Developing deep learning based regression approaches for determination of chemical compositions in dry black goji berries (Lycium ruthenicum Murr.) using near-infrared hyperspectral imaging

•Black goji berries total anthocyanins, flavonoids and phenolics were predicted by HSI.•SPA, CARS and PCA, WT were compared to obtain conventional features for prediction.•CNN models for regression were proposed and compared.•CNN and DAE were used and compared as feature extraction methods for predi...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Food chemistry Ročník 319; s. 126536
Hlavní autoři: Zhang, Chu, Wu, Wenyan, Zhou, Lei, Cheng, Huan, Ye, Xingqian, He, Yong
Médium: Journal Article
Jazyk:angličtina
Vydáno: England Elsevier Ltd 30.07.2020
Témata:
ISSN:0308-8146, 1873-7072, 1873-7072
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •Black goji berries total anthocyanins, flavonoids and phenolics were predicted by HSI.•SPA, CARS and PCA, WT were compared to obtain conventional features for prediction.•CNN models for regression were proposed and compared.•CNN and DAE were used and compared as feature extraction methods for prediction.•Proposed deep learning approaches could be used to determine chemical compositions. Black goji berry (Lycium ruthenicum Murr.) has great commercial and nutritional values. Near-infrared hyperspectral imaging (NIR-HSI) was used to determine total phenolics, total flavonoids and total anthocyanins in dry black goji berries. Convolutional neural networks (CNN) were designed and developed to predict the chemical compositions. These CNN models and deep autoencoder were used as supervised and unsupervised feature extraction methods, respectively. Partial least squares (PLS) and least-squares support vector machine (LS-SVM) as modelling methods, successive projections algorithm and competitive adaptive reweighted sampling (CARS) as wavelength selection methods, and principal component analysis (PCA) and wavelet transform (WT) as feature extraction methods were studied as conventional approaches for comparison. Deep learning approaches as modelling methods and feature extraction methods obtained good and equivalent performances to the conventional methods. The results illustrated that deep learning had great potential as modelling and feature extraction methods for chemical compositions determination in NIR-HSI.
AbstractList Black goji berry (Lycium ruthenicum Murr.) has great commercial and nutritional values. Near-infrared hyperspectral imaging (NIR-HSI) was used to determine total phenolics, total flavonoids and total anthocyanins in dry black goji berries. Convolutional neural networks (CNN) were designed and developed to predict the chemical compositions. These CNN models and deep autoencoder were used as supervised and unsupervised feature extraction methods, respectively. Partial least squares (PLS) and least-squares support vector machine (LS-SVM) as modelling methods, successive projections algorithm and competitive adaptive reweighted sampling (CARS) as wavelength selection methods, and principal component analysis (PCA) and wavelet transform (WT) as feature extraction methods were studied as conventional approaches for comparison. Deep learning approaches as modelling methods and feature extraction methods obtained good and equivalent performances to the conventional methods. The results illustrated that deep learning had great potential as modelling and feature extraction methods for chemical compositions determination in NIR-HSI.
•Black goji berries total anthocyanins, flavonoids and phenolics were predicted by HSI.•SPA, CARS and PCA, WT were compared to obtain conventional features for prediction.•CNN models for regression were proposed and compared.•CNN and DAE were used and compared as feature extraction methods for prediction.•Proposed deep learning approaches could be used to determine chemical compositions. Black goji berry (Lycium ruthenicum Murr.) has great commercial and nutritional values. Near-infrared hyperspectral imaging (NIR-HSI) was used to determine total phenolics, total flavonoids and total anthocyanins in dry black goji berries. Convolutional neural networks (CNN) were designed and developed to predict the chemical compositions. These CNN models and deep autoencoder were used as supervised and unsupervised feature extraction methods, respectively. Partial least squares (PLS) and least-squares support vector machine (LS-SVM) as modelling methods, successive projections algorithm and competitive adaptive reweighted sampling (CARS) as wavelength selection methods, and principal component analysis (PCA) and wavelet transform (WT) as feature extraction methods were studied as conventional approaches for comparison. Deep learning approaches as modelling methods and feature extraction methods obtained good and equivalent performances to the conventional methods. The results illustrated that deep learning had great potential as modelling and feature extraction methods for chemical compositions determination in NIR-HSI.
Black goji berry (Lycium ruthenicum Murr.) has great commercial and nutritional values. Near-infrared hyperspectral imaging (NIR-HSI) was used to determine total phenolics, total flavonoids and total anthocyanins in dry black goji berries. Convolutional neural networks (CNN) were designed and developed to predict the chemical compositions. These CNN models and deep autoencoder were used as supervised and unsupervised feature extraction methods, respectively. Partial least squares (PLS) and least-squares support vector machine (LS-SVM) as modelling methods, successive projections algorithm and competitive adaptive reweighted sampling (CARS) as wavelength selection methods, and principal component analysis (PCA) and wavelet transform (WT) as feature extraction methods were studied as conventional approaches for comparison. Deep learning approaches as modelling methods and feature extraction methods obtained good and equivalent performances to the conventional methods. The results illustrated that deep learning had great potential as modelling and feature extraction methods for chemical compositions determination in NIR-HSI.Black goji berry (Lycium ruthenicum Murr.) has great commercial and nutritional values. Near-infrared hyperspectral imaging (NIR-HSI) was used to determine total phenolics, total flavonoids and total anthocyanins in dry black goji berries. Convolutional neural networks (CNN) were designed and developed to predict the chemical compositions. These CNN models and deep autoencoder were used as supervised and unsupervised feature extraction methods, respectively. Partial least squares (PLS) and least-squares support vector machine (LS-SVM) as modelling methods, successive projections algorithm and competitive adaptive reweighted sampling (CARS) as wavelength selection methods, and principal component analysis (PCA) and wavelet transform (WT) as feature extraction methods were studied as conventional approaches for comparison. Deep learning approaches as modelling methods and feature extraction methods obtained good and equivalent performances to the conventional methods. The results illustrated that deep learning had great potential as modelling and feature extraction methods for chemical compositions determination in NIR-HSI.
