World models and predictive coding for cognitive and developmental robotics: frontiers and challenges

Creating autonomous robots that can actively explore the environment, acquire knowledge and learn skills continuously is the ultimate achievement envisioned in cognitive and developmental robotics. Importantly, if the aim is to create robots that can continuously develop through interactions with th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced robotics Jg. 37; H. 13; S. 780 - 806
Hauptverfasser: Taniguchi, Tadahiro, Murata, Shingo, Suzuki, Masahiro, Ognibene, Dimitri, Lanillos, Pablo, Ugur, Emre, Jamone, Lorenzo, Nakamura, Tomoaki, Ciria, Alejandra, Lara, Bruno, Pezzulo, Giovanni
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Taylor & Francis 03.07.2023
Schlagworte:
ISSN:0169-1864, 1568-5535
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Creating autonomous robots that can actively explore the environment, acquire knowledge and learn skills continuously is the ultimate achievement envisioned in cognitive and developmental robotics. Importantly, if the aim is to create robots that can continuously develop through interactions with their environment, their learning processes should be based on interactions with their physical and social world in the manner of human learning and cognitive development. Based on this context, in this paper, we focus on the two concepts of world models and predictive coding. Recently, world models have attracted renewed attention as a topic of considerable interest in artificial intelligence. Cognitive systems learn world models to better predict future sensory observations and optimize their policies, i.e. controllers. Alternatively, in neuroscience, predictive coding proposes that the brain continuously predicts its inputs and adapts to model its own dynamics and control behavior in its environment. Both ideas may be considered as underpinning the cognitive development of robots and humans capable of continual or lifelong learning. Although many studies have been conducted on predictive coding in cognitive robotics and neurorobotics, the relationship between world model-based approaches in AI and predictive coding in robotics has rarely been discussed. Therefore, in this paper, we clarify the definitions, relationships, and status of current research on these topics, as well as missing pieces of world models and predictive coding in conjunction with crucially related concepts such as the free-energy principle and active inference in the context of cognitive and developmental robotics. Furthermore, we outline the frontiers and challenges involved in world models and predictive coding toward the further integration of AI and robotics, as well as the creation of robots with real cognitive and developmental capabilities in the future.
AbstractList Creating autonomous robots that can actively explore the environment, acquire knowledge and learn skills continuously is the ultimate achievement envisioned in cognitive and developmental robotics. Importantly, if the aim is to create robots that can continuously develop through interactions with their environment, their learning processes should be based on interactions with their physical and social world in the manner of human learning and cognitive development. Based on this context, in this paper, we focus on the two concepts of world models and predictive coding. Recently, world models have attracted renewed attention as a topic of considerable interest in artificial intelligence. Cognitive systems learn world models to better predict future sensory observations and optimize their policies, i.e. controllers. Alternatively, in neuroscience, predictive coding proposes that the brain continuously predicts its inputs and adapts to model its own dynamics and control behavior in its environment. Both ideas may be considered as underpinning the cognitive development of robots and humans capable of continual or lifelong learning. Although many studies have been conducted on predictive coding in cognitive robotics and neurorobotics, the relationship between world model-based approaches in AI and predictive coding in robotics has rarely been discussed. Therefore, in this paper, we clarify the definitions, relationships, and status of current research on these topics, as well as missing pieces of world models and predictive coding in conjunction with crucially related concepts such as the free-energy principle and active inference in the context of cognitive and developmental robotics. Furthermore, we outline the frontiers and challenges involved in world models and predictive coding toward the further integration of AI and robotics, as well as the creation of robots with real cognitive and developmental capabilities in the future.
