MOEA/D-SQA: a multi-objective memetic algorithm based on decomposition

A multi-objective memetic algorithm based on decomposition is proposed in this article, in which a simplified quadratic approximation (SQA) is employed as a local search operator for enhancing the performance of a multi-objective evolutionary algorithm based on decomposition (MOEA/D). The SQA is use...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Engineering optimization Jg. 44; H. 9; S. 1095 - 1115
Hauptverfasser: Tan, Yan-Yan, Jiao, Yong-Chang, Li, Hong, Wang, Xin-Kuan
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Abingdon Taylor & Francis 01.09.2012
Taylor & Francis Ltd
Schlagworte:
ISSN:0305-215X, 1029-0273
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A multi-objective memetic algorithm based on decomposition is proposed in this article, in which a simplified quadratic approximation (SQA) is employed as a local search operator for enhancing the performance of a multi-objective evolutionary algorithm based on decomposition (MOEA/D). The SQA is used for a fast local search and the MOEA/D is used as the global optimizer. The multi-objective memetic algorithm based on decomposition, i.e. a hybrid of the MOEA/D with the SQA (MOEA/D-SQA), is designed to balance local versus global search strategies so as to obtain a set of diverse non-dominated solutions as quickly as possible. The emphasis of this article is placed on demonstrating how this local search scheme can improve the performance of MOEA/D for multi-objective optimization. MOEA/D-SQA has been tested on a wide set of benchmark problems with complicated Pareto set shapes. Experimental results indicate that the proposed approach performs better than MOEA/D. In addition, the results obtained are very competitive when comparing MOEA/D-SQA with other state-of-the-art techniques.
Bibliographie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:0305-215X
1029-0273
DOI:10.1080/0305215X.2011.632008