ArticleNumber 126536
Author Wu, Wenyan
Cheng, Huan
Ye, Xingqian
He, Yong
Zhang, Chu
Zhou, Lei
Author_xml – sequence: 1
  givenname: Chu
  surname: Zhang
  fullname: Zhang, Chu
  organization: College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
– sequence: 2
  givenname: Wenyan
  surname: Wu
  fullname: Wu, Wenyan
  organization: College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
– sequence: 3
  givenname: Lei
  surname: Zhou
  fullname: Zhou, Lei
  organization: College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
– sequence: 4
  givenname: Huan
  orcidid: 0000-0002-1192-3228
  surname: Cheng
  fullname: Cheng, Huan
  organization: College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
– sequence: 5
  givenname: Xingqian
  surname: Ye
  fullname: Ye, Xingqian
  email: psu@zju.edu.cn
  organization: College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
– sequence: 6
  givenname: Yong
  surname: He
  fullname: He, Yong
  email: yhe@zju.edu.cn
  organization: College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32146292$$D View this record in MEDLINE/PubMed
BookMark eNqFkk2P0zAQhi20iO0u_IWVj8shxR9JnEocQMunVMQFzpZjT1qXxA7jZKX-OP4bDt1euPRke_y8M-PXc0OuQgxAyB1na854_eaw7mJ0dg_DWjCRg6KuZP2MrHijZKGYEldkxSRrioaX9TW5SenAWCZ584JcS5GDYiNW5M8HeIQ-jj7sqAMYaQ8Gw3JqTQJHEXYIKfkYqBlHjCaXTLSLmOkJcPDBTMtl7OjSjLempzYOY0x-iSfqA3V4pG1v7C-6iwdPW0D0Ocn99mj9PFCcpz0Eb_P224y4fk3ntDQQcieFDx0azI3sjyNgGsFOmEv4wewy85I870yf4NXTekt-fvr44-FLsf3--evD-21hS8anAlqpGueshFZYUzbG2k3NnJGuLZXdgLKqLJkQbS2UqDemLBvbqgzLquqarpW35P6UNzvwe4Y06cEnC31vAsQ5aVEyViquGn4ZlaqqOKs3VUbvntC5HcDpEfOz8KjPv5OBtyfAYkwJodPWT__8zib4XnOml2HQB30eBr0Mgz4NQ5bX_8nPFS4K352EkD199IA6WQ_BgvOYP0C76C-l-Atmqtd5
CitedBy_id crossref_primary_10_1016_j_jfca_2024_106899
crossref_primary_10_1080_10408347_2022_2073433
crossref_primary_10_1080_00032719_2021_1952214
crossref_primary_10_1016_j_postharvbio_2023_112691
crossref_primary_10_3390_foods12224153
crossref_primary_10_1016_j_infrared_2024_105595
crossref_primary_10_3389_fpls_2022_973745
crossref_primary_10_1016_j_jfca_2025_108036
crossref_primary_10_3390_app13148221
crossref_primary_10_1016_j_foodchem_2024_141999
crossref_primary_10_1111_ijfs_14624
crossref_primary_10_1016_j_compag_2021_106426
crossref_primary_10_1155_2023_6104038
crossref_primary_10_1016_j_foodchem_2022_133563
crossref_primary_10_1016_j_microc_2022_107517
crossref_primary_10_1016_j_snb_2022_132680
crossref_primary_10_1016_j_infrared_2022_104098
crossref_primary_10_1016_j_saa_2024_124266
crossref_primary_10_3389_fpls_2023_1271320
crossref_primary_10_1016_j_saa_2024_124700
crossref_primary_10_3390_ijms25179584
crossref_primary_10_1002_efd2_70076
crossref_primary_10_1016_j_jfca_2023_105619
crossref_primary_10_1016_j_foodchem_2021_131047
crossref_primary_10_3389_fsufs_2022_1036892
crossref_primary_10_1016_j_jfca_2023_105290
crossref_primary_10_3390_foods13193023
crossref_primary_10_1016_j_saa_2024_124812
crossref_primary_10_1016_j_compag_2023_107920
crossref_primary_10_1016_j_heliyon_2024_e37650
crossref_primary_10_1080_10408398_2022_2066062
crossref_primary_10_1016_j_compag_2022_107455
crossref_primary_10_1016_j_infrared_2022_104286
crossref_primary_10_1007_s11694_023_01892_x
crossref_primary_10_3390_foods13020251
crossref_primary_10_1002_pca_3118
crossref_primary_10_1016_j_saa_2022_120990
crossref_primary_10_1007_s12393_021_09298_5
crossref_primary_10_1016_j_infrared_2021_104003
crossref_primary_10_1016_j_postharvbio_2023_112513
crossref_primary_10_1016_j_foodchem_2025_143997
crossref_primary_10_1038_s41598_023_40863_6
crossref_primary_10_4081_jae_2023_1421
crossref_primary_10_3389_fpls_2023_1322391
crossref_primary_10_1016_j_saa_2022_121838
crossref_primary_10_1016_j_heliyon_2024_e39566
crossref_primary_10_1016_j_jfca_2024_106746
crossref_primary_10_3390_agriculture12091299
crossref_primary_10_1016_j_foodcont_2025_111258
crossref_primary_10_1016_j_indcrop_2024_119464
crossref_primary_10_1016_j_microc_2021_106545
crossref_primary_10_3390_mca29040068
crossref_primary_10_3389_fnut_2022_901342
crossref_primary_10_1007_s00521_022_07744_x
crossref_primary_10_1109_TMM_2025_3561661
crossref_primary_10_1016_j_ecoenv_2024_116704
crossref_primary_10_3389_fpls_2020_577063
crossref_primary_10_1016_j_saa_2021_119996
crossref_primary_10_1111_1541_4337_13110
crossref_primary_10_3390_chemosensors10050164
crossref_primary_10_3390_foods12173145
crossref_primary_10_1016_j_snb_2023_133931
crossref_primary_10_1016_j_trac_2021_116459
crossref_primary_10_1016_j_foodchem_2023_136917
crossref_primary_10_1016_j_foodchem_2020_128245
crossref_primary_10_1016_j_foodcont_2024_110455
crossref_primary_10_1002_jsfa_13853
crossref_primary_10_1016_j_fbio_2025_106928
crossref_primary_10_1016_j_jfca_2023_105646
crossref_primary_10_1016_j_fbio_2024_104346
crossref_primary_10_1016_j_saa_2023_123402
crossref_primary_10_1016_j_chemolab_2022_104537
crossref_primary_10_1021_jasms_2c00268
crossref_primary_10_1016_j_jfca_2023_105924
crossref_primary_10_1016_j_saa_2021_120250
crossref_primary_10_1111_ijfs_16173
crossref_primary_10_1007_s12561_024_09421_0
crossref_primary_10_1007_s12393_023_09353_3
crossref_primary_10_1016_j_infrared_2021_103802
crossref_primary_10_1016_j_jfoodeng_2024_112165
crossref_primary_10_1016_j_heliyon_2024_e37919
crossref_primary_10_1016_j_jag_2022_102906
crossref_primary_10_1016_j_jfca_2024_106290
crossref_primary_10_1016_j_microc_2024_111557
crossref_primary_10_1093_gigascience_giac052
crossref_primary_10_3390_molecules28020560
crossref_primary_10_1002_pca_3408
crossref_primary_10_3389_fsufs_2024_1454020
crossref_primary_10_3390_foods14030366
crossref_primary_10_34133_plantphenomics_0012
crossref_primary_10_1016_j_foodres_2025_116131
crossref_primary_10_1016_j_fbp_2023_07_006
crossref_primary_10_1016_j_infrared_2024_105304
crossref_primary_10_3390_foods14050825
crossref_primary_10_1016_j_jfca_2024_105996
crossref_primary_10_1111_pbi_14566
crossref_primary_10_1016_j_foodchem_2021_129141
crossref_primary_10_1109_JIOT_2023_3331948
crossref_primary_10_1016_j_jfoodeng_2022_111247
crossref_primary_10_1111_1750_3841_70530
crossref_primary_10_1016_j_ins_2021_04_094
crossref_primary_10_3390_molecules29102269
crossref_primary_10_1007_s11694_022_01552_6
crossref_primary_10_1016_j_compag_2023_108098
crossref_primary_10_1088_1755_1315_657_1_012115
crossref_primary_10_1111_1541_4337_70278
crossref_primary_10_3390_foods10071676