Author Murata, Shingo
Suzuki, Masahiro
Nakamura, Tomoaki
Ciria, Alejandra
Lara, Bruno
Ugur, Emre
Taniguchi, Tadahiro
Ognibene, Dimitri
Jamone, Lorenzo
Lanillos, Pablo
Pezzulo, Giovanni
Author_xml – sequence: 1
  givenname: Tadahiro
  orcidid: 0000-0002-5682-2076
  surname: Taniguchi
  fullname: Taniguchi, Tadahiro
  email: taniguchi@ci.ritsumei.ac.jp
  organization: Ritsumeikan University
– sequence: 2
  givenname: Shingo
  orcidid: 0000-0002-0790-1915
  surname: Murata
  fullname: Murata, Shingo
  organization: Keio University
– sequence: 3
  givenname: Masahiro
  surname: Suzuki
  fullname: Suzuki, Masahiro
  organization: The University of Tokyo
– sequence: 4
  givenname: Dimitri
  orcidid: 0000-0002-9454-680X
  surname: Ognibene
  fullname: Ognibene, Dimitri
  organization: University of Essex
– sequence: 5
  givenname: Pablo
  surname: Lanillos
  fullname: Lanillos, Pablo
  organization: Spanish National Research Council
– sequence: 6
  givenname: Emre
  orcidid: 0000-0001-9597-2731
  surname: Ugur
  fullname: Ugur, Emre
  organization: Bogazici University
– sequence: 7
  givenname: Lorenzo
  surname: Jamone
  fullname: Jamone, Lorenzo
  organization: Queen Mary University of London
– sequence: 8
  givenname: Tomoaki
  surname: Nakamura
  fullname: Nakamura, Tomoaki
  organization: The University of Electro-Communications
– sequence: 9
  givenname: Alejandra
  orcidid: 0000-0002-9216-9297
  surname: Ciria
  fullname: Ciria, Alejandra
  organization: National Autonomous University of Mexico
– sequence: 10
  givenname: Bruno
  orcidid: 0000-0002-9844-6435
  surname: Lara
  fullname: Lara, Bruno
  organization: Universidad Autónoma del Estado de Morelos
– sequence: 11
  givenname: Giovanni
  orcidid: 0000-0001-6813-8282
  surname: Pezzulo
  fullname: Pezzulo, Giovanni
  organization: National Research Council of Italy
BookMark eNqFkEtLAzEUhYNUsK3-BGH-wNQ856EbpfgCwY3ickiTOzWSSUoSKv33TmzduNDVPRzOOXC_GZo47wChc4IXBDf4ApOqJU3FFxRTtqCUCsroEZoSUTWlEExM0DRnyhw6QbMYPzDGDWf1FMGbD1YXg9dgYyGdLjYBtFHJbKFQXhu3LnofRrl25tvMGQ1bsH4zgEvSFsGvfDIqXhZ98C4ZCPsl9S6tBbeGeIqOe2kjnB3uHL3e3b4sH8qn5_vH5c1TqTgmqQSBV7SlIEXLNes5yEoLzbVWNc-KKgIyu6AYrzmvlMKCK9y0uCYar9gcif2uCj7GAH23CWaQYdcR3GVW3Q-rLrPqDqzG3tWvnjJJJjN-E6Sx_7av923jRlSD_MxIuyR31oc-SKdM7NjfE18OlIbR
CitedBy_id crossref_primary_10_1063_5_0273567
crossref_primary_10_1177_10597123231206604
crossref_primary_10_1080_17588928_2025_2518942
crossref_primary_10_25300_MISQ_2025_18058
crossref_primary_10_1007_s43681_024_00592_6
crossref_primary_10_1016_j_neunet_2024_107075
crossref_primary_10_1109_TSMC_2023_3312585
crossref_primary_10_1111_nyas_15118
crossref_primary_10_1038_s41467_024_54257_3
crossref_primary_10_1073_pnas_2309058120
crossref_primary_10_1109_LRA_2024_3382534
crossref_primary_10_1109_TCDS_2023_3338491
crossref_primary_10_3390_s24072249
crossref_primary_10_1098_rsos_241678
crossref_primary_10_3389_frobt_2024_1353870
