanosheets acts as multifunctional cross-linkers and energy transfer platform, promoting the electrical conductivity, stretchability and bendability of hydrogel remarkably. The PBCM-2 hydrogel exhibited the maximum electrical conductivity of 0.81 S/cm. Additionally, the dynamic borate ester linkage imparts self-healing ability to the hydrogel. The resulting PBCM-2 hydrogel demonstrated excellent resistance to fire and pH response properties. Moreover, it showed sensitivity in monitoring various human physiological movements, including finger, wrist, elbow, knee bending and drinking water, indicating its potential for wearable sensing applications like health care and sports training. |
| ArticleNumber | 139640 |
| Author | Hasan, Md. Zahid Xu, Chuanghua Bashar, M. Mahbubul Tan, Sirui Motaleb, K.Z.M. Abdul Ahmed, Md Foysal Janutėnienė, Jolanta Zhang, Ruquan Zhuang, Jie Tu, Hu Luo, Lei |
| Author_xml | – sequence: 1 givenname: Md. Zahid surname: Hasan fullname: Hasan, Md. Zahid organization: State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China – sequence: 2 givenname: Chuanghua surname: Xu fullname: Xu, Chuanghua organization: State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China – sequence: 3 givenname: K.Z.M. Abdul surname: Motaleb fullname: Motaleb, K.Z.M. Abdul organization: Department of Engineering, Faculty of Marine Technologies and Natural Sciences, Klaipeda University, Klaipėda 91224, Lithuania – sequence: 4 givenname: Md Foysal surname: Ahmed fullname: Ahmed, Md Foysal organization: State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China – sequence: 5 givenname: Jie surname: Zhuang fullname: Zhuang, Jie organization: State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China – sequence: 6 givenname: Sirui surname: Tan fullname: Tan, Sirui organization: State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China – sequence: 7 givenname: Jolanta surname: Janutėnienė fullname: Janutėnienė, Jolanta organization: Department of Engineering, Faculty of Marine Technologies and Natural Sciences, Klaipeda University, Klaipėda 91224, Lithuania – sequence: 8 givenname: M. Mahbubul surname: Bashar fullname: Bashar, M. Mahbubul organization: Department of Textile Engineering, Mawlana Bhashani Science and Technology University, Tangail 1902, Bangladesh – sequence: 9 givenname: Hu surname: Tu fullname: Tu, Hu organization: State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China – sequence: 10 givenname: Lei surname: Luo fullname: Luo, Lei email: leiluo@wtu.edu.cn organization: State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China – sequence: 11 givenname: Ruquan surname: Zhang fullname: Zhang, Ruquan email: zhangruquan@wtu.edu.cn organization: State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39788271$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkc1OHDEQhK2IKCyQV0A-5jKb9nh-pRyCEPmRiMKBRNwsj90OXs3YG9sDy4PkfePdhRxy2VNLrapqdX0n5Mh5h4ScM1gyYM371dKuBusnqZYllPWS8b6p4BVZsK7tCwDgR2QBrGJFxzgck5MYV3nb1Kx7Q45533Zd2bIF-XO1SUGqZL2j0mlqnfJh7YPcbbyhCsdxHn1EOlkVvLEDhkhN8BNNuEl2RPooY8KYrcnTb3fosEB3L51CTW9-XhRDTtvQ-ycd_C8cqfGBTvOYrJnd7q4c6SPKIIccFdFFH-IZeW3kGPHt8zwlPz5d3V5-Ka6_f_56eXFdqApYKlDLttMc8p-G9aAbLpFxZlAqw2Vfoayh4lgBh77udTmoVnUAKIG3oOuGn5J3-9x18L9njElMNm4_lg79HAUvc5ElsBIOS1nNe9Y1vM3S82fpPEyoxTrYSYYn8dJ6FjR7QS40xoDmn4SB2OIVK_GCV2zxij3ebPzwn1HZtEOVIdrxsP3j3o650weLQURlcQvKBlRJaG8PRfwF1hvH9g |
| CitedBy_id | crossref_primary_10_1016_j_ijbiomac_2025_144054 crossref_primary_10_1016_j_ijbiomac_2025_142580 crossref_primary_10_1016_j_cej_2025_165403 crossref_primary_10_1002_mame_202500097 crossref_primary_10_3390_gels11070550 |
| Cites_doi | 10.1039/D0TC00491J 10.1186/s40824-016-0078-y 10.3390/polym13111894 10.1039/c3ta01150j 10.1016/j.compscitech.2023.110130 10.1016/j.carbpol.2023.120929 10.3390/nano9070937 10.1016/j.ijbiomac.2023.125471 10.1016/j.carbpol.2022.119572 10.1016/j.ijbiomac.2023.127612 10.1016/j.supmat.2023.100045 10.1002/adfm.202303511 10.1007/s10570-020-03396-z 10.1002/smll.202303038 10.1021/la804306w 10.1016/j.ijbiomac.2024.136949 10.1021/acsnano.3c08859 10.1039/c2sm26102b 10.1021/acsami.3c07989 10.1016/j.carbpol.2024.122048 10.1007/s10570-015-0575-5 10.1021/acsnano.3c07319 10.1016/j.ijbiomac.2021.01.038 10.1021/bm500628g 10.1007/s10924-023-02796-z 10.1016/j.surfin.2024.104628 10.1016/j.carbpol.2013.11.045 10.1002/adfm.201903960 10.1007/s12274-022-4944-8 10.1039/D0NJ04897F 10.1021/acsami.1c01343 10.1039/D0CS00022A 10.1021/acs.chemrev.2c00477 10.1021/acsanm.4c04164 10.1007/s13399-022-03700-w 10.1016/j.coco.2021.100677 10.1016/j.indcrop.2005.01.006 10.1016/j.eurpolymj.2020.110038 10.1016/j.compositesb.2024.111191 10.1007/s10570-019-02363-7 10.1021/acssuschemeng.6b02279 10.1002/adfm.201703852 10.1007/s00339-021-04525-6 10.1016/j.cej.2020.124941 10.1016/j.compscitech.2021.109208 10.1126/sciadv.ade3240 10.3390/polym13050688 10.15376/biores.8.2.2752-2767 10.1016/j.pmatsci.2022.101001 10.1007/s003960050031 10.1016/j.cej.2020.126129 10.1039/D2TB01979E 10.1016/j.jmrt.2023.09.141 10.1016/j.carres.2005.08.007 10.1016/j.cis.2023.102988 10.1016/j.carres.2010.10.020 10.1002/adhm.202000872 10.1155/2021/2225426 10.1016/j.mee.2024.112197 10.1021/acsanm.4c03056 10.1039/D2TB02019J 10.1039/c4nr01214c 10.1016/j.carbpol.2017.06.080 10.1016/j.trac.2020.116130 10.1016/j.compositesb.2024.111826 10.3390/gels10040258 10.3389/fchem.2024.1376799 10.1039/D4TB00933A 10.1016/j.cej.2022.137136 10.1016/j.ijbiomac.2023.126473 10.1002/smll.202401622 10.1016/j.optmat.2021.111325 10.1016/j.eml.2020.100691 10.1515/epoly-2023-0081 10.1177/08853282221131137 10.1016/j.polymer.2024.127952 10.1021/acsami.0c10430 10.1039/c3py01266b 10.1039/C8GC00205C 10.1002/aisy.202300631 10.1016/j.jcis.2024.08.117 |
| ContentType | Journal Article |
| Copyright | 2025 Elsevier B.V. Copyright © 2025 Elsevier B.V. All rights reserved. |
| Copyright_xml | – notice: 2025 Elsevier B.V. – notice: Copyright © 2025 Elsevier B.V. All rights reserved. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
| DOI | 10.1016/j.ijbiomac.2025.139640 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | MEDLINE - Academic AGRICOLA MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1879-0003 |
| ExternalDocumentID | 39788271 10_1016_j_ijbiomac_2025_139640 S0141813025001898 |
| Genre | Journal Article |
| GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29J 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9DU 9JM AAEDT AAEDW AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABFNM ABFRF ABGSF ABJNI ABMAC ABUDA ABWVN ABXDB ACDAQ ACGFO ACGFS ACIUM ACLOT ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADUVX AEBSH AEFWE AEHWI AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFTJW AFXIZ AGHFR AGQPQ AGRDE AGUBO AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLW HVGLF HZ~ IHE J1W KOM LX3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SBG SCC SDF SDG SDP SES SEW SPCBC SSU SSZ T5K UHS UNMZH WUQ ~02 ~G- ~HD AAYXX CITATION AACTN AGCQF BNPGV CGR CUY CVF ECM EIF NPM RIG SSH 7X8 7S9 L.6 |
| ID | FETCH-LOGICAL-c401t-eda78d30014f190d63ae131feacf3a94ea5043e4030959d2bc7c800ea0370d563 |
| ISICitedReferencesCount | 10 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001398520400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0141-8130 1879-0003 |
| IngestDate | Thu Oct 02 21:44:10 EDT 2025 Wed Oct 01 14:06:13 EDT 2025 Fri May 02 01:40:38 EDT 2025 Tue Nov 18 22:34:20 EST 2025 Sat Nov 29 06:52:14 EST 2025 Sat Nov 29 17:07:45 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Wearable sensor Cellulose microfibers Hydrogel |
| Language | English |
| License | Copyright © 2025 Elsevier B.V. All rights reserved. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c401t-eda78d30014f190d63ae131feacf3a94ea5043e4030959d2bc7c800ea0370d563 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 39788271 |
| PQID | 3153918637 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_3200320120 proquest_miscellaneous_3153918637 pubmed_primary_39788271 crossref_primary_10_1016_j_ijbiomac_2025_139640 crossref_citationtrail_10_1016_j_ijbiomac_2025_139640 elsevier_sciencedirect_doi_10_1016_j_ijbiomac_2025_139640 |
| PublicationCentury | 2000 |
| PublicationDate | March 2025 2025-03-00 2025-Mar 20250301 |
| PublicationDateYYYYMMDD | 2025-03-01 |
| PublicationDate_xml | – month: 03 year: 2025 text: March 2025 |
| PublicationDecade | 2020 |
| PublicationPlace | Netherlands |
| PublicationPlace_xml | – name: Netherlands |
| PublicationTitle | International journal of biological macromolecules |
| PublicationTitleAlternate | Int J Biol Macromol |