crossref_primary_10_1016_j_foodres_2025_115675
crossref_primary_10_3389_fpls_2024_1499875
crossref_primary_10_1007_s40502_024_00839_8
crossref_primary_10_1080_07373937_2025_2550602
crossref_primary_10_1016_j_infrared_2024_105532
crossref_primary_10_1080_03610470_2024_2405233
crossref_primary_10_1016_j_tifs_2021_04_008
crossref_primary_10_1016_j_infrared_2023_104921
crossref_primary_10_1016_j_jfca_2023_105708
crossref_primary_10_1002_ppj2_70024
crossref_primary_10_1016_j_microc_2020_105085
crossref_primary_10_1111_1750_3841_17264
crossref_primary_10_3389_fchem_2025_1620154
crossref_primary_10_3390_agronomy13092387
crossref_primary_10_1016_j_saa_2023_123613
crossref_primary_10_1007_s00449_021_02605_8
crossref_primary_10_3389_fnut_2022_980095
crossref_primary_10_3389_fnut_2022_993737
crossref_primary_10_1080_10408398_2022_2131725
crossref_primary_10_3390_foods13030498
crossref_primary_10_1016_j_lwt_2023_115018
crossref_primary_10_3390_plants12050996
crossref_primary_10_1016_j_foodcont_2025_111176
crossref_primary_10_3390_foods13040628
crossref_primary_10_1016_j_jfca_2025_108109
crossref_primary_10_1016_j_saa_2022_121494
crossref_primary_10_3390_app11114841
crossref_primary_10_1007_s11119_023_10036_6
crossref_primary_10_1016_j_foodchem_2024_141084
crossref_primary_10_1016_j_asr_2025_01_048
crossref_primary_10_1080_10408398_2022_2139217
crossref_primary_10_1016_j_tifs_2020_05_002
crossref_primary_10_3390_foods14040608
crossref_primary_10_1016_j_compag_2021_106655
crossref_primary_10_3389_fpls_2023_1342970
crossref_primary_10_3390_molecules27227766
Cites_doi 10.1007/s12161-017-1137-2
10.1016/j.ijbiomac.2013.06.042
10.1016/j.foodchem.2017.08.026
10.1016/j.foodchem.2017.01.063
10.1016/j.saa.2015.08.006
10.1016/j.foodchem.2016.01.046
10.1007/s11694-019-00129-0
10.1016/j.foodchem.2017.08.105
10.1016/j.measurement.2016.10.058
10.1016/j.aca.2019.01.002
10.1038/s41598-018-20270-y
10.1016/j.foodchem.2010.11.052
10.1007/s12161-011-9285-2
10.3390/molecules23092395
10.3390/s19071560
10.1016/j.foodchem.2017.10.027
10.1039/C8AY00661J
10.1016/j.lwt.2015.03.052
10.1080/10408398.2013.871692
10.3390/app8020212
10.1016/j.foodchem.2017.01.142
10.1007/s12161-015-0175-x
10.1109/ACCESS.2019.2917267
10.1016/j.foodchem.2016.12.037
10.1016/0003-2670(86)80028-9
10.1016/j.foodchem.2018.07.034
10.1186/s13065-017-0287-z
10.1021/acs.jafc.6b00035
10.1007/s11947-016-1809-8
10.3390/app8101905
10.1016/j.aca.2006.07.008
10.1007/s11694-018-9853-x
10.1016/j.jfoodeng.2006.04.042
10.1080/10942912.2017.1295254
10.1016/j.neucom.2015.11.044
10.1007/s12161-018-1191-4
10.1177/0967033518756175
10.1007/s12161-016-0721-1
10.1007/s12161-015-0299-z
10.1016/j.biosystemseng.2017.02.005
10.1002/jsfa.8959
10.1177/0967033518795597
10.1016/j.biosystemseng.2018.11.018
10.1016/j.foodchem.2017.06.007
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright © 2020 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright © 2020 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1016/j.foodchem.2020.126536
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Chemistry
Diet & Clinical Nutrition
EISSN 1873-7072
ExternalDocumentID 32146292
10_1016_j_foodchem_2020_126536
S0308814620303988
Genre Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARLI
AATLK
AAXUO
ABFNM
ABFRF
ABGRD
ABGSF
ABJNI
ABMAC
ABUDA
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADECG
ADEZE
ADQTV
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AFZHZ
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CBWCG
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KOM
KZ1
LW9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SAB
SCC
SDF
SDG
SDP
SES
SPC
SPCBC
SSA
SSK
SSU
SSZ
T5K
WH7
~G-
~KM
29H
53G
9DU
AAHBH
AALCJ
AAQXK
AATTM
AAXKI
AAYJJ
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGHFR
AGQPQ
AGRDE
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HLV
HVGLF
HZ~
R2-
SCB
SEW
VH1
WUQ
Y6R
~HD
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c401t-eb378ddc3eb2ca48acc960da3db47c9e7c744022b627269a448cb7eb2355f8fb3
ISICitedReferencesCount 170
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000522648200022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0308-8146
1873-7072
IngestDate Mon Sep 29 06:00:02 EDT 2025
Wed Oct 01 12:10:27 EDT 2025
Wed Feb 19 02:31:30 EST 2025
Tue Nov 18 21:47:18 EST 2025
Sat Nov 29 07:21:31 EST 2025
Fri Feb 23 02:48:30 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Regression issue
Total flavonoids
Black goji berry
Total anthocyanins
Convolutional neural network
Near-infrared hyperspectral imaging
Total phenolics
Deep autoencoder
Language English
License Copyright © 2020 Elsevier Ltd. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c401t-eb378ddc3eb2ca48acc960da3db47c9e7c744022b627269a448cb7eb2355f8fb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-1192-3228
PMID 32146292
PQID 2375510695
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2400471781
proquest_miscellaneous_2375510695
pubmed_primary_32146292
crossref_citationtrail_10_1016_j_foodchem_2020_126536
crossref_primary_10_1016_j_foodchem_2020_126536
elsevier_sciencedirect_doi_10_1016_j_foodchem_2020_126536
PublicationCentury 2000
PublicationDate 2020-07-30
PublicationDateYYYYMMDD 2020-07-30
PublicationDate_xml – month: 07
  year: 2020
  text: 2020-07-30
  day: 30
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Food chemistry
PublicationTitleAlternate Food Chem
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References He, Du, Xu (b0080) 2018; 8
Chen, Zeng, Hu, Bai, Wang, Suo (b0030) 2018; 242
Wang, Li, Tao, Zhang, Gao, Yong, Duan (b0160) 2018; 240
Chaves, Boff, Vizzotto, Calvete, Reginatto, Simões (b0025) 2018; 98
Ahn, Choi, Kim, Cho, Moon, Park (b0005) 2019; 19
Zhang, Chen, Sang (b0190) 2018; 11
Tang, Giusti (b0155) 2018; 269
Zhang, Jiang, Liu, He (b0200) 2017; 10
Zhang, Liu, He (b0210) 2018; 8
Yu, Yu, Wen, Yang, Wang (b0180) 2019; 13
Li, Zou, Shen, Shi, Zhao, Mel (b0110) 2016; 10
Zhang, Chen, Zhao, Xi (b0195) 2016; 200
Shen, Zou, Shi, Li, Huang, Xu, Chen (b0145) 2016; 9
Qiu, Chen, Zhao, Zhu, He, Zhang (b0135) 2018; 8
Caramês, Alamar, Poppi, Pallone (b0020) 2017; 10
Huang, Zhou, Meng, Wu, He (b0095) 2017; 224
Baca-Bocanegra, Nogales-Bueno, Hernández-Hierro, Heredia (b0010) 2018; 244
Zheng, Ding, Wang, Li, Shi, Li, Suo (b0225) 2011; 126
Guo, Ni, Kokot (b0060) 2016; 153
Han, Cai, Zhang, Qian, Huang, Dai, Zhang (b0065) 2017; 227
He, Li, Deng (b0085) 2007; 79