crossref_primary_10_1080_17588928_2024_2403348
crossref_primary_10_1007_s10015_025_01026_0
crossref_primary_10_1007_s10462_023_10670_6
crossref_primary_10_1016_j_tics_2023_10_002
crossref_primary_10_3758_s13423_024_02522_3
crossref_primary_10_1109_TSMC_2024_3481251
crossref_primary_10_3390_biomimetics8050445
crossref_primary_10_3390_s24113311
crossref_primary_10_1109_ACCESS_2025_3537859
Cites_doi 10.1073/pnas.2101043118
10.1515/jagi-2016-0001
10.1080/01691864.2021.2012512
10.1016/j.tics.2020.03.004
10.3389/fpsyg.2012.00151
10.1016/j.robot.2011.05.009
10.1115/1.3662552
10.1007/978-3-030-35888-4_31
10.1109/TCDS
10.1126/science.1145803
10.1207/s15516709cog0000_22
10.3389/fnhum.2014.00302
10.1109/34.982896
10.1080/01691864.2019.1632223
10.1109/TCDS.2017.2700207
10.1038/s41467-022-29632-7
10.1080/17588928.2015.1020053
10.5772/5775
10.1080/01691864.2019.1636714
10.1162/neco_a_01228
10.1177/1059712318824697
10.1016/j.patter.2022.100533
10.1109/TRO.2016.2597322
10.1109/TCDS.2016.2594134
10.1613/jair.1.13754
10.1016/j.neuron.2018.10.003
10.1038/nrn2575
10.1371/journal.pcbi.1000220
10.1093/oso/9780190905385.001.0001
10.1609/aimag.v38i4.2744
10.1109/TAMD.2014.2341351
10.1111/mila.v35.2
10.1109/TNNLS.2015.2492140
10.1162/089892998562744
10.1007/s00354-019-00084-w
10.1109/TCDS.2016.2581307
10.1177/027836499000900206
10.1609/aaai.v28i1.9004
10.1038/s41562-017-0064
10.1109/ICRA.2017.7989164
10.1109/IROS40897.2019.8967650
10.1207/S15326969ECO1204_04
10.1037/a0037665
10.1007/s11571-023-09963-x
10.1016/j.jmp.2017.09.004
10.1016/S0893-6080(02)00214-9
10.4108/icst.mobicase.2014.257786
10.1093/acprof:oso/9780199217274.003.0012
10.1109/TAMD.2011.2160943
10.1109/ICRA.2011.5979677
10.1109/IROS40897.2019.8968597
10.1038/nature02024
10.1109/IROS51168.2021.9636394
10.1177/1059712317726357
10.1016/j.neunet.2019.10.014
10.1016/j.rcim.2022.102432
10.1016/j.neunet.2021.05.010
10.1016/j.tics.2020.02.006
10.1007/978-3-030-64919-7_8
10.3390/e24030361
10.1145/1553374.1553508
10.3389/fnbot.2022.843108
10.1016/j.neunet.2022.02.026
10.1111/nyas.2017.1396.issue-1
10.1016/j.neunet.2021.09.011
10.1609/aaai.v32i1.12077
10.1016/j.rcim.2019.101846
10.1073/pnas.1608282113
10.1017/S0140525X190012133
10.1007/978-3-031-28719-0_8
10.1007/978-3-642-00616-6_5
10.1371/journal.pone.0037843
10.1007/s00422-011-0424-z
10.1007/978-3-031-28719-0_4
10.1007/s10994-012-5278-7
10.1109/TCDS.2016.2615326
10.1109/SII55687.2023.10039424
10.1038/4580
10.1162/CPSY_a_00019
10.1177/105971230501300102
10.1523/ENEURO.0412-18.2019
10.1098/rstb.2008.0300
10.1016/j.plrev.2018.06.014
10.1093/acprof:oso/9780199682737.001.0001
10.1016/j.artint.2018.01.002
10.1016/j.neunet.2021.11.004
10.1016/j.neunet.2006.02.007
10.1177/0278364920987859
10.1080/02331880309257
10.1038/nrn2787
10.1177/0278364912455366
10.1016/j.robot.2019.03.003
10.1109/ICRA.2016.7487757
10.1007/s00422-010-0364-z
10.1016/j.tics.2012.08.006
10.7551/mitpress/12441.001.0001
10.1177/1059712307084689