| PublicationYear | 2025 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Wang, Xu, Zhang (bb0410) 2021; 134 Wu, Han, Yan, Zeng (bb0090) 2023; 2 Wolfel, Alvarez Igarzabal, Romero (bb0080) 2020; 140 Zheng, Li, Wang, Xu, Han (bb0185) 2024; 291 Yang, Li, Fang, Liu (bb0065) 2023; 253 Sain, Panthapulakkal (bb0255) 2006; 23 Sun, Hou, Liu, Ni (bb0280) 2015; 22 Nascimento, Nunes, Figueirêdo, De Azeredo, Aouada, Feitosa, Rosa, Dufresne (bb0340) 2018; 20 Wan, Liu, Zhang, Fang, Ding, Xiang, He, Liu, Lin, Tang, Li, Tang, Zhou (bb0320) 2023; 314 Lei, Chen, Guo, Fang, Zhang, Liu, Wang, Li, Hu, Ma, Jiang, Cui, Li (bb0040) 2023; 33 Zou, Jing, Li, Feng, Chen, Liu (bb0060) 2024; 20 Zheng, Li, Wang, Xu, Han (bb0470) 2024; 291 Han, Lei, Wu (bb0300) 2014; 102 Lin, Yu, Cheng (bb0355) 2000; 278 . Etale, Onyianta, Turner, Eichhorn (bb0200) 2023; 123 Fang, Tian, Hu, Qing, Wang, Gao, Qin, Sun (bb0485) 2022; 32 Zhang, Zhang, Zhang, Huangfu, Yang, Qin, Zhang, Zhou (bb0130) 2023; 11 Mao, Hu, Gao, Wang, Zhao, Fu, Cheng, Xia, Xie, Ye, Shi, Yang (bb0020) 2020; 9 Wang, Bai, Shao, Tang, Zhao, Lin, Huang, Chen, Ding, Ye (bb0405) 2021; 2021 Haque, Whyte, Naebe (bb0295) 2023; 26 Zhan, Feng, Li, Chen, Chen, Kong, Chen, Zhang, Jiang (bb0175) 2024 Zhang, Ma, Huang, Guo, Li, Bian, Ma (bb0475) 2021; 306 Zhong, Lin, Yu, Shao, Cui, Pang, Zhu, Hou (bb0240) 2024; 12 Qian, Zhou, Miao, Thaiboonrod, Fang, Feng (bb0450) 2024; 287 Yang, Han, Xu, Sun (bb0235) 2014; 6 Wang, Pan, Lin, Gao, Cao, Ni, Ma (bb0055) 2020; 401 Huang, Wang, Shen, Ren, Chen, Li, Zhou (bb0140) 2022; 446 Hussain, Mehboob, Ahmad, Mumtaz, Khan, Mujtaba-ul-Hassan, Mehran, Iqbal, Ahmad, Mehmood, Shahzad (bb0305) 2021; 127 Xu, Wang, Zhang, Zhang, Liu (bb0430) 2021; 24 Shang, Lin, Qi, Liu, Li, Tao, Wu, Li, Simon, Yang (bb0155) 2019; 29 Sarkar, Hossain, Chakraborty, Ghosh, Bhattacharya, Mukherjee, Das (bb0180) 2024; 51 M. Marwanto, M.I. Maulana, F. Febrianto, N.J. Wistara, S. Nikmatin, N. Masruchin, L.H. Zaini, S.H. Lee, N.H. Kim, Effect of Oxidation Time on the Properties of Cellulose Nanocrystals Prepared from Balsa and Kapok Fibers Using Ammonium Persulfate, Polymers 2021, Vol. 13, Page 1894 13 (2021) 1894. doi Audebeau, Oikonomou, Norvez, Iliopoulos (bb0360) 2014; 5 Kaushik, Singh (bb0250) 2011; 346 Li, Ji, Chen (bb0435) 2023; 37 P.C. Lai, S.S. Yu, Cationic Cellulose Nanocrystals-Based Nanocomposite Hydrogels: Achieving 3D Printable Capacitive Sensors with High Transparency and Mechanical Strength, Polymers 2021, Vol. 13, Page 688 13 (2021) 688. doi Zhang, Jing, Zou, Feng, Wang, Zeng, Lin, Liu, Mi, Nie (bb0005) 2024 Ratwani, Kamali, Abdelkader (bb0075) 2023; 131 Xu, Zhou, Liu, Sharma (bb0385) 2023; 9 C. Zheng, Y. Yue, L. Gan, X. Xu, C. Mei, J. Han, Highly Stretchable and Self-Healing Strain Sensors Based on Nanocellulose-Supported Graphene Dispersed in Electro-Conductive Hydrogels, Nanomaterials 2019, Vol. 9, Page 937 9 (2019) 937. doi Kassie, Getahun, Azanaw, Ferede, Tassew (bb0190) 2024; 282 Kusmono, Listyanda, Wildan (bb0205) 2020; 6 Cao, Wang, Liu, Zhou, Zhang, He, Cui, Chen (bb0015) 2022; 14 Yang, Choe, Yang, Jo, Lee (bb0145) 2016; 20 Wang, Chen, Jing, Yi, Zou, Feng, Zhang, Liu (bb0095) 2024; 335 Wan, Chen, Tao, Chen, Wang, Jiang, Lu (bb0350) 2023; 17 Liu, Shen, Zhang, Zhang, Lv, Shang, Li, Zhou, Cheng (bb0345) 2024; 12 Dong, Song, Ren, Dai, Leng, Wang, Wang, Sun, Liu, Zhang, Zhang, Li, Wang (bb0125) 2022; 31 Liu, Yao, Lu, Gao, Dong (bb0120) 2024; 35 Xu, Zhang, Li, Wang, Li, Cheng, Chang (bb0445) 2024 Mazlan, Kian, Fouad, Jawaid, Karim, Saba (bb0230) 2024; 14 Carretti, Grassi, Cossalter, Natali, Caminati, Weiss, Baglioni, Dei (bb0400) 2009; 25 Chen, Wei, Qi, Xie, Huang (bb0370) 2023; 15 M. Li, Y. Wang, Q. Wei, J. Zhang, X. Chen, Y. An, A High-Stretching, Rapid-Self-Healing, and Printable Composite Hydrogel Based on Poly(Vinyl Alcohol), Nanocellulose, and Sodium Alginate, Gels 2024, Vol. 10, Page 258 10 (2024) 258. doi Oh, Dong, Shin, Hwan, Hak, Yong, Won, Ji (bb0260) 2005; 340 Zhang, Liu, Li, Zhang, Meng (bb0030) 2023; 320 Wang, Liu, Wang, Fu, Fatehi (bb0115) 2020; 27 Song, Yi, Wu, He (bb0085) 2025; 317 M.M. El Sayed, Production of Polymer Hydrogel Composites and Their Applications, Journal of Polymers and the Environment 2023 31:7 31 (2023) 2855–2879. doi Zeng, Jing, Lin, Wang, Zhang, Feng (bb0010) 2025; 677 Zhao, Ren, Liu, Ling, Li, Gu, Multifunctional (bb0100) 2021; 13 Hou, Gao, Liu, Guo, Bai, Wang, Yang, Yang, Wei (bb0035) 2023; 252 Tran, Mredha, Jeon (bb0395) 2020; 37 Hasan, Arafat, Bashar, Niloy, Islam, Khandaker, Chowdhury (bb0210) 2022; 31 Liu, Ju, Zhang, Jiang, Cui, Liu, Han, Wang (bb0025) 2024; 282 Zhai, Wang, Yue, Zhang, Ma, Li, Wang, Yang (bb0425) 2023; 35 Tran, Mredha, Na, Seon, Cui, Jeon (bb0070) 2020; 394 Zhang, Zou, Wang, Hu, Liu, Feng, Jing, Liu (bb0480) 2024; 272 Kougkolos, Golzio, Laudebat, Valdez-Nava, Flahaut (bb0390) 2023; 11 Zhang, El-Demellawi, Jiang, Ge, Liang, Lee, Dong, Alshareef (bb0270) 2020; 49 Li, Chen, He, Xiang, Heinze, Qi (bb0365) 2022; 431 Sammons, Harper, Labbé, Bozell, Elder, Rials (bb0245) 2013; 8 Lee, Kwak, Keum, Sik Kim, Kim, Lee, Kim, Park (bb0050) 2024; 6 Deng, Lan, He, Ding, Chen, Zheng, Zhao, Chen, Zhong, Li, Tao, Peng, Cao (bb0460) 2020; 8 Deshmukh, Ghosh, Pykal, Otyepka, Pumera (bb0165) 2023; 17 Bashar, Zhu, Yamamoto, Mitsuishi (bb0195) 2019; 26 Jiang, Wu, Han, Zhang (bb0265) 2017; 174 Jayaramaiah, Shuvro, Das, Kumar, Sen (bb0160) 2023 Zhou, Liu, Tan, Zhou, Wang, Shi, Gong, Li (bb0490) 2023; 241 He, Deng, Wang, Zhao, Chen (bb0465) 2022; 291 Liao, Wan, Wen, Gong, Wu, Wang, Shi, Zhang (bb0150) 2017; 27 Qin, Zhao, Zhang, Gu, Tang, Aladejana, Ren, Jiang, Guo, Peng, Zhang, Bin Xu, Chen (bb0315) 2023; 19 Ning, Ma, Zhang, Zhang, Wang (bb0380) 2021; 45 Li, Sui, Zhao, Cheng, Zang, Wen, Sang, Zhou, Zhao, Yan, He, Wang (bb0375) 2024; 496 Kim, Yoon, Kim, Park, Song, Myung, Jung, Lee, Yoon, An (bb0170) 2021; 31 Visanko, Liimatainen, Sirviö, Heiskanen, Niinimäki, Hormi (bb0285) 2014; 15 Ratwani, Demko, Bakhit, Kamali, Abdelkader (bb0440) 2024; 7 Shan, Li, Yu, Wang, Cui, Yang, Cui (bb0045) 2022; 218 Cheng, Fan, Wang, Guo, Jiang, Xie (bb0110) 2023; 245 Zhang, Zeng, Qiao, Wang, Jiang, Zhang, Yang (bb0220) 2020; 12 Zhang, Zhao, Zhu, He, Wang (bb0215) 2012; 8 Hu, Luo, Luo, Fei, Song, Qin (bb0335) 2023; 23 Miao, Song, Dong, Ge, Shui, He, Yu (bb0325) 2023; 16 Lu, Lin, Jiang, Cheng, Lu, Song, Chen, Huang (bb0420) 2017; 5 Shaalan, Hanafy, Rashad (bb0290) 2021; 119 Wu, Chen, Weng, He, Chang, Pan, Liu, Huang, Huang, Lei (bb0135) 2022; 18 Yu, Qin, Liang, Liu, Zhou, Chen (bb0275) 2013; 1 Ai, Li, Li, Yu, Ma (bb0415) 2021; 172 10.1016/j.ijbiomac.2025.139640_bb0330 Deshmukh (10.1016/j.ijbiomac.2025.139640_bb0165) 2023; 17 Wu (10.1016/j.ijbiomac.2025.139640_bb0090) 2023; 2 Deng (10.1016/j.ijbiomac.2025.139640_bb0460) 2020; 8 Sun (10.1016/j.ijbiomac.2025.139640_bb0280) 2015; 22 Kusmono (10.1016/j.ijbiomac.2025.139640_bb0205) 2020; 6 Zhang (10.1016/j.ijbiomac.2025.139640_bb0130) 2023; 11 Miao (10.1016/j.ijbiomac.2025.139640_bb0325) 2023; 16 Zhang (10.1016/j.ijbiomac.2025.139640_bb0220) 2020; 12 Lei (10.1016/j.ijbiomac.2025.139640_bb0040) 2023; 33 Yang (10.1016/j.ijbiomac.2025.139640_bb0145) 2016; 20 Zhou (10.1016/j.ijbiomac.2025.139640_bb0490) 2023; 241 Hussain (10.1016/j.ijbiomac.2025.139640_bb0305) 2021; 127 Sarkar (10.1016/j.ijbiomac.2025.139640_bb0180) 2024; 51 Qian (10.1016/j.ijbiomac.2025.139640_bb0450) 2024; 287 Bashar (10.1016/j.ijbiomac.2025.139640_bb0195) 2019; 26 Zhang (10.1016/j.ijbiomac.2025.139640_bb0480) 2024; 272 Mao (10.1016/j.ijbiomac.2025.139640_bb0020) 2020; 9 Cao (10.1016/j.ijbiomac.2025.139640_bb0015) 2022; 14 Hu (10.1016/j.ijbiomac.2025.139640_bb0335) 2023; 23 Oh (10.1016/j.ijbiomac.2025.139640_bb0260) 2005; 340 Lin (10.1016/j.ijbiomac.2025.139640_bb0355) 2000; 278 Xu (10.1016/j.ijbiomac.2025.139640_bb0385) 2023; 9 Zeng (10.1016/j.ijbiomac.2025.139640_bb0010) 2025; 677 10.1016/j.ijbiomac.2025.139640_bb0455 10.1016/j.ijbiomac.2025.139640_bb0310 Yu (10.1016/j.ijbiomac.2025.139640_bb0275) 2013; 1 Haque (10.1016/j.ijbiomac.2025.139640_bb0295) 2023; 26 Li (10.1016/j.ijbiomac.2025.139640_bb0365) 2022; 431 Xu (10.1016/j.ijbiomac.2025.139640_bb0430) 2021; 24 Jayaramaiah (10.1016/j.ijbiomac.2025.139640_bb0160) 2023 He (10.1016/j.ijbiomac.2025.139640_bb0465) 2022; 291 Visanko (10.1016/j.ijbiomac.2025.139640_bb0285) 2014; 15 Shaalan (10.1016/j.ijbiomac.2025.139640_bb0290) 2021; 119 Huang (10.1016/j.ijbiomac.2025.139640_bb0140) 2022; 446 Wang (10.1016/j.ijbiomac.2025.139640_bb0115) 2020; 27 Etale (10.1016/j.ijbiomac.2025.139640_bb0200) 2023; 123 Audebeau (10.1016/j.ijbiomac.2025.139640_bb0360) 2014; 5 Ai (10.1016/j.ijbiomac.2025.139640_bb0415) 2021; 172 Liu (10.1016/j.ijbiomac.2025.139640_bb0025) 2024; 282 Lee (10.1016/j.ijbiomac.2025.139640_bb0050) 2024; 6 Wang (10.1016/j.ijbiomac.2025.139640_bb0095) 2024; 335 Tran (10.1016/j.ijbiomac.2025.139640_bb0395) 2020; 37 Shang (10.1016/j.ijbiomac.2025.139640_bb0155) 2019; 29 Jiang (10.1016/j.ijbiomac.2025.139640_bb0265) 2017; 174 Zhang (10.1016/j.ijbiomac.2025.139640_bb0030) 2023; 320 Wang (10.1016/j.ijbiomac.2025.139640_bb0055) 2020; 401 Wan (10.1016/j.ijbiomac.2025.139640_bb0320) 2023; 314 Wang (10.1016/j.ijbiomac.2025.139640_bb0410) 2021; 134 Nascimento (10.1016/j.ijbiomac.2025.139640_bb0340) 2018; 20 Zheng (10.1016/j.ijbiomac.2025.139640_bb0470) 2024; 291 Cheng (10.1016/j.ijbiomac.2025.139640_bb0110) 2023; 245 Sammons (10.1016/j.ijbiomac.2025.139640_bb0245) 2013; 8 Liao (10.1016/j.ijbiomac.2025.139640_bb0150) 2017; 27 Li (10.1016/j.ijbiomac.2025.139640_bb0435) 2023; 37 Yang (10.1016/j.ijbiomac.2025.139640_bb0065) 2023; 253 Wang (10.1016/j.ijbiomac.2025.139640_bb0405) 2021; 2021 Liu (10.1016/j.ijbiomac.2025.139640_bb0120) 2024; 35 Yang (10.1016/j.ijbiomac.2025.139640_bb0235) 2014; 6 Kaushik (10.1016/j.ijbiomac.2025.139640_bb0250) 2011; 346 Zhao (10.1016/j.ijbiomac.2025.139640_bb0100) 2021; 13 Sain (10.1016/j.ijbiomac.2025.139640_bb0255) 2006; 23 Ning (10.1016/j.ijbiomac.2025.139640_bb0380) 2021; 45 Hou (10.1016/j.ijbiomac.2025.139640_bb0035) 2023; 252 Zheng (10.1016/j.ijbiomac.2025.139640_bb0185) 2024; 291 Kassie (10.1016/j.ijbiomac.2025.139640_bb0190) 2024; 282 Zhang (10.1016/j.ijbiomac.2025.139640_bb0215) 2012; 8 Shan (10.1016/j.ijbiomac.2025.139640_bb0045) 2022; 218 Zhong (10.1016/j.ijbiomac.2025.139640_bb0240) 2024; 12 Wan (10.1016/j.ijbiomac.2025.139640_bb0350) 2023; 17 Chen (10.1016/j.ijbiomac.2025.139640_bb0370) 2023; 15 Xu (10.1016/j.ijbiomac.2025.139640_bb0445) 2024 Zhang (10.1016/j.ijbiomac.2025.139640_bb0005) 2024 Zhang (10.1016/j.ijbiomac.2025.139640_bb0270) 2020; 49 Zhang (10.1016/j.ijbiomac.2025.139640_bb0475) 2021; 306 Zhan (10.1016/j.ijbiomac.2025.139640_bb0175) 2024 Song (10.1016/j.ijbiomac.2025.139640_bb0085) 2025; 317 Kougkolos (10.1016/j.ijbiomac.2025.139640_bb0390) 2023; 11 Zou (10.1016/j.ijbiomac.2025.139640_bb0060) 2024; 20 10.1016/j.ijbiomac.2025.139640_bb0105 Lu (10.1016/j.ijbiomac.2025.139640_bb0420) 2017; 5 10.1016/j.ijbiomac.2025.139640_bb0225 Fang (10.1016/j.ijbiomac.2025.139640_bb0485) 2022; 32 Qin (10.1016/j.ijbiomac.2025.139640_bb0315) 2023; 19 Carretti (10.1016/j.ijbiomac.2025.139640_bb0400) 2009; 25 Mazlan (10.1016/j.ijbiomac.2025.139640_bb0230) 2024; 14 Ratwani (10.1016/j.ijbiomac.2025.139640_bb0440) 2024; 7 Hasan (10.1016/j.ijbiomac.2025.139640_bb0210) 2022; 31 Li (10.1016/j.ijbiomac.2025.139640_bb0375) 2024; 496 Wolfel (10.1016/j.ijbiomac.2025.139640_bb0080) 2020; 140 Kim (10.1016/j.ijbiomac.2025.139640_bb0170) 2021; 31 Liu (10.1016/j.ijbiomac.2025.139640_bb0345) 2024; 12 Tran (10.1016/j.ijbiomac.2025.139640_bb0070) 2020; 394 Zhai (10.1016/j.ijbiomac.2025.139640_bb0425) 2023; 35 Wu (10.1016/j.ijbiomac.2025.139640_bb0135) 2022; 18 Dong (10.1016/j.ijbiomac.2025.139640_bb0125) 2022; 31 Han (10.1016/j.ijbiomac.2025.139640_bb0300) 2014; 102 Ratwani (10.1016/j.ijbiomac.2025.139640_bb0075) 2023; 131 |
| References_xml | – volume: 26 start-page: 3671 year: 2019 end-page: 3684 ident: bb0195 article-title: Highly carboxylated and crystalline cellulose nanocrystals from jute fiber by facile ammonium persulfate oxidation publication-title: Cellulose – volume: 346 start-page: 76 year: 2011 end-page: 85 ident: bb0250 article-title: Isolation and characterization of cellulose nanofibrils from wheat straw using steam explosion coupled with high shear homogenization publication-title: Carbohydr. Res. – volume: 31 year: 2022 ident: bb0210 article-title: Poly-(vinyl alcohol) composite films reinforced with carboxylated functional microcrystalline cellulose from jute fiber publication-title: Doi:10.1177/26349833221103888 – volume: 31 year: 2022 ident: bb0125 article-title: Preparation of wearable strain sensor based on PVA/MWCNTs hydrogel composite publication-title: Mater Today Commun – volume: 401 year: 2020 ident: bb0055 article-title: Modified Ti3C2TX (MXene) nanosheet-catalyzed self-assembled, anti-aggregated, ultra-stretchable, conductive hydrogels for wearable bioelectronics publication-title: Chem. Eng. J. – volume: 245 year: 2023 ident: bb0110 article-title: Highly stretchable, fast self-healing nanocellulose hydrogel combining borate ester bonds and acylhydrazone bonds publication-title: Int. J. Biol. Macromol. – volume: 17 start-page: 20699 year: 2023 end-page: 20710 ident: bb0350 article-title: MXene-mediated cellulose conductive hydrogel with Ultrastretchability and self-healing ability publication-title: ACS Nano – volume: 134 year: 2021 ident: bb0410 article-title: Multifunctional conductive hydrogel-based flexible wearable sensors publication-title: TrAC Trends Anal. Chem. – volume: 20 year: 2024 ident: bb0060 article-title: MXene crosslinked hydrogels with low hysteresis conferred by sliding Tangle Island strategy publication-title: Small – volume: 25 start-page: 8656 year: 2009 end-page: 8662 ident: bb0400 article-title: Poly (vinyl alcohol)-borate hydro/cosolvent gels: viscoelastic properties, solubilizing power, and application to art conservation publication-title: Langmuir – year: 2023 ident: bb0160 article-title: Low power flexible MXene-graphene oxide based heaters for wearable clothing publication-title: Proceedings of IEEE Sensors – volume: 20 start-page: 2428 year: 2018 end-page: 2448 ident: bb0340 article-title: Nanocellulose nanocomposite hydrogels: technological and environmental issues publication-title: Green Chem. – volume: 241 year: 2023 ident: bb0490 article-title: A high-performance, full-degradable bioinspired newspaper-based composite enhanced by borate ester bonds publication-title: Compos Sci Technol – volume: 49 start-page: 7229 year: 2020 end-page: 7251 ident: bb0270 article-title: MXene hydrogels: fundamentals and applications publication-title: Chem. Soc. Rev. – year: 2024 ident: bb0445 article-title: Self-healing PVA/chitosan/MXene triple network hydrogel for strain and temperature sensors publication-title: Int. J. Biol. Macromol. – volume: 335 year: 2024 ident: bb0095 article-title: Ultrastable and supersensitive conductive hydrogels conferred by “sodium alginate stencil” anchoring strategy publication-title: Carbohydr. Polym. – volume: 22 start-page: 1135 year: 2015 end-page: 1146 ident: bb0280 article-title: Sodium periodate oxidation of cellulose nanocrystal and its application as a paper wet strength additive publication-title: Cellulose – volume: 37 year: 2020 ident: bb0395 article-title: High-water-content hydrogels exhibiting superior stiffness, strength, and toughness publication-title: Extreme Mech. Lett. – volume: 32 year: 2022 ident: bb0485 article-title: Dynamically cross-linking soybean oil and low-molecular-weight Polylactic acid toward mechanically robust publication-title: Degradable, and Recyclable Supramolecular Plastics, Adv Funct Mater – volume: 26 start-page: 7998 year: 2023 end-page: 8009 ident: bb0295 article-title: Utilisation of waste wool through fabrication of 3D water-resistant polyvinyl alcohol composite: impact of micro-sized wool powders publication-title: J. Mater. Res. Technol. – volume: 33 year: 2023 ident: bb0040 article-title: Environmentally adaptive polymer hydrogels: maintaining wet-soft features in extreme conditions publication-title: Adv. Funct. Mater. – volume: 131 year: 2023 ident: bb0075 article-title: Self-healing by Diels-Alder cycloaddition in advanced functional polymers: a review publication-title: Prog. Mater. Sci. – volume: 35 start-page: 1 year: 2024 end-page: 13 ident: bb0120 article-title: Highly sensitive strain sensors based on PVA hydrogels with a conductive surface layer of graphene publication-title: J. Mater. Sci. Mater. Electron. – volume: 27 start-page: 8725 year: 2020 end-page: 8743 ident: bb0115 article-title: Performance of polyvinyl alcohol hydrogel reinforced with lignin-containing cellulose nanocrystals publication-title: Cellulose – volume: 314 year: 2023 ident: bb0320 article-title: Water-dispersible and stable polydopamine coated cellulose nanocrystal-MXene composites for high transparent, adhesive and conductive hydrogels publication-title: Carbohydr. Polym. – reference: M. Li, Y. Wang, Q. Wei, J. Zhang, X. Chen, Y. An, A High-Stretching, Rapid-Self-Healing, and Printable Composite Hydrogel Based on Poly(Vinyl Alcohol), Nanocellulose, and Sodium Alginate, Gels 2024, Vol. 