Feng, Zhu, Zhou, Zhao, Bao, Zhang, He (b0050) 2019; 7
Huang, Wu, Shen, Fan, Chang, Chen, Ye (b0090) 2018; 10
Yu, Wang, Wen, Yang, Zhang (b0175) 2019; 178
Hashimoto, Lima, Celeghini, Nogueira, Efraim, Poppi, Pallone (b0070) 2018; 11
Zhang, Wang, Liu, He, Xiao (b0220) 2017; 97
Islam, Yu, Badwal, Xu (b0100) 2017; 11
Muhammad, Zou, Tahir, Hu, Allah, Sajid, Zhao (b0130) 2018; 12
Lu, Li, Quan, An, Zhao, Xi (b0120) 2017; 20
Chu, Wang, Yoon, Ni, Heitschmidt (b0035) 2017; 157
Dai, Cheng, Sun, Zeng (b0040) 2015; 55
Fan, Shan, Li, Lv, Li, Liang (b0045) 2012; 5
Rocchetti, Chiodelli, Giuberti, Masoero, Trevisan, Lucini (b0140) 2017; 228
He, Chen, Chu, Zhang (b0075) 2018; 23
Muhammad, Zou, Hu, Haroon, Shi, Moazzam, Muhammad (b0125) 2018; 26
Zabalza, Ren, Zheng, Zhao, Qing, Yang, Marshall (b0185) 2016; 185
Xu, Esquerre, Sun (b0170) 2018; 26
Wu, Lv, Wang, Wang (b0165) 2016; 64
Geladi, Kowalski (b0055) 1986; 185
Li, Chen, Zhao, Wu (b0105) 2015; 63
Liu, Dang, Wang, Yu, Jiang, Mei, Tao (b0115) 2013; 61
Tahir, Zou, Shi, Mariod, Wiliam (b0150) 2016; 9
Zhang, Lin, Xu, Luo, Ying (b0205) 2019; 1058
Zhang, Liu, Jin, Li, Wu, Yang, Yanne (b0215) 2017; 237
Borin, Ferrao, Mello, Maretto, Poppi (b0015) 2006; 579
Zhang (10.1016/j.foodchem.2020.126536_b0205) 2019; 1058
Ahn (10.1016/j.foodchem.2020.126536_b0005) 2019; 19
Chen (10.1016/j.foodchem.2020.126536_b0030) 2018; 242
Huang (10.1016/j.foodchem.2020.126536_b0090) 2018; 10
Wang (10.1016/j.foodchem.2020.126536_b0160) 2018; 240
Zhang (10.1016/j.foodchem.2020.126536_b0200) 2017; 10
He (10.1016/j.foodchem.2020.126536_b0085) 2007; 79
Lu (10.1016/j.foodchem.2020.126536_b0120) 2017; 20
Rocchetti (10.1016/j.foodchem.2020.126536_b0140) 2017; 228
Huang (10.1016/j.foodchem.2020.126536_b0095) 2017; 224
Zhang (10.1016/j.foodchem.2020.126536_b0195) 2016; 200
Geladi (10.1016/j.foodchem.2020.126536_b0055) 1986; 185
Dai (10.1016/j.foodchem.2020.126536_b0040) 2015; 55
Han (10.1016/j.foodchem.2020.126536_b0065) 2017; 227
Zhang (10.1016/j.foodchem.2020.126536_b0210) 2018; 8
Hashimoto (10.1016/j.foodchem.2020.126536_b0070) 2018; 11
He (10.1016/j.foodchem.2020.126536_b0075) 2018; 23
Borin (10.1016/j.foodchem.2020.126536_b0015) 2006; 579
Wu (10.1016/j.foodchem.2020.126536_b0165) 2016; 64
Xu (10.1016/j.foodchem.2020.126536_b0170) 2018; 26
Yu (10.1016/j.foodchem.2020.126536_b0180) 2019; 13
Tahir (10.1016/j.foodchem.2020.126536_b0150) 2016; 9
He (10.1016/j.foodchem.2020.126536_b0080) 2018; 8
Zhang (10.1016/j.foodchem.2020.126536_b0220) 2017; 97
Chu (10.1016/j.foodchem.2020.126536_b0035) 2017; 157
Yu (10.1016/j.foodchem.2020.126536_b0175) 2019; 178
Zabalza (10.1016/j.foodchem.2020.126536_b0185) 2016; 185
Zhang (10.1016/j.foodchem.2020.126536_b0190) 2018; 11
Tang (10.1016/j.foodchem.2020.126536_b0155) 2018; 269
Liu (10.1016/j.foodchem.2020.126536_b0115) 2013; 61
Chaves (10.1016/j.foodchem.2020.126536_b0025) 2018; 98
Li (10.1016/j.foodchem.2020.126536_b0110) 2016; 10
Guo (10.1016/j.foodchem.2020.126536_b0060) 2016; 153
Muhammad (10.1016/j.foodchem.2020.126536_b0130) 2018; 12
Shen (10.1016/j.foodchem.2020.126536_b0145) 2016; 9
Islam (10.1016/j.foodchem.2020.126536_b0100) 2017; 11
Zhang (10.1016/j.foodchem.2020.126536_b0215) 2017; 237
Feng (10.1016/j.foodchem.2020.126536_b0050) 2019; 7
Baca-Bocanegra (10.1016/j.foodchem.2020.126536_b0010) 2018; 244
Zheng (10.1016/j.foodchem.2020.126536_b0225) 2011; 126
Caramês (10.1016/j.foodchem.2020.126536_b0020) 2017; 10
Li (10.1016/j.foodchem.2020.126536_b0105) 2015; 63
Fan (10.1016/j.foodchem.2020.126536_b0045) 2012; 5
Qiu (10.1016/j.foodchem.2020.126536_b0135) 2018; 8
Muhammad (10.1016/j.foodchem.2020.126536_b0125) 2018; 26
References_xml – volume: 153
  start-page: 79
  year: 2016
  end-page: 86
  ident: b0060
  article-title: Evaluation of chemical components and properties of the jujube fruit using near infrared spectroscopy and chemometrics
  publication-title: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy
– volume: 240
  start-page: 759
  year: 2018
  end-page: 766
  ident: b0160
  article-title: Lycium ruthenicum studies: Molecular biology, Phytochemistry and pharmacology
  publication-title: Food Chemistry
– volume: 8
  start-page: 2166
  year: 2018
  ident: b0210
  article-title: Identification of coffee bean varieties using hyperspectral imaging: Influence of preprocessing methods and pixel-wise spectra analysis
  publication-title: Scientific Reports
– volume: 11
  start-page: 2141
  year: 2018
  end-page: 2148
  ident: b0190
  article-title: Green approach for sample preparation and determination of anthocyaninss from Lycium ruthenicum Murr. Using a β-cyclodextrin-based extraction method coupled with UPLC-DAD analysis
  publication-title: Food analytical methods
– volume: 579
  start-page: 25
  year: 2006
  end-page: 32
  ident: b0015
  article-title: Least-squares support vector machines and near infrared spectroscopy for quantification of common adulterants in powdered milk
  publication-title: Analytica Chimica Acta
– volume: 23
  start-page: 2395
  year: 2018
  ident: b0075
  article-title: Determination of total polysaccharides and total flavonoids in Chrysanthemum morifolium using near-infrared hyperspectral imaging and multivariate analysis
  publication-title: Molecules
– volume: 227
  start-page: 342
  year: 2017
  end-page: 348
  ident: b0065
  article-title: Development of predictive models for total phenolics and free p-coumaric acid contents in barley grain by near-infrared spectroscopy
  publication-title: Food Chemistry
– volume: 19
  start-page: 1560
  year: 2019
  ident: b0005
  article-title: Estimating the composition of food nutrients from hyperspectral signals based on deep neural networks
  publication-title: Sensors
– volume: 10
  start-page: 1609
  year: 2017
  end-page: 1615
  ident: b0020
  article-title: Rapid assessment of total phenolic and anthocyanins contents in grape juice using infrared spectroscopy and multivariate calibration
  publication-title: Food Analytical Methods
– volume: 10
  start-page: 2575
  year: 2018
  end-page: 2587
  ident: b0090
  article-title: Evaluation of colorimetric methods for quantification of citrus flavonoids to avoid misuse
  publication-title: Analytical Methods
– volume: 12
  start-page: 2366
  year: 2018
  end-page: 2376
  ident: b0130
  article-title: Near-infrared spectroscopy coupled chemometric algorithms for prediction of antioxidant activity of black goji berries (lycium ruthenicum murr.)