10.3758/s13414-019-01760-1
10.21105/joss.04098
10.1007/s00422-019-00805-w
10.1109/tpami.2021.3057446
10.1016/j.jphysparis.2006.10.001
10.3389/fnbot.2018.00025
10.1109/IROS45743.2020.9340873
10.1016/j.pneurobio.2022.102329
10.1162/NECO_a_00912
10.1016/j.cub.2015.08.057
10.1037/0003-066X.58.9.697
10.1145/301153.301168
10.1162/neco_a_01383
10.1007/978-3-030-64919-7_1
10.1609/aaai.v34i06.6551
10.1016/j.cortex.2017.01.016
10.1109/IROS.2012.6385639
10.1109/CVPR46437.2021.00443
10.1016/j.tics.2020.05.012
10.1007/s10462-018-9646-y
10.1093/acprof:oso/9780190281069.001.0001
10.1109/TCDS.2022.3152383
10.1073/pnas.1912340117
10.1016/j.neunet.2006.02.005
10.1016/j.neuropsychologia.2023.108562
10.1109/CVPR.2008.4587522
10.1371/journal.pcbi.1002221
10.1007/978-3-030-64919-7_3
10.1073/pnas.1912328117
10.3389/fnbot.2022.848065
10.1109/IROS.2018.8593684
10.1515/semi.1992.89.4.319
10.1016/j.neunet.2019.04.022
10.1007/s13218-020-00701-7
10.1146/control.2018.1.issue-1
10.1109/ICDL-EpiRob48136.2020.9278100
10.1016/0959-4388(94)90066-3
10.18653/v1/2021.emnlp-main.788
10.1126/scirobotics.aax8177
10.1109/IJCNN48605.2020.9207382
10.1007/s43154-020-00029-y
10.1016/j.plrev.2019.01.017
10.1016/j.tics.2021.05.007
10.1111/nyas.v1464.1
10.1109/TRO.2007.914848
10.1016/j.plrev.2023.05.012
10.1016/j.inffus.2019.12.004
10.1109/DEVLRN.2016.7846838
10.1093/acprof:oso/9780199794553.001.0001
10.1023/A:1020820000972
10.3389/fpsyg.2019.01424
10.1016/j.neunet.2018.07.006
10.1109/IROS.2014.6942624
10.1111/tops.12142
10.1016/j.cognition.2009.07.005
10.7554/eLife.41703
10.1109/ICRA48506.2021.9560734
10.1126/scirobotics.aaw6326
10.1515/semi.2001.014
10.1098/rstb.1997.0095
10.1109/HUMANOIDS.2017.8246915
10.1016/j.cogsys.2017.08.003
10.1145/2974804.2980485
10.1371/journal.pcbi.1002211
10.3389/fnbot.2022.1045355
10.1038/ncomms15276
10.1515/itit-2014-1066
10.1109/HUMANOIDS.2015.7363477
10.1109/CVPR42600.2020.00116
10.1080/01691864.2021.2019613
10.1109/ICRA.2016.7487691
10.1016/0004-3702(91)90053-M
10.1016/S0921-8890(05)80025-9
10.1109/ICRA.2015.7139553
10.7551/mitpress/1247.001.0001
10.1109/DEVLRN.2014.6983027
10.1007/s00422-012-0512-8
10.24963/ijcai.2019/882
10.1109/CEEC47804.2019.8974334
10.1080/01691864.2016.1164622
10.1109/TAMD.4563672
10.1038/nn1790
10.1088/1748-3182/8/3/035002
10.1145/504729.504754
10.1016/S0377-2217(96)00385-2
10.1016/j.tics.2016.03.013
10.1109/TIP.2015.2487837
10.1007/s13218-015-0356-1
10.3389/fnbot.2018.00034
10.1017/S0140525X12000477
10.1109/TCDS.2021.3049907
10.1007/s00426-009-0236-0
10.1073/pnas.1912331117
10.1007/s12369-013-0181-3
10.1109/IROS47612.2022.9981610
10.1126/science.1195870
10.3389/fpsyg.2012.00130
10.1207/s15326969eco1504_3
10.1109/INSS.2010.5573462
10.1109/ICDL-EpiRob48136.2020.9278105
10.1016/j.conb.2006.03.001
10.1080/09540090310001655110
10.3389/fpsyt.2020.00762
10.1016/j.neunet.2021.01.033
10.1098/rstb.2005.1622
10.1109/IROS47612.2022.9981405
10.1016/B978-1-55860-141-3.50030-4