10, Page 258 10 (2024) 258. doi: – volume: 2021 year: 2021 ident: bb0405 article-title: Poly(vinyl alcohol) hydrogels: the old and new functional materials publication-title: Int. J. Polym. Sci. – volume: 320 year: 2023 ident: bb0030 article-title: Flexible tactile sensors with biomimetic microstructures: mechanisms, fabrication, and applications publication-title: Adv. Colloid Interface Sci. – volume: 252 year: 2023 ident: bb0035 article-title: Dual detection of human motion and glucose in sweat with polydopamine and glucose oxidase doped self-healing nanocomposite hydrogels publication-title: Int. J. Biol. Macromol. – volume: 27 year: 2017 ident: bb0150 article-title: Wearable, healable, and adhesive epidermal sensors assembled from mussel-inspired conductive hybrid hydrogel framework publication-title: Adv. Funct. Mater. – volume: 287 year: 2024 ident: bb0450 article-title: Stretchable supramolecular hydrogel with instantaneous self-healing for electromagnetic interference shielding control and sensing publication-title: Compos B Eng – volume: 8 start-page: 10439 year: 2012 end-page: 10447 ident: bb0215 article-title: Anisotropic tough poly(vinyl alcohol) hydrogels publication-title: Soft Matter – volume: 123 start-page: 2016 year: 2023 end-page: 2048 ident: bb0200 article-title: Cellulose: a review of water interactions, applications in composites, and water treatment publication-title: Chem. Rev. – volume: 306 year: 2021 ident: bb0475 article-title: Stretchable publication-title: Antifreezing, Non-Drying, and Fast-Response Sensors Based on Cellulose Nanocomposite Hydrogels for Signal Detection, Macromol Mater Eng – volume: 174 start-page: 291 year: 2017 end-page: 298 ident: bb0265 article-title: Effect of oxidation time on the properties of cellulose nanocrystals from hybrid poplar residues using the ammonium persulfate publication-title: Carbohydr. Polym. – volume: 677 start-page: 816 year: 2025 end-page: 826 ident: bb0010 article-title: Smart sensing hydrogel actuators conferred by MXene gradient arrangement publication-title: J. Colloid Interface Sci. – volume: 18 start-page: 113 year: 2022 end-page: 120 ident: bb0135 article-title: Conductive polyvinyl alcohol/silver nanoparticles hydrogel sensor with large draw ratio, high sensitivity and high stability for human behavior monitoring, engineered publication-title: Science – volume: 119 year: 2021 ident: bb0290 article-title: Dual optical properties of NiO-doped PVA nanocomposite films publication-title: Opt Mater (Amst) – volume: 11 start-page: 2036 year: 2023 end-page: 2062 ident: bb0390 article-title: Hydrogels with electrically conductive nanomaterials for biomedical applications publication-title: J. Mater. Chem. B – volume: 253 year: 2023 ident: bb0065 article-title: Self-healing hydrogels based on biological macromolecules in wound healing: a review publication-title: Int. J. Biol. Macromol. – year: 2024 ident: bb0175 article-title: Review of MXene Nanosheet-based composites for fire-retardant applications publication-title: ACS Appl Nano Mater – volume: 2 year: 2023 ident: bb0090 article-title: Self-healing hydrogels based on reversible noncovalent and dynamic covalent interactions: a short review publication-title: Supramolecular Materials – volume: 35 year: 2023 ident: bb0425 article-title: Self-healing, adhesive, and antioxidant MXene-reinforced conductive hydrogels for stain sensor publication-title: Mater Today Commun – volume: 496 year: 2024 ident: bb0375 article-title: Lightweight, high-strength and fireproof borax-crosslinked graphene/hydroxyethyl cellulose hybrid aerogels fabricated via ice template method publication-title: Chem. Eng. J. – volume: 45 start-page: 4292 year: 2021 end-page: 4302 ident: bb0380 article-title: A novel multifunctional flame retardant MXene/nanosilica hybrid for poly(vinyl alcohol) with simultaneously improved mechanical properties publication-title: New J. Chem. – volume: 5 start-page: 948 year: 2017 end-page: 956 ident: bb0420 article-title: One-pot assembly of microfibrillated cellulose reinforced PVA-borax hydrogels with self-healing and pH-responsive properties publication-title: ACS Sustain. Chem. Eng. – volume: 446 year: 2022 ident: bb0140 article-title: Super-stretchable and self-healing hydrogel with a three-dimensional silver nanowires network structure for wearable sensor and electromagnetic interference shielding publication-title: Chem. Eng. J. – volume: 291 year: 2024 ident: bb0185 article-title: A wearable strain sensor based on self-healable MXene/PVA hydrogel for bodily motion detection publication-title: Microelectron. Eng. – volume: 317 year: 2025 ident: bb0085 article-title: Dynamic borate ester bonds mediated patterned anisotropic hydrogels for information encryption publication-title: Polymer (Guildf) – reference: M.M. El Sayed, Production of Polymer Hydrogel Composites and Their Applications, Journal of Polymers and the Environment 2023 31:7 31 (2023) 2855–2879. doi: – volume: 51 year: 2024 ident: bb0180 article-title: MXene: recent advances in synthesis, characterization and emerging applications in energy, biomedical and environmental remediation publication-title: Surfaces and Interfaces – volume: 6 start-page: 5934 year: 2014 end-page: 5943 ident: bb0235 article-title: Simple approach to reinforce hydrogels with cellulose nanocrystals publication-title: Nanoscale – volume: 272 year: 2024 ident: bb0480 article-title: Tailoring nanostructured MXene to adjust its dispersibility in conductive hydrogel for self-powered sensors publication-title: Compos B Eng – volume: 140 year: 2020 ident: bb0080 article-title: Imine bonding self-repair hydrogels after periodate-triggered breakage of their cross-links publication-title: Eur. Polym. J. – volume: 29 year: 2019 ident: bb0155 article-title: 3D macroscopic architectures from self-assembled MXene hydrogels publication-title: Adv. Funct. Mater. – volume: 6 year: 2024 ident: bb0050 article-title: Recent advances in smart tactile sensory systems with brain-inspired neural networks publication-title: Adv. Intell. Syst. – volume: 17 start-page: 20537 year: 2023 end-page: 20550 ident: bb0165 article-title: Laser-induced MXene-functionalized graphene Nanoarchitectonics-based microsupercapacitor for health monitoring application publication-title: ACS Nano – volume: 278 start-page: 187 year: 2000 end-page: 194 ident: bb0355 article-title: Reentrant behavior of poly(vinyl alcohol) - borax semidilute aqueous solutions publication-title: Colloid Polym. Sci. – volume: 8 start-page: 2752 year: 2013 end-page: 2767 ident: bb0245 article-title: Characterization of organosolv lignins using thermal and FT-IR spectroscopic analysis publication-title: Bioresources – volume: 23 start-page: 1 year: 2006 end-page: 8 ident: bb0255 article-title: Bioprocess preparation of wheat straw fibers and their characterization publication-title: Ind. Crop. Prod. – volume: 5 start-page: 2273 year: 2014 end-page: 2281 ident: bb0360 article-title: One-pot synthesis and gelation by borax of glycopolymers in water publication-title: Polym. Chem. – reference: P.C. Lai, S.S. Yu, Cationic Cellulose Nanocrystals-Based Nanocomposite Hydrogels: Achieving 3D Printable Capacitive Sensors with High Transparency and Mechanical Strength, Polymers 2021, Vol. 13, Page 688 13 (2021) 688. doi: – volume: 12 year: 2024 ident: bb0240 article-title: Construction methods and biomedical applications of PVA-based hydrogels publication-title: Front. Chem. – volume: 282 year: 2024 ident: bb0190 article-title: Surface modification of cellulose nanocrystals for biomedical and personal hygiene applications publication-title: Int. J. Biol. Macromol. – volume: 291 year: 2024 ident: bb0470 article-title: A wearable strain sensor based on self-healable MXene/PVA hydrogel for bodily motion detection publication-title: Microelectron. Eng. – volume: 23 year: 2023 ident: bb0335 article-title: High-strength polyvinyl alcohol-based hydrogel by vermiculite and lignocellulosic nanofibrils for electronic sensing publication-title: E-Polymers – volume: 24 year: 2021 ident: bb0430 article-title: Stretchable and self-healing polyvinyl alcohol/cellulose nanofiber nanocomposite hydrogels for strain sensors with high sensitivity and linearity publication-title: Composites Communications – volume: 12 start-page: 6605 year: 2024 end-page: 6616 ident: bb0345 article-title: Tough and elastic hydrogels based on robust hydrophobicity-assisted metal ion coordination for flexible wearable devices publication-title: J. Mater. Chem. B – volume: 1 start-page: 3938 year: 