  publication-title: Journal of Food Measurement and Characterization
– volume: 7
  start-page: 64494
  year: 2019
  end-page: 64505
  ident: b0050
  article-title: Detection of subtle bruises on winter jujube using hyperspectral imaging with pixel-wise deep learning method
  publication-title: IEEE Access
– volume: 26
  start-page: 61
  year: 2018
  end-page: 75
  ident: b0170
  article-title: Methods for performing dimensionality reduction in hyperspectral image classification
  publication-title: Journal of Near Infrared Spectroscopy
– volume: 244
  start-page: 206
  year: 2018
  end-page: 212
  ident: b0010
  article-title: Evaluation of extractable polyphenols released to wine from cooperage byproduct by near infrared hyperspectral imaging
  publication-title: Food Chemistry
– volume: 13
  start-page: 2082
  year: 2019
  end-page: 2094
  ident: b0180
  article-title: Using deep learning and hyperspectral imaging to predict total viable count (TVC) in peeled Pacific white shrimp
  publication-title: Journal of Food Measurement and Characterization
– volume: 1058
  start-page: 48
  year: 2019
  end-page: 57
  ident: b0205
  article-title: DeepSpectra: An end-to-end deep learning approach for quantitative spectral analysis
  publication-title: Analytica Chimica Acta
– volume: 55
  start-page: 1368
  year: 2015
  end-page: 1382
  ident: b0040
  article-title: Advances in feature selection methods for hyperspectral image processing in food industry applications: A review
  publication-title: Critical Reviews in Food Science and Nutrition
– volume: 185
  start-page: 1
  year: 2016
  end-page: 10
  ident: b0185
  article-title: Novel segmented stacked autoencoder for effective dimensionality reduction and feature extraction in hyperspectral imaging
  publication-title: Neurocomputing
– volume: 5
  start-page: 585
  year: 2012
  end-page: 590
  ident: b0045
  article-title: Application of competitive adaptive reweighted sampling method to determine effective wavelengths for prediction of total acid of vinegar
  publication-title: Food Analytical Methods
– volume: 97
  start-page: 149
  year: 2017
  end-page: 155
  ident: b0220
  article-title: Rapid and non-destructive measurement of spinach pigments content during storage using hyperspectral imaging with chemometrics
  publication-title: Measurement
– volume: 9
  start-page: 68
  year: 2016
  end-page: 79
  ident: b0145
  article-title: Determination geographical origin and flavonoids content of goji berry using near-infrared spectroscopy and chemometrics
  publication-title: Food Analytical Methods
– volume: 237
  start-page: 811
  year: 2017
  end-page: 817
  ident: b0215
  article-title: Determination of total iron-reactive phenolics, anthocyaninss and tannins in wine grapes of skins and seeds based on near-infrared hyperspectral imaging
  publication-title: Food Chemistry
– volume: 79
  start-page: 1238
  year: 2007
  end-page: 1242
  ident: b0085
  article-title: Discrimination of varieties of tea using near infrared spectroscopy by principal component analysis and BP model
  publication-title: Journal of Food Engineering
– volume: 98
  start-page: 4331
  year: 2018
  end-page: 4338
  ident: b0025
  article-title: Berries grown in Brazil: Anthocyanins profiles and biological properties
  publication-title: Journal of the Science of Food and Agriculture
– volume: 61
  start-page: 127
  year: 2013
  end-page: 134
  ident: b0115
  article-title: Optimization of polysaccharides from Lycium ruthenicum fruit using RSM and its anti-oxidant activity
  publication-title: International Journal of Biological Macromolecules
– volume: 228
  start-page: 367
  year: 2017
  end-page: 373
  ident: b0140
  article-title: Evaluation of phenolic profile and antioxidant capacity in gluten-free flours
  publication-title: Food Chemistry
– volume: 157
  start-page: 13
  year: 2017
  end-page: 23
  ident: b0035
  article-title: Detection of aflatoxin B1 (AFB1) in individual maize kernels using short wave infrared (SWIR) hyperspectral imaging
  publication-title: Biosystems Engineering
– volume: 224
  start-page: 1
  year: 2017
  end-page: 10
  ident: b0095
  article-title: Comparison of different CCD detectors and chemometrics for predicting total anthocyanins content and antioxidant activity of mulberry fruit using visible and near infrared hyperspectral imaging technique
  publication-title: Food Chemistry
– volume: 126
  start-page: 859
  year: 2011
  end-page: 865
  ident: b0225
  article-title: Anthocyaninss composition and antioxidant activity of wild Lycium ruthenicum Murr. from Qinghai-Tibet Plateau
  publication-title: Food Chemistry
– volume: 242
  start-page: 1
  year: 2018
  end-page: 8
  ident: b0030
  article-title: Simultaneous optimization of the ultrasound-assisted extraction for phenolic compounds content and antioxidant activity of Lycium ruthenicum Murr. fruit using response surface methodology
  publication-title: Food Chemistry
– volume: 9
  start-page: 1228
  year: 2016
  end-page: 1236
  ident: b0150
  article-title: Rapid determination of antioxidant compounds and antioxidant activity of Sudanese Karkade (Hibiscus sabdariffa L.) using near infrared spectroscopy
  publication-title: Food Analytical Methods
– volume: 8
  start-page: 212
  year: 2018
  ident: b0135
  article-title: Variety identification of single rice seed using hyperspectral imaging combined with convolutional neural network
  publication-title: Applied Sciences
– volume: 63
  start-page: 268
  year: 2015
  end-page: 274
  ident: b0105
  article-title: Nondestructive detection of total volatile basic nitrogen (TVB-N) content in pork meat by integrating hyperspectral imaging and colorimetric sensor combined with a nonlinear data fusion
  publication-title: LWT-Food Science and Technology
– volume: 10
  start-page: 1033
  year: 2016
  end-page: 1044
  ident: b0110
  article-title: Determination of geographical origin and anthocyanin content of black goji berry (lycium ruthenicum murr.) using near-infrared spectroscopy and chemometrics
  publication-title: Food Analytical Methods
– volume: 185
  start-page: 1
  year: 1986
  end-page: 17
  ident: b0055
  article-title: Partial least-squares regression: A tutorial
  publication-title: Analytica chimica acta
– volume: 269
  start-page: 419
  year: 2018
  end-page: 426
  ident: b0155