2013 end-page: 3944 ident: bb0275 article-title: Facile extraction of thermally stable cellulose nanocrystals with a high yield of 93% through hydrochloric acid hydrolysis under hydrothermal conditions publication-title: J Mater Chem A Mater – volume: 172 start-page: 66 year: 2021 end-page: 73 ident: bb0415 article-title: Super flexible, fatigue resistant, self-healing PVA/xylan/borax hydrogel with dual-crosslinked network publication-title: Int. J. Biol. Macromol. – volume: 20 start-page: 1 year: 2016 end-page: 7 ident: bb0145 article-title: Polypyrrole-incorporated conductive hyaluronic acid hydrogels publication-title: Biomater Res – volume: 15 start-page: 2769 year: 2014 end-page: 2775 ident: bb0285 article-title: Amphiphilic cellulose nanocrystals from acid-free oxidative treatment: physicochemical characteristics and use as an oil-water stabilizer publication-title: Biomacromolecules – volume: 9 year: 2023 ident: bb0385 article-title: Concurrent stiffening and softening in hydrogels under dehydration publication-title: Sci. Adv. – volume: 13 start-page: 11344 year: 2021 end-page: 11355 ident: bb0100 article-title: Self-healing, self-adhesive, and conductive sodium alginate/poly(vinyl alcohol) composite hydrogel as a flexible strain sensor publication-title: ACS Appl. Mater. Interfaces – volume: 340 start-page: 2376 year: 2005 end-page: 2391 ident: bb0260 article-title: Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy publication-title: Carbohydr. Res. – volume: 282 year: 2024 ident: bb0025 article-title: Temperature-sensitive injectable chitosan-based hydrogel for endoscopic submucosal dissection publication-title: Int. J. Biol. Macromol. – volume: 14 start-page: 14653 year: 2024 end-page: 14663 ident: bb0230 article-title: Synthesis and characterization of carboxymethyl cellulose from pineapple leaf and kenaf core biomass: a comparative study of new raw materials publication-title: Biomass Convers. Biorefinery – volume: 16 start-page: 3156 year: 2023 end-page: 3167 ident: bb0325 article-title: Intrinsic conductive cellulose nanofiber induce room-temperature reversible and robust polyvinyl alcohol hydrogel for multifunctional self-healable biosensors publication-title: Nano Res. – volume: 6 year: 2020 ident: bb0205 article-title: Ilman publication-title: Preparation and characterization of cellulose nanocrystal extracted from ramie fibers by sulfuric acid hydrolysis, Heliyon – volume: 291 year: 2022 ident: bb0465 article-title: Polysaccharide/Ti3C2Tx MXene adhesive hydrogels with self-healing ability for multifunctional and sensitive sensors publication-title: Carbohydr. Polym. – volume: 37 start-page: 1169 year: 2023 end-page: 1181 ident: bb0435 article-title: Conductive, self-healing, and antibacterial ag/MXene-PVA hydrogel as wearable skin-like sensors publication-title: J. Biomater. Appl. – volume: 218 year: 2022 ident: bb0045 article-title: Self-healing strain sensor based on silicone elastomer for human motion detection publication-title: Compos. Sci. Technol. – volume: 19 year: 2023 ident: bb0315 article-title: A simple and effective physical ball-milling strategy to prepare super-tough and stretchable PVA@MXene@PPy hydrogel for flexible capacitive electronics publication-title: Small – reference: C. Zheng, Y. Yue, L. Gan, X. Xu, C. Mei, J. Han, Highly Stretchable and Self-Healing Strain Sensors Based on Nanocellulose-Supported Graphene Dispersed in Electro-Conductive Hydrogels, Nanomaterials 2019, Vol. 9, Page 937 9 (2019) 937. doi: – volume: 102 start-page: 306 year: 2014 end-page: 316 ident: bb0300 article-title: High-water-content mouldable polyvinyl alcohol-borax hydrogels reinforced by well-dispersed cellulose nanoparticles: dynamic rheological properties and hydrogel formation mechanism publication-title: Carbohydr. Polym. – reference: M. Marwanto, M.I. Maulana, F. Febrianto, N.J. Wistara, S. Nikmatin, N. Masruchin, L.H. Zaini, S.H. Lee, N.H. Kim, Effect of Oxidation Time on the Properties of Cellulose Nanocrystals Prepared from Balsa and Kapok Fibers Using Ammonium Persulfate, Polymers 2021, Vol. 13, Page 1894 13 (2021) 1894. doi: – volume: 15 start-page: 39883 year: 2023 end-page: 39895 ident: bb0370 article-title: Water-induced cellulose nanofibers/poly(vinyl alcohol) hydrogels regulated by hydrogen bonding for in situ water shutoff publication-title: ACS Appl. Mater. Interfaces – volume: 8 start-page: 5541 year: 2020 end-page: 5546 ident: bb0460 article-title: High-performance capacitive strain sensors with highly stretchable vertical graphene electrodes publication-title: J Mater Chem C Mater – volume: 11 start-page: 1288 year: 2023 end-page: 1301 ident: bb0130 article-title: 3D printed reduced graphene oxide-GelMA hybrid hydrogel scaffolds for potential neuralized bone regeneration publication-title: J. Mater. Chem. B – volume: 12 start-page: 30247 year: 2020 end-page: 30258 ident: bb0220 article-title: Functionalizing double-network hydrogels for applications in remote actuation and in low-temperature strain sensing publication-title: ACS Appl. Mater. Interfaces – reference: . – volume: 14 year: 2022 ident: bb0015 article-title: Bioinspired MXene-based user-interactive electronic skin for digital and visual Dual-Channel sensing publication-title: Nanomicro Lett – volume: 31 year: 2021 ident: bb0170 article-title: Chemically stabilized and functionalized 2D-MXene with deep eutectic solvents as versatile dispersion Medium publication-title: Adv. Funct. Mater. – volume: 9 year: 2020 ident: bb0020 article-title: Biodegradable and electroactive regenerated bacterial cellulose/MXene (Ti3C2Tx) composite hydrogel as wound dressing for accelerating skin wound healing under electrical stimulation publication-title: Adv. Healthc. Mater. – volume: 431 year: 2022 ident: bb0365 article-title: Lignocellulose nanofibril/gelatin/MXene composite aerogel with fire-warning properties for enhanced electromagnetic interference shielding performance publication-title: Chem. Eng. J. – volume: 394 year: 2020 ident: bb0070 article-title: Multifunctional poly(disulfide) hydrogels with extremely fast self-healing ability and degradability publication-title: Chem. Eng. J. – volume: 7 start-page: 20196 year: 2024 end-page: 20205 ident: bb0440 article-title: Tuning surface terminations and hydration interactions in MXene Nanosheet-based hydrogel composites for self-healable strain sensors publication-title: ACS Appl Nano Mater – year: 2024 ident: bb0005 article-title: Mechanically robust and anti-swelling anisotropic conductive hydrogel with fluorescence for Multifunctional sensing publication-title: Adv. Funct. Mater. – volume: 127 start-page: 1 year: 2021 end-page: 8 ident: bb0305 article-title: Terahertz time-domain spectroscopy of thin and flexible CNT-modified MXene/polymer composites publication-title: Appl. Phys. A Mater. Sci. Process. – volume: 8 start-page: 5541 year: 2020 ident: 10.1016/j.ijbiomac.2025.139640_bb0460 article-title: High-performance capacitive strain sensors with highly stretchable vertical graphene electrodes publication-title: J Mater Chem C Mater doi: 10.1039/D0TC00491J – volume: 20 start-page: 1 year: 2016 ident: 10.1016/j.ijbiomac.2025.139640_bb0145 article-title: Polypyrrole-incorporated conductive hyaluronic acid hydrogels publication-title: Biomater Res doi: 10.1186/s40824-016-0078-y – ident: 10.1016/j.ijbiomac.2025.139640_bb0225 doi: 10.3390/polym13111894 – volume: 1 start-page: 3938 year: 2013 ident: 10.1016/j.ijbiomac.2025.139640_bb0275 article-title: Facile extraction of thermally stable cellulose nanocrystals with a high yield of 93% through hydrochloric acid hydrolysis under hydrothermal conditions publication-title: J Mater Chem A Mater doi: 10.1039/c3ta01150j – volume: 18 start-page: 113 year: 2022 ident: 10.1016/j.ijbiomac.2025.139640_bb0135 article-title: Conductive polyvinyl alcohol/silver nanoparticles hydrogel sensor with large draw ratio, high sensitivity and high stability for human behavior monitoring, engineered publication-title: Science – volume: 241 year: 2023 ident: 10.1016/j.ijbiomac.2025.139640_bb0490 article-title: A high-performance, full-degradable bioinspired newspaper-based composite enhanced by borate ester bonds publication-title: Compos Sci Technol doi: 10.1016/j.compscitech.2023.110130 – volume: 314 year: 2023 ident: 10.1016/j.ijbiomac.2025.139640_bb0320 article-title: Water-dispersible and stable polydopamine coated cellulose nanocrystal-MXene composites for high transparent, adhesive and conductive hydrogels publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2023.120929 – ident: 10.1016/j.ijbiomac.2025.139640_bb0330 doi: 10.3390/nano9070937 – volume: 245 year: 2023 ident: 10.1016/j.ijbiomac.2025.139640_bb0110 article-title: Highly stretchable, fast self-healing nanocellulose hydrogel combining borate ester bonds and acylhydrazone bonds publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2023.125471 – volume: 291 year: 2022 ident: 10.1016/j.ijbiomac.2025.139640_bb0465 article-title: Polysaccharide/Ti3C2Tx MXene adhesive hydrogels with self-healing ability for multifunctional and sensitive sensors publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2022.119572 – volume: 253 year: 2023 ident: 10.1016/j.ijbiomac.2025.139640_bb0065 article-title: Self-healing hydrogels based on biological macromolecules in wound healing: a review publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2023.127612 – volume: 2 year: 2023 ident: 10.1016/j.ijbiomac.2025.139640_bb0090 article-title: Self-healing hydrogels based on reversible noncovalent and dynamic covalent interactions: a short review publication-title: Supramolecular Materials doi: 10.1016/j.supmat.2023.100045 – year: 2023 ident: 10.1016/j.ijbiomac.2025.139640_bb0160 article-title: Low power flexible MXene-graphene oxide based heaters for wearable clothing publication-title: Proceedings of IEEE Sensors – volume: 33 year: 2023 ident: 10.1016/j.ijbiomac.2025.139640_bb0040 article-title: Environmentally adaptive polymer hydrogels: maintaining wet-soft features in extreme conditions publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202303511 – volume: 27 start-page: 8725 year: 2020 ident: 10.1016/j.ijbiomac.2025.139640_bb0115 article-title: Performance of polyvinyl alcohol hydrogel reinforced with lignin-containing cellulose nanocrystals publication-title: Cellulose doi: 10.1007/s10570-020-03396-z – volume: 19 year: 2023 ident: 10.1016/j.ijbiomac.2025.139640_bb0315 article-title: A simple and effective physical ball-milling strategy to prepare super-tough and stretchable PVA@MXene@PPy hydrogel for flexible capacitive electronics publication-title: Small doi: 10.1002/smll.202303038 – volume: 25 start-page: 8656 year: 2009 ident: 10.1016/j.ijbiomac.2025.139640_bb0400 article-title: Poly (vinyl alcohol)-borate hydro/cosolvent gels: viscoelastic properties, solubilizing power, and application to art conservation publication-title: Langmuir doi: 10.1021/la804306w – volume: 282 year: 2024 ident: 10.1016/j.ijbiomac.2025.139640_bb0190 article-title: Surface modification of cellulose nanocrystals for biomedical and personal hygiene applications publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2024.136949 – volume: 35 year: 2023 ident: 10.1016/j.ijbiomac.2025.139640_bb0425 article-title: Self-healing, adhesive, and antioxidant MXene-reinforced conductive hydrogels for stain sensor publication-title: Mater Today Commun – volume: 17 start-page: 20699 year: 2023 ident: 10.1016/j.ijbiomac.2025.139640_bb0350 article-title: MXene-mediated cellulose conductive hydrogel with Ultrastretchability and self-healing ability publication-title: ACS Nano doi: 10.1021/acsnano.3c08859 – volume: 8 start-page: 10439 year: 2012 ident: 10.1016/j.ijbiomac.2025.139640_bb0215 article-title: Anisotropic tough poly(vinyl alcohol) hydrogels publication-title: Soft Matter doi: 10.1039/c2sm26102b – volume: 15 start-page: 39883 year: 2023 ident: 10.1016/j.ijbiomac.2025.139640_bb0370 article-title: Water-induced cellulose nanofibers/poly(vinyl alcohol) hydrogels regulated by hydrogen bonding for in situ water shutoff publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.3c07989 – volume: 335 year: 2024 ident: 10.1016/j.ijbiomac.2025.139640_bb0095 article-title: Ultrastable and supersensitive conductive hydrogels conferred by “sodium alginate stencil” anchoring strategy publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2024.122048 – volume: 31 year: 2021 ident: 10.1016/j.ijbiomac.2025.139640_bb0170 article-title: Chemically stabilized and functionalized 2D-MXene with deep eutectic solvents as versatile dispersion Medium publication-title: Adv. Funct. Mater. – volume: 22 start-page: 1135 year: 2015 ident: 10.1016/j.ijbiomac.2025.139640_bb0280 article-title: Sodium periodate oxidation of cellulose nanocrystal and its application as a paper wet strength additive publication-title: Cellulose doi: 10.1007/s10570-015-0575-5 – volume: 17 start-page: 20537 year: 2023 ident: 10.1016/j.ijbiomac.2025.139640_bb0165 article-title: Laser-induced MXene-functionalized graphene Nanoarchitectonics-based microsupercapacitor for health monitoring application publication-title: ACS Nano doi: 10.1021/acsnano.3c07319 – year: 2024 ident: 10.1016/j.ijbiomac.2025.139640_bb0445 article-title: Self-healing PVA/chitosan/MXene triple network hydrogel for strain and temperature sensors publication-title: Int. J. Biol. Macromol. – volume: 172 start-page: 66 year: 2021 ident: 10.1016/j.ijbiomac.2025.139640_bb0415 article-title: Super flexible, fatigue resistant, self-healing PVA/xylan/borax hydrogel with dual-crosslinked network publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2021.01.038 – volume: 15 start-page: 2769 year: 2014 ident: 10.1016/j.ijbiomac.2025.139640_bb0285 article-title: Amphiphilic cellulose nanocrystals from acid-free oxidative treatment: physicochemical characteristics and use as an oil-water stabilizer publication-title: Biomacromolecules doi: 10.1021/bm500628g – ident: 10.1016/j.ijbiomac.2025.139640_bb0105 doi: 10.1007/s10924-023-02796-z – volume: 51 year: 2024 ident: 10.1016/j.ijbiomac.2025.139640_bb0180 article-title: MXene: recent advances in synthesis, characterization and emerging applications in energy, biomedical and environmental remediation publication-title: Surfaces and Interfaces doi: 10.1016/j.surfin.2024.104628 – volume: 102 start-page: 306 year: 2014 ident: 10.1016/j.ijbiomac.2025.139640_bb0300 article-title: High-water-content mouldable polyvinyl alcohol-borax hydrogels reinforced by well-dispersed cellulose nanoparticles: dynamic rheological properties and hydrogel formation mechanism publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2013.11.045 – volume: 29 year: 2019 ident: 10.1016/j.ijbiomac.2025.139640_bb0155 article-title: 3D macroscopic architectures from self-assembled MXene hydrogels publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201903960 – volume: 16 start-page: 3156 year: 2023 ident: 10.1016/j.ijbiomac.2025.139640_bb0325 article-title: Intrinsic conductive cellulose nanofiber induce room-temperature reversible and robust polyvinyl alcohol hydrogel for multifunctional self-healable biosensors publication-title: Nano Res. doi: 10.1007/s12274-022-4944-8 – volume: 45 start-page: 4292 year: 2021 ident: 10.1016/j.ijbiomac.2025.139640_bb0380 article-title: A novel multifunctional flame retardant MXene/nanosilica hybrid for poly(vinyl alcohol) with simultaneously improved mechanical properties publication-title: New J. Chem. doi: 10.1039/D0NJ04897F – volume: 13 start-page: 11344 year: 2021 ident: 10.1016/j.ijbiomac.2025.139640_bb0100 article-title: Self-healing, self-adhesive, and conductive sodium alginate/poly(vinyl alcohol) composite hydrogel as a flexible strain sensor publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c01343 – volume: 49 start-page: 7229 year: 2020 ident: 10.1016/j.ijbiomac.2025.139640_bb0270 article-title: MXene hydrogels: fundamentals and applications publication-title: Chem. Soc. Rev. doi: 10.1039/D0CS00022A – volume: 123 start-page: 2016 year: 2023 ident: 10.1016/j.ijbiomac.2025.139640_bb0200 article-title: Cellulose: a review of water interactions, applications in composites, and water treatment publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.2c00477 – year: 2024 ident: 10.1016/j.ijbiomac.2025.139640_bb0175 article-title: Review of MXene Nanosheet-based composites for fire-retardant applications publication-title: ACS Appl Nano Mater doi: 10.1021/acsanm.4c04164 – volume: 14 start-page: 14653 year: 2024 ident: 10.1016/j.ijbiomac.2025.139640_bb0230 article-title: Synthesis and characterization of carboxymethyl cellulose from pineapple leaf and kenaf core biomass: a comparative study of new raw materials publication-title: Biomass Convers. Biorefinery doi: 10.1007/s13399-022-03700-w – volume: 24 year: 2021 ident: 10.1016/j.ijbiomac.2025.139640_bb0430 article-title: Stretchable and self-healing polyvinyl alcohol/cellulose nanofiber nanocomposite hydrogels for strain sensors with high sensitivity and linearity publication-title: Composites Communications doi: 10.1016/j.coco.2021.100677 – volume: 23 start-page: 