  article-title: Black goji as a potential source of natural color in a wide pH range
  publication-title: Food Chemistry
– volume: 11
  start-page: 1510
  year: 2018
  end-page: 1517
  ident: b0070
  article-title: Quality control of commercial cocoa beans (Theobroma cacao L.) by near-infrared spectroscopy
  publication-title: Food Analytical Methods
– volume: 178
  start-page: 244
  year: 2019
  end-page: 255
  ident: b0175
  article-title: A deep learning based feature extraction method on hyperspectral images for nondestructive prediction of TVB-N content in Pacific white shrimp (Litopenaeus vannamei)
  publication-title: Biosystems Engineering
– volume: 11
  start-page: 59
  year: 2017
  ident: b0100
  article-title: Comparative studies on phenolic profiles, antioxidant capacities and carotenoid contents of red goji berry (Lycium barbarum) and black goji berry (Lycium ruthenicum)
  publication-title: Chemistry Central Journal
– volume: 64
  start-page: 2280
  year: 2016
  end-page: 2288
  ident: b0165
  article-title: Characterization of polyphenols from Lycium ruthenicum fruit by UPLC-Q-TOF/MSE and their antioxidant activity in Caco-2 cells
  publication-title: Journal of Agricultural and Food Chemistry
– volume: 200
  start-page: 230
  year: 2016
  end-page: 236
  ident: b0195
  article-title: Functional constituents and antioxidant activities of eight Chinese native goji genotypes
  publication-title: Food Chemistry
– volume: 8
  start-page: 1905
  year: 2018
  ident: b0080
  article-title: Extraction optimization of phenolics and antioxidants from black goji berry by accelerated solvent extractor using response surface methodology
  publication-title: Applied Sciences
– volume: 20
  start-page: S214
  year: 2017
  end-page: S227
  ident: b0120
  article-title: Identification of characteristic aroma volatiles of Ningxia goji berries (Lycium barbarum L.) and their developmental changes
  publication-title: International Journal of Food Properties
– volume: 26
  start-page: 275
  year: 2018
  end-page: 286
  ident: b0125
  article-title: Near infrared spectroscopy coupled with chemometric algorithms for predicting chemical components in black goji berries (lycium ruthenicum murr.)
  publication-title: Journal of Near Infrared Spectroscopy
– volume: 10
  start-page: 213
  year: 2017
  end-page: 221
  ident: b0200
  article-title: Application of near-infrared hyperspectral imaging with variable selection methods to determine and visualize caffeine content of coffee beans
  publication-title: Food and Bioprocess Technology
– volume: 11
  start-page: 1510
  issue: 5
  year: 2018
  ident: 10.1016/j.foodchem.2020.126536_b0070
  article-title: Quality control of commercial cocoa beans (Theobroma cacao L.) by near-infrared spectroscopy
  publication-title: Food Analytical Methods
  doi: 10.1007/s12161-017-1137-2
– volume: 61
  start-page: 127
  year: 2013
  ident: 10.1016/j.foodchem.2020.126536_b0115
  article-title: Optimization of polysaccharides from Lycium ruthenicum fruit using RSM and its anti-oxidant activity
  publication-title: International Journal of Biological Macromolecules
  doi: 10.1016/j.ijbiomac.2013.06.042
– volume: 240
  start-page: 759
  year: 2018
  ident: 10.1016/j.foodchem.2020.126536_b0160
  article-title: Lycium ruthenicum studies: Molecular biology, Phytochemistry and pharmacology
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2017.08.026
– volume: 227
  start-page: 342
  year: 2017
  ident: 10.1016/j.foodchem.2020.126536_b0065
  article-title: Development of predictive models for total phenolics and free p-coumaric acid contents in barley grain by near-infrared spectroscopy
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2017.01.063
– volume: 153
  start-page: 79
  year: 2016
  ident: 10.1016/j.foodchem.2020.126536_b0060
  article-title: Evaluation of chemical components and properties of the jujube fruit using near infrared spectroscopy and chemometrics
  publication-title: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy
  doi: 10.1016/j.saa.2015.08.006
– volume: 200
  start-page: 230
  year: 2016
  ident: 10.1016/j.foodchem.2020.126536_b0195
  article-title: Functional constituents and antioxidant activities of eight Chinese native goji genotypes
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2016.01.046
– volume: 13
  start-page: 2082
  issue: 3
  year: 2019
  ident: 10.1016/j.foodchem.2020.126536_b0180
  article-title: Using deep learning and hyperspectral imaging to predict total viable count (TVC) in peeled Pacific white shrimp
  publication-title: Journal of Food Measurement and Characterization
  doi: 10.1007/s11694-019-00129-0
– volume: 242
  start-page: 1
  year: 2018
  ident: 10.1016/j.foodchem.2020.126536_b0030
  article-title: Simultaneous optimization of the ultrasound-assisted extraction for phenolic compounds content and antioxidant activity of Lycium ruthenicum Murr. fruit using response surface methodology
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2017.08.105
– volume: 97
  start-page: 149
  year: 2017
  ident: 10.1016/j.foodchem.2020.126536_b0220
  article-title: Rapid and non-destructive measurement of spinach pigments content during storage using hyperspectral imaging with chemometrics
  publication-title: Measurement
  doi: 10.1016/j.measurement.2016.10.058
– volume: 1058
  start-page: 48
  year: 2019
  ident: 10.1016/j.foodchem.2020.126536_b0205
  article-title: DeepSpectra: An end-to-end deep learning approach for quantitative spectral analysis
  publication-title: Analytica Chimica Acta
  doi: 10.1016/j.aca.2019.01.002
– volume: 8
  start-page: 2166
  issue: 1
  year: 2018
  ident: 10.1016/j.foodchem.2020.126536_b0210
  article-title: Identification of coffee bean varieties using hyperspectral imaging: Influence of preprocessing methods and pixel-wise spectra analysis
  publication-title: Scientific Reports
  doi: 10.1038/s41598-018-20270-y
– volume: 126
  start-page: 859
  issue: 3
  year: 2011
  ident: 10.1016/j.foodchem.2020.126536_b0225
  article-title: Anthocyaninss composition and antioxidant activity of wild Lycium ruthenicum Murr. from Qinghai-Tibet Plateau
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2010.11.052
– volume: 5
  start-page: 585
  issue: 3
  year: 2012
  ident: 10.1016/j.foodchem.2020.126536_b0045
  article-title: Application of competitive adaptive reweighted sampling method to determine effective wavelengths for prediction of total acid of vinegar
  publication-title: Food Analytical Methods
  doi: 10.1007/s12161-011-9285-2
– volume: 23
  start-page: 2395
  issue: 9
  year: 2018
  ident: 10.1016/j.foodchem.2020.126536_b0075
  article-title: Determination of total polysaccharides and total flavonoids in Chrysanthemum morifolium using near-infrared hyperspectral imaging and multivariate analysis
  publication-title: Molecules
  doi: 10.3390/molecules23092395
– volume: 19
  start-page: 1560
  issue: 7
  year: 2019
  ident: 10.1016/j.foodchem.2020.126536_b0005
  article-title: Estimating the composition of food nutrients from hyperspectral signals based on deep neural networks
  publication-title: Sensors
  doi: 10.3390/s19071560
– volume: 244
  start-page: 206
  year: 2018
  ident: 10.1016/j.foodchem.2020.126536_b0010
  article-title: Evaluation of extractable polyphenols released to wine from cooperage byproduct by near infrared hyperspectral imaging
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2017.10.027
– volume: 10
  start-page: 2575
  issue: 22
  year: 2018
  ident: 10.1016/j.foodchem.2020.126536_b0090
  article-title: Evaluation of colorimetric methods for quantification of citrus flavonoids to avoid misuse
  publication-title: Analytical Methods
  doi: 10.1039/C8AY00661J
– volume: 63
  start-page: 268
  issue: 1
  year: 2015
  ident: 10.1016/j.foodchem.2020.126536_b0105
  article-title: Nondestructive detection of total volatile basic nitrogen (TVB-N) content in pork meat by integrating hyperspectral imaging and colorimetric sensor combined with a nonlinear data fusion
  publication-title: LWT-Food Science and Technology
  doi: 10.1016/j.lwt.2015.03.052
– volume: 10
  start-page: 1033
  issue: 4
  year: 2016
  ident: 10.1016/j.foodchem.2020.126536_b0110
  article-title: Determination of geographical origin and anthocyanin content of black goji berry (lycium ruthenicum murr.) using near-infrared spectroscopy and chemometrics
  publication-title: Food Analytical Methods
– volume: 55
  start-page: 1368
  issue: 10
  year: 2015
  ident: 10.1016/j.foodchem.2020.126536_b0040
  article-title: Advances in feature selection methods for hyperspectral image processing in food industry applications: A review
  publication-title: Critical Reviews in Food Science and Nutrition
  doi: 10.1080/10408398.2013.871692
– volume: 8
  start-page: 212
  issue: 2
  year: 2018
  ident: 10.1016/j.foodchem.2020.126536_b0135
  article-title: Variety identification of single rice seed using hyperspectral imaging combined with convolutional neural network
  publication-title: Applied Sciences
  doi: 10.3390/app8020212
– volume: 228
  start-page: 367
  year: 2017
  ident: 10.1016/j.foodchem.2020.126536_b0140
  article-title: Evaluation of phenolic profile and antioxidant capacity in gluten-free flours
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2017.01.142
– volume: 9
  start-page: 68
  issue: 1
  year: 2016
  ident: 10.1016/j.foodchem.2020.126536_b0145
  article-title: Determination geographical origin and flavonoids content of goji berry using near-infrared spectroscopy and chemometrics
  publication-title: Food Analytical Methods
  doi: 10.1007/s12161-015-0175-x
– volume: 7
  start-page: 64494
  year: 2019
  ident: 10.1016/j.foodchem.2020.126536_b0050
  article-title: Detection of subtle bruises on winter jujube using hyperspectral imaging with pixel-wise deep learning method
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2917267
– volume: 224
  start-page: 1
  year: 2017
  ident: 10.1016/j.foodchem.2020.126536_b0095
  article-title: Comparison of different CCD detectors and chemometrics for predicting total anthocyanins content and antioxidant activity of mulberry fruit using visible and near infrared hyperspectral imaging technique
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2016.12.037
– volume: 185
  start-page: 1
  year: 1986
  ident: 10.1016/j.foodchem.2020.126536_b0055
  article-title: Partial least-squares regression: A tutorial
  publication-title: Analytica chimica acta
  doi: 10.1016/0003-2670(86)80028-9
– volume: 269
  start-page: 419
  year: 2018
  ident: 10.1016/j.foodchem.2020.126536_b0155
  article-title: Black goji as a potential source of natural color in a wide pH range
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2018.07.034
– volume: 11
  start-page: 59
  issue: 1
  year: 2017
  ident: 10.1016/j.foodchem.2020.126536_b0100
  article-title: Comparative studies on phenolic profiles, antioxidant capacities and carotenoid contents of red goji berry (Lycium barbarum) and black goji berry (Lycium ruthenicum)
  publication-title: Chemistry Central Journal
  doi: 10.1186/s13065-017-0287-z
– volume: 64
  start-page: 2280
  issue: 11
  year: 2016
  ident: 10.1016/j.foodchem.2020.126536_b0165
  article-title: Characterization of polyphenols from Lycium ruthenicum fruit by UPLC-Q-TOF/MSE and their antioxidant activity in Caco-2 cells
  publication-title: Journal of Agricultural and Food Chemistry
  doi: 10.1021/acs.jafc.6b00035
– volume: 10
  start-page: 213
  issue: 1
  year: 2017
  ident: 10.1016/j.foodchem.2020.126536_b0200
  article-title: Application of near-infrared hyperspectral imaging with variable selection methods to determine and visualize caffeine content of coffee beans
  publication-title: Food and Bioprocess Technology
  doi: 10.1007/s11947-016-1809-8
– volume: 8
  start-page: 1905
  issue: 10
  year: 2018
  ident: 10.1016/j.foodchem.2020.126536_b0080
  article-title: Extraction optimization of phenolics and antioxidants from black goji berry by accelerated solvent extractor using response surface methodology
  publication-title: Applied Sciences
  doi: 10.3390/app8101905
– volume: 579
  start-page: 25
  issue: 1
  year: 2006
  ident: 10.1016/j.foodchem.2020.126536_b0015
  article-title: Least-squares support vector machines and near infrared spectroscopy for quantification of common adulterants in powdered milk
  publication-title: Analytica Chimica Acta
  doi: 10.1016/j.aca.2006.07.008
– volume: 12
  start-page: 2366
  issue: 4
  year: 2018
  ident: 10.1016/j.foodchem.2020.126536_b0130
  article-title: Near-infrared spectroscopy coupled chemometric algorithms for prediction of antioxidant activity of black goji berries (lycium ruthenicum murr.)