1 year: 2006 ident: 10.1016/j.ijbiomac.2025.139640_bb0255 article-title: Bioprocess preparation of wheat straw fibers and their characterization publication-title: Ind. Crop. Prod. doi: 10.1016/j.indcrop.2005.01.006 – volume: 140 year: 2020 ident: 10.1016/j.ijbiomac.2025.139640_bb0080 article-title: Imine bonding self-repair hydrogels after periodate-triggered breakage of their cross-links publication-title: Eur. Polym. J. doi: 10.1016/j.eurpolymj.2020.110038 – volume: 272 year: 2024 ident: 10.1016/j.ijbiomac.2025.139640_bb0480 article-title: Tailoring nanostructured MXene to adjust its dispersibility in conductive hydrogel for self-powered sensors publication-title: Compos B Eng doi: 10.1016/j.compositesb.2024.111191 – volume: 26 start-page: 3671 year: 2019 ident: 10.1016/j.ijbiomac.2025.139640_bb0195 article-title: Highly carboxylated and crystalline cellulose nanocrystals from jute fiber by facile ammonium persulfate oxidation publication-title: Cellulose doi: 10.1007/s10570-019-02363-7 – volume: 5 start-page: 948 year: 2017 ident: 10.1016/j.ijbiomac.2025.139640_bb0420 article-title: One-pot assembly of microfibrillated cellulose reinforced PVA-borax hydrogels with self-healing and pH-responsive properties publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.6b02279 – volume: 27 year: 2017 ident: 10.1016/j.ijbiomac.2025.139640_bb0150 article-title: Wearable, healable, and adhesive epidermal sensors assembled from mussel-inspired conductive hybrid hydrogel framework publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201703852 – volume: 127 start-page: 1 year: 2021 ident: 10.1016/j.ijbiomac.2025.139640_bb0305 article-title: Terahertz time-domain spectroscopy of thin and flexible CNT-modified MXene/polymer composites publication-title: Appl. Phys. A Mater. Sci. Process. doi: 10.1007/s00339-021-04525-6 – volume: 394 year: 2020 ident: 10.1016/j.ijbiomac.2025.139640_bb0070 article-title: Multifunctional poly(disulfide) hydrogels with extremely fast self-healing ability and degradability publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.124941 – volume: 218 year: 2022 ident: 10.1016/j.ijbiomac.2025.139640_bb0045 article-title: Self-healing strain sensor based on silicone elastomer for human motion detection publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2021.109208 – volume: 9 year: 2023 ident: 10.1016/j.ijbiomac.2025.139640_bb0385 article-title: Concurrent stiffening and softening in hydrogels under dehydration publication-title: Sci. Adv. doi: 10.1126/sciadv.ade3240 – ident: 10.1016/j.ijbiomac.2025.139640_bb0455 doi: 10.3390/polym13050688 – year: 2024 ident: 10.1016/j.ijbiomac.2025.139640_bb0005 article-title: Mechanically robust and anti-swelling anisotropic conductive hydrogel with fluorescence for Multifunctional sensing publication-title: Adv. Funct. Mater. – volume: 431 year: 2022 ident: 10.1016/j.ijbiomac.2025.139640_bb0365 article-title: Lignocellulose nanofibril/gelatin/MXene composite aerogel with fire-warning properties for enhanced electromagnetic interference shielding performance publication-title: Chem. Eng. J. – volume: 8 start-page: 2752 year: 2013 ident: 10.1016/j.ijbiomac.2025.139640_bb0245 article-title: Characterization of organosolv lignins using thermal and FT-IR spectroscopic analysis publication-title: Bioresources doi: 10.15376/biores.8.2.2752-2767 – volume: 131 year: 2023 ident: 10.1016/j.ijbiomac.2025.139640_bb0075 article-title: Self-healing by Diels-Alder cycloaddition in advanced functional polymers: a review publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2022.101001 – volume: 278 start-page: 187 year: 2000 ident: 10.1016/j.ijbiomac.2025.139640_bb0355 article-title: Reentrant behavior of poly(vinyl alcohol) - borax semidilute aqueous solutions publication-title: Colloid Polym. Sci. doi: 10.1007/s003960050031 – volume: 401 year: 2020 ident: 10.1016/j.ijbiomac.2025.139640_bb0055 article-title: Modified Ti3C2TX (MXene) nanosheet-catalyzed self-assembled, anti-aggregated, ultra-stretchable, conductive hydrogels for wearable bioelectronics publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.126129 – volume: 496 year: 2024 ident: 10.1016/j.ijbiomac.2025.139640_bb0375 article-title: Lightweight, high-strength and fireproof borax-crosslinked graphene/hydroxyethyl cellulose hybrid aerogels fabricated via ice template method publication-title: Chem. Eng. J. – volume: 6 year: 2020 ident: 10.1016/j.ijbiomac.2025.139640_bb0205 article-title: Ilman publication-title: Preparation and characterization of cellulose nanocrystal extracted from ramie fibers by sulfuric acid hydrolysis, Heliyon – volume: 11 start-page: 1288 year: 2023 ident: 10.1016/j.ijbiomac.2025.139640_bb0130 article-title: 3D printed reduced graphene oxide-GelMA hybrid hydrogel scaffolds for potential neuralized bone regeneration publication-title: J. Mater. Chem. B doi: 10.1039/D2TB01979E – volume: 26 start-page: 7998 year: 2023 ident: 10.1016/j.ijbiomac.2025.139640_bb0295 article-title: Utilisation of waste wool through fabrication of 3D water-resistant polyvinyl alcohol composite: impact of micro-sized wool powders publication-title: J. Mater. Res. Technol. doi: 10.1016/j.jmrt.2023.09.141 – volume: 31 year: 2022 ident: 10.1016/j.ijbiomac.2025.139640_bb0210 article-title: Poly-(vinyl alcohol) composite films reinforced with carboxylated functional microcrystalline cellulose from jute fiber publication-title: Doi:10.1177/26349833221103888 – volume: 340 start-page: 2376 year: 2005 ident: 10.1016/j.ijbiomac.2025.139640_bb0260 article-title: Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy publication-title: Carbohydr. Res. doi: 10.1016/j.carres.2005.08.007 – volume: 320 year: 2023 ident: 10.1016/j.ijbiomac.2025.139640_bb0030 article-title: Flexible tactile sensors with biomimetic microstructures: mechanisms, fabrication, and applications publication-title: Adv. Colloid Interface Sci. doi: 10.1016/j.cis.2023.102988 – volume: 346 start-page: 76 year: 2011 ident: 10.1016/j.ijbiomac.2025.139640_bb0250 article-title: Isolation and characterization of cellulose nanofibrils from wheat straw using steam explosion coupled with high shear homogenization publication-title: Carbohydr. Res. doi: 10.1016/j.carres.2010.10.020 – volume: 9 year: 2020 ident: 10.1016/j.ijbiomac.2025.139640_bb0020 article-title: Biodegradable and electroactive regenerated bacterial cellulose/MXene (Ti3C2Tx) composite hydrogel as wound dressing for accelerating skin wound healing under electrical stimulation publication-title: Adv. Healthc. Mater. doi: 10.1002/adhm.202000872 – volume: 2021 year: 2021 ident: 10.1016/j.ijbiomac.2025.139640_bb0405 article-title: Poly(vinyl alcohol) hydrogels: the old and new functional materials publication-title: Int. J. Polym. Sci. doi: 10.1155/2021/2225426 – volume: 291 year: 2024 ident: 10.1016/j.ijbiomac.2025.139640_bb0185 article-title: A wearable strain sensor based on self-healable MXene/PVA hydrogel for bodily motion detection publication-title: Microelectron. Eng. doi: 10.1016/j.mee.2024.112197 – volume: 7 start-page: 20196 year: 2024 ident: 10.1016/j.ijbiomac.2025.139640_bb0440 article-title: Tuning surface terminations and hydration interactions in MXene Nanosheet-based hydrogel composites for self-healable strain sensors publication-title: ACS Appl Nano Mater doi: 10.1021/acsanm.4c03056 – volume: 32 year: 2022 ident: 10.1016/j.ijbiomac.2025.139640_bb0485 article-title: Dynamically cross-linking soybean oil and low-molecular-weight Polylactic acid toward mechanically robust publication-title: Degradable, and Recyclable Supramolecular Plastics, Adv Funct Mater – volume: 11 start-page: 2036 year: 2023 ident: 10.1016/j.ijbiomac.2025.139640_bb0390 article-title: Hydrogels with electrically conductive nanomaterials for biomedical applications publication-title: J. Mater. Chem. B doi: 10.1039/D2TB02019J – volume: 6 start-page: 5934 year: 2014 ident: 10.1016/j.ijbiomac.2025.139640_bb0235 article-title: Simple approach to reinforce hydrogels with cellulose nanocrystals publication-title: Nanoscale doi: 10.1039/c4nr01214c – volume: 174 start-page: 291 year: 2017 ident: 10.1016/j.ijbiomac.2025.139640_bb0265 article-title: Effect of oxidation time on the properties of cellulose nanocrystals from hybrid poplar residues using the ammonium persulfate publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2017.06.080 – volume: 134 year: 2021 ident: 10.1016/j.ijbiomac.2025.139640_bb0410 article-title: Multifunctional conductive hydrogel-based flexible wearable sensors publication-title: TrAC Trends Anal. Chem. doi: 10.1016/j.trac.2020.116130 – volume: 287 year: 2024 ident: 10.1016/j.ijbiomac.2025.139640_bb0450 article-title: Stretchable supramolecular hydrogel with instantaneous self-healing for electromagnetic interference shielding control and sensing publication-title: Compos B Eng doi: 10.1016/j.compositesb.2024.111826 – volume: 14 year: 2022 ident: 10.1016/j.ijbiomac.2025.139640_bb0015 article-title: Bioinspired MXene-based user-interactive electronic skin for digital and visual Dual-Channel sensing publication-title: Nanomicro Lett – ident: 10.1016/j.ijbiomac.2025.139640_bb0310 doi: 10.3390/gels10040258 – volume: 35 start-page: 1 year: 2024 ident: 10.1016/j.ijbiomac.2025.139640_bb0120 article-title: Highly sensitive strain sensors based on PVA hydrogels with a conductive surface layer of graphene publication-title: J. Mater. Sci. Mater. Electron. – volume: 12 year: 2024 ident: 10.1016/j.ijbiomac.2025.139640_bb0240 article-title: Construction methods and biomedical applications of PVA-based hydrogels publication-title: Front. Chem. doi: 10.3389/fchem.2024.1376799 – volume: 12 start-page: 6605 year: 2024 ident: 10.1016/j.ijbiomac.2025.139640_bb0345 article-title: Tough and elastic hydrogels based on robust hydrophobicity-assisted metal ion coordination for flexible wearable devices publication-title: J. Mater. Chem. B doi: 10.1039/D4TB00933A – volume: 306 year: 2021 ident: 10.1016/j.ijbiomac.2025.139640_bb0475 article-title: Stretchable publication-title: Antifreezing, Non-Drying, and Fast-Response Sensors Based on Cellulose Nanocomposite Hydrogels for Signal Detection, Macromol Mater Eng – volume: 291 year: 2024 ident: 10.1016/j.ijbiomac.2025.139640_bb0470 article-title: A wearable strain sensor based on self-healable MXene/PVA hydrogel for bodily motion detection publication-title: Microelectron. Eng. doi: 10.1016/j.mee.2024.112197 – volume: 31 year: 2022 ident: 10.1016/j.ijbiomac.2025.139640_bb0125 article-title: Preparation of wearable strain sensor based on PVA/MWCNTs hydrogel composite publication-title: Mater Today Commun – volume: 446 year: 2022 ident: 10.1016/j.ijbiomac.2025.139640_bb0140 article-title: Super-stretchable and self-healing hydrogel with a three-dimensional silver nanowires network structure for wearable sensor and electromagnetic interference shielding publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.137136 – volume: 252 year: 2023 ident: 10.1016/j.ijbiomac.2025.139640_bb0035 article-title: Dual detection of human motion and glucose in sweat with polydopamine and glucose oxidase doped self-healing nanocomposite hydrogels publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2023.126473 – volume: 20 year: 2024 ident: 10.1016/j.ijbiomac.2025.139640_bb0060 article-title: MXene crosslinked hydrogels with low hysteresis conferred by sliding Tangle Island strategy publication-title: Small doi: 10.1002/smll.202401622 – volume: 119 year: 2021 ident: 10.1016/j.ijbiomac.2025.139640_bb0290 article-title: Dual optical properties of NiO-doped PVA nanocomposite films publication-title: Opt Mater (Amst) doi: 10.1016/j.optmat.2021.111325 – volume: 37 year: 2020 ident: 10.1016/j.ijbiomac.2025.139640_bb0395 article-title: High-water-content hydrogels exhibiting superior stiffness, strength, and toughness publication-title: Extreme Mech. Lett. doi: 10.1016/j.eml.2020.100691 – volume: 282 year: 2024 ident: 10.1016/j.ijbiomac.2025.139640_bb0025 article-title: Temperature-sensitive injectable chitosan-based hydrogel for endoscopic submucosal dissection publication-title: Int. J. Biol. Macromol. – volume: 23 year: 2023 ident: 10.1016/j.ijbiomac.2025.139640_bb0335 article-title: High-strength polyvinyl alcohol-based hydrogel by vermiculite and lignocellulosic nanofibrils for electronic sensing publication-title: E-Polymers doi: 10.1515/epoly-2023-0081 – volume: 37 start-page: 1169 year: 2023 ident: 10.1016/j.ijbiomac.2025.139640_bb0435 article-title: Conductive, self-healing, and antibacterial ag/MXene-PVA hydrogel as wearable skin-like sensors publication-title: J. Biomater. Appl. doi: 10.1177/08853282221131137 – volume: 317 year: 2025 ident: 10.1016/j.ijbiomac.2025.139640_bb0085 article-title: Dynamic borate ester bonds mediated patterned anisotropic hydrogels for information encryption publication-title: Polymer (Guildf) doi: 10.1016/j.polymer.2024.127952 – volume: 12 start-page: 30247 year: 2020 ident: 10.1016/j.ijbiomac.2025.139640_bb0220 article-title: Functionalizing double-network hydrogels for applications in remote actuation and in low-temperature strain sensing publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c10430 – volume: 5 start-page: 2273 year: 2014 ident: 10.1016/j.ijbiomac.2025.139640_bb0360 article-title: One-pot synthesis and gelation by borax of glycopolymers in water publication-title: Polym. Chem. doi: 10.1039/c3py01266b – volume: 20 start-page: 2428 year: 2018 ident: 10.1016/j.ijbiomac.2025.139640_bb0340 article-title: Nanocellulose nanocomposite hydrogels: technological and environmental issues publication-title: Green Chem. doi: 10.1039/C8GC00205C – volume: 6 year: 2024 ident: 10.1016/j.ijbiomac.2025.139640_bb0050 article-title: Recent advances in smart tactile sensory systems with brain-inspired neural networks publication-title: Adv. Intell. Syst. doi: 10.1002/aisy.202300631 – volume: 677 start-page: 816 year: 2025 ident: 10.1016/j.ijbiomac.2025.139640_bb0010 article-title: Smart sensing hydrogel actuators conferred by MXene gradient arrangement publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2024.08.117 |
| SSID | ssj0006518 |
| Score | 2.4810765 |
| Snippet | Conductive hydrogel has drawn great concern in wearable sensors, human-machine interfaces, artificial intelligence (AI), health monitoring, et al. But it still... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 139640 |
| SubjectTerms | ammonium persulfate artificial intelligence Borates - chemistry borax carboxylation cellulose Cellulose - chemistry Cellulose microfibers crystal structure Electric Conductivity electrical conductivity energy transfer fabrics health services human physiology Humans Hydrogel hydrogels Hydrogels - chemistry nanosheets Nitrites oxidation polyvinyl alcohol Polyvinyl Alcohol - chemistry ramie Tensile Strength Textiles Transition Elements Wearable Electronic Devices Wearable sensor |
| Title | Extraction and incorporation of cellulose microfibers from textile wastes into MXene-enhanced PVA-borax hydrogel for multifunctional wearable sensors |
| URI | https://dx.doi.org/10.1016/j.ijbiomac.2025.139640 https://www.ncbi.nlm.nih.gov/pubmed/39788271 https://www.proquest.com/docview/3153918637 https://www.proquest.com/docview/3200320120 |
| Volume | 295 |
| WOSCitedRecordID | wos001398520400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-0003 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006518 issn: 0141-8130 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbptAFB05SaV2U_Vd9xFNpe4sqHnOsOjCihylD0dZpBHKBo1hiGPZEBmTOB_SD-qf9V5mACdpmlZVN8hCgBH3MJx759wzhLz3JZBWbzw2XK_fN1zHdQ0ee7GBVnM2wybmykj76Cvb3-dhGBx0Oj_qXpjzGcsyvloFZ_811LAPgo2ts38R7uaisAN-Q9BhC2GH7R8FfrhaLuoFwCtnpVibFWtqiKX6coYy9TmK8VKUjBS6zQRGahgleheiWFZCLSCmoxBGQ0NmEyUVODgaGAibVW9ymSzyE1n1PypdIn4jdWnxAp5q1ZRVQJqc6xmjaauab4uQa9YVyhCqQs1cVDrBauneVuW4JwpVrx0lZu9YTGo1fvkxLJV2oBTZCWwaGOWQW8hqyumLeWyOzN5gnLRSyMFkrmq9o6S3m18W-tHqIojttSowVZm70Z2ji6WWwS0976NHe1ut6Xnjy6GKGFPzdIq-BwLdLW3PBH7sKzupa67cKIqz8NpAIfsWD_gG2bKZF8DAujX4NAw_N3TA96oic3Mza23qv_632xjSbRlQxYQOH5GHOoWhAwW9x6Qjsyfk_k69cuBT8r2FIAUI0isQpHlKGwjSNQhShCDVEKQKghQhSK9CkDYQpDUEKUCQXoMgrSFINQSfkW-7w8OdPUMv_2HEkPQvDZkIxhMHk_gUaGviO0JajpUCVUgdEbhSoPuedHGS0AsSexyzGNIfKfoO6yee7zwnm1meyZeExozFbCxT4Nepy_0EvjoisdPYFdxiqet0iVc_8ijW3vi4RMssqkWQ06gOVYShilSouuRDc96Zcoe584ygjmikOa7irhEA8c5z39UQiCCiGCuRybwsIgd4S2Bx32G_OQZlqDb2ynfJC4Wf5p4hKYFMm1mv_uHuXpMH7Zv5hmwuF6V8S-7F58vTYrFNNljIt_W78RNM1_im |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Extraction+and+incorporation+of+cellulose+microfibers+from+textile+wastes+into+MXene-enhanced+PVA-borax+hydrogel+for+multifunctional+wearable+sensors&rft.jtitle=International+journal+of+biological+macromolecules&rft.au=Hasan%2C+Md.+Zahid&rft.au=Xu%2C+Chuanghua&rft.au=Motaleb%2C+K.Z.M.+Abdul&rft.au=Ahmed%2C+Md+Foysal&rft.date=2025-03-01&rft.pub=Elsevier+B.V&rft.issn=0141-8130&rft.volume=295&rft_id=info:doi/10.1016%2Fj.ijbiomac.2025.139640&rft.externalDocID=S0141813025001898 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0141-8130&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0141-8130&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0141-8130&client=summon |