  publication-title: Journal of Food Measurement and Characterization
  doi: 10.1007/s11694-018-9853-x
– volume: 79
  start-page: 1238
  issue: 4
  year: 2007
  ident: 10.1016/j.foodchem.2020.126536_b0085
  article-title: Discrimination of varieties of tea using near infrared spectroscopy by principal component analysis and BP model
  publication-title: Journal of Food Engineering
  doi: 10.1016/j.jfoodeng.2006.04.042
– volume: 20
  start-page: S214
  issue: sup1
  year: 2017
  ident: 10.1016/j.foodchem.2020.126536_b0120
  article-title: Identification of characteristic aroma volatiles of Ningxia goji berries (Lycium barbarum L.) and their developmental changes
  publication-title: International Journal of Food Properties
  doi: 10.1080/10942912.2017.1295254
– volume: 185
  start-page: 1
  year: 2016
  ident: 10.1016/j.foodchem.2020.126536_b0185
  article-title: Novel segmented stacked autoencoder for effective dimensionality reduction and feature extraction in hyperspectral imaging
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.11.044
– volume: 11
  start-page: 2141
  issue: 8
  year: 2018
  ident: 10.1016/j.foodchem.2020.126536_b0190
  article-title: Green approach for sample preparation and determination of anthocyaninss from Lycium ruthenicum Murr. Using a β-cyclodextrin-based extraction method coupled with UPLC-DAD analysis
  publication-title: Food analytical methods
  doi: 10.1007/s12161-018-1191-4
– volume: 26
  start-page: 61
  issue: 1
  year: 2018
  ident: 10.1016/j.foodchem.2020.126536_b0170
  article-title: Methods for performing dimensionality reduction in hyperspectral image classification
  publication-title: Journal of Near Infrared Spectroscopy
  doi: 10.1177/0967033518756175
– volume: 10
  start-page: 1609
  issue: 5
  year: 2017
  ident: 10.1016/j.foodchem.2020.126536_b0020
  article-title: Rapid assessment of total phenolic and anthocyanins contents in grape juice using infrared spectroscopy and multivariate calibration
  publication-title: Food Analytical Methods
  doi: 10.1007/s12161-016-0721-1
– volume: 9
  start-page: 1228
  issue: 5
  year: 2016
  ident: 10.1016/j.foodchem.2020.126536_b0150
  article-title: Rapid determination of antioxidant compounds and antioxidant activity of Sudanese Karkade (Hibiscus sabdariffa L.) using near infrared spectroscopy
  publication-title: Food Analytical Methods
  doi: 10.1007/s12161-015-0299-z
– volume: 157
  start-page: 13
  year: 2017
  ident: 10.1016/j.foodchem.2020.126536_b0035
  article-title: Detection of aflatoxin B1 (AFB1) in individual maize kernels using short wave infrared (SWIR) hyperspectral imaging
  publication-title: Biosystems Engineering
  doi: 10.1016/j.biosystemseng.2017.02.005
– volume: 98
  start-page: 4331
  issue: 11
  year: 2018
  ident: 10.1016/j.foodchem.2020.126536_b0025
  article-title: Berries grown in Brazil: Anthocyanins profiles and biological properties
  publication-title: Journal of the Science of Food and Agriculture
  doi: 10.1002/jsfa.8959
– volume: 26
  start-page: 275
  issue: 5
  year: 2018
  ident: 10.1016/j.foodchem.2020.126536_b0125
  article-title: Near infrared spectroscopy coupled with chemometric algorithms for predicting chemical components in black goji berries (lycium ruthenicum murr.)
  publication-title: Journal of Near Infrared Spectroscopy
  doi: 10.1177/0967033518795597
– volume: 178
  start-page: 244
  year: 2019
  ident: 10.1016/j.foodchem.2020.126536_b0175
  article-title: A deep learning based feature extraction method on hyperspectral images for nondestructive prediction of TVB-N content in Pacific white shrimp (Litopenaeus vannamei)
  publication-title: Biosystems Engineering
  doi: 10.1016/j.biosystemseng.2018.11.018
– volume: 237
  start-page: 811
  year: 2017
  ident: 10.1016/j.foodchem.2020.126536_b0215
  article-title: Determination of total iron-reactive phenolics, anthocyaninss and tannins in wine grapes of skins and seeds based on near-infrared hyperspectral imaging
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2017.06.007
SSID ssj0002018
Score 2.6642346
Snippet •Black goji berries total anthocyanins, flavonoids and phenolics were predicted by HSI.•SPA, CARS and PCA, WT were compared to obtain conventional features for...
Black goji berry (Lycium ruthenicum Murr.) has great commercial and nutritional values. Near-infrared hyperspectral imaging (NIR-HSI) was used to determine...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 126536
SubjectTerms anthocyanins
Black goji berry
chemical composition
Convolutional neural network
Deep autoencoder
hyperspectral imagery
least squares
Lycium ruthenicum
Near-infrared hyperspectral imaging
neural networks
nutritive value
phenolic compounds
principal component analysis
Regression issue
selection methods
support vector machines
Total anthocyanins
Total flavonoids
Total phenolics
wavelengths
wavelet
Title Developing deep learning based regression approaches for determination of chemical compositions in dry black goji berries (Lycium ruthenicum Murr.) using near-infrared hyperspectral imaging
URI https://dx.doi.org/10.1016/j.foodchem.2020.126536
https://www.ncbi.nlm.nih.gov/pubmed/32146292
https://www.proquest.com/docview/2375510695
https://www.proquest.com/docview/2400471781
Volume 319
WOSCitedRecordID wos000522648200022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-7072
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002018
  issn: 0308-8146
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtZ1ba9swFMdFL4PtZWzdLbsUDUbZCM5sybbsx9IL3QjZHlIIezGWLLcurZOlcWk_3L7BPtSObnFC27V72EswQoptzs_ykXzO_yD0gXC_DKiAB0nk1AsTzr08IsIjEfUL6pcyjrkuNsEGg2Q0Sr-vrPx2uTAXp6yuk8vLdPJfTQ1tYGyVOvsP5p7_KTTAMRgdfsHs8Hsvw--2aVCFlBNXF-Koq15YKlflyIS-1nM9cak1GaC3jYxxTqRwYgIq7twFd-nw2elVl6udv-7R-KTqcqXuaLZv-1eias66UxU3X1cCDsGSU5XL1W30rkQNV-PBbU514PsxrIJNsqcW_zjTJZMW_eV9JbosXFG6a7vcO8fN_K3S6HBBWV-1vP84HuvWvqzaMAZphh40tp_d8oD1rdpL9Rdm6YRRj_mm5k9P3tBmp3Zqp2MzOQckjozayrX3htnCOOmVcFfqpnrqtL12wLJQ9-Bbtn_Y72fDvdFwa_LTUzXM1Ld-W9BlFa0TFqUw665vf9kbfZ17BuBs6dRMd6kLGes3n_o2Z-m2xZB2ioZP0GO7msHbhsKnaEXWG-jhjrPXBursVnKGt7CVnz3FA1f9Afq5pPjzZ-hXSy1W1GJHLdbU4pZa3FKLgVq8RC0el9hRixepxVWNgVqsqcWKWmypxR8Ns7hlFmtmP2FNLF4iFi8Riy2xz9Hh_t5w58CzlUU8EfrBzJOcsqQoBJWcKFn_XAhYyRc5LXjIRCqZULqZhPCYMBKneRgmgjPoDN55mZScvkBr9biWrxDOc57HVMLgkIZR6edFQIkUgSiVrFTKOihyJsyEld1X1V9OMxdfeZI502fK9JkxfQd9no-bGOGZO0ekjpDMus_GLc6A8jvHvndIZUCI-miY13LcnGeEMlhU-XEa_aWPcgRYwJKgg14aHufXrAqhxSQlr-9xhjfoUfu4v0Vrs2kj36EH4mJWnU830SobJZv2mfoD4Y0Sgg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Developing+deep+learning+based+regression+approaches+for+determination+of+chemical+compositions+in+dry+black+goji+berries+%28Lycium+ruthenicum+Murr.%29+using+near-infrared+hyperspectral+imaging&rft.jtitle=Food+chemistry&rft.au=Zhang%2C+Chu&rft.au=Wu%2C+Wenyan&rft.au=Zhou%2C+Lei&rft.au=Cheng%2C+Huan&rft.date=2020-07-30&rft.issn=1873-7072&rft.eissn=1873-7072&rft.volume=319&rft.spage=126536&rft_id=info:doi/10.1016%2Fj.foodchem.2020.126536&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0308-8146&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0308-8146&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0308-8146&client=summon