10.24963/ijcai.2020/371
10.1002/wcs.v2.5
10.1016/j.tics.2013.09.007
10.1109/TNNLS.2023.3240857
10.1016/j.neuron.2011.02.027
10.1080/15294145.2017.1294031
10.1109/ICRA40945.2020.9196878
ContentType Journal Article
Copyright 2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group and The Robotics Society of Japan. 2023
Copyright_xml – notice: 2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group and The Robotics Society of Japan. 2023
DBID 0YH
AAYXX
CITATION
DOI 10.1080/01691864.2023.2225232
DatabaseName Taylor & Francis Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: 0YH
  name: Taylor & Francis Open Access
  url: https://www.tandfonline.com
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1568-5535
EndPage 806
ExternalDocumentID 10_1080_01691864_2023_2225232
2225232
Genre Review Article
GroupedDBID -~X
.QJ
0BK
0R~
0YH
23M
30N
4.4
5GY
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABDBF
ABFIM
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGFS
ACTIO
ACUHS
ADCVX
ADGTB
ADMLS
AEISY
AENEX
AEOZL
AEPSL
AEVUW
AEYOC
AFRVT
AGDLA
AGMYJ
AHDZW
AIJEM
AIYEW
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AMFWP
AQRUH
AQTUD
AVBZW
AWYRJ
BLEHA
CCCUG
CS3
DGEBU
DKSSO
EAP
EBS
EMK
EPL
EST
ESX
E~A
E~B
F5P
GTTXZ
H13
HF~
HZ~
H~P
I-F
IPNFZ
J.P
KYCEM
LJTGL
M4Z
NX~
O9-
P2P
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TDBHL
TEN
TFL
TFT
TFW
TTHFI
TUROJ
TUS
UT5
ZGOLN
~S~
AAYXX
CITATION
ID FETCH-LOGICAL-c401t-e50b292ea594d3f4ea6d5d4ddc746d5d2c1ea4ea6ec347446cc054c089071d0b3
IEDL.DBID TFW
ISICitedReferencesCount 30
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001016619600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0169-1864
IngestDate Sat Nov 29 02:28:43 EST 2025
Tue Nov 18 21:46:27 EST 2025
Mon Oct 20 23:45:50 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 13
Language English
License open-access: http://creativecommons.org/licenses/by-nc-nd/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way. The terms on which this article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c401t-e50b292ea594d3f4ea6d5d4ddc746d5d2c1ea4ea6ec347446cc054c089071d0b3
ORCID 0000-0001-9597-2731
0000-0002-9216-9297
0000-0002-0790-1915
0000-0002-5682-2076
0000-0002-9844-6435
0000-0002-9454-680X
0000-0001-6813-8282
OpenAccessLink https://www.tandfonline.com/doi/abs/10.1080/01691864.2023.2225232
PageCount 27
ParticipantIDs crossref_citationtrail_10_1080_01691864_2023_2225232
crossref_primary_10_1080_01691864_2023_2225232
informaworld_taylorfrancis_310_1080_01691864_2023_2225232
PublicationCentury 2000
PublicationDate 2023-07-03
PublicationDateYYYYMMDD 2023-07-03
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-07-03
  day: 03
PublicationDecade 2020
PublicationTitle Advanced robotics
PublicationYear 2023
Publisher Taylor & Francis
Publisher_xml – name: Taylor & Francis
References CIT0230
CIT0111
CIT0232
Arkin RC. (CIT0013) 1998
CIT0110
CIT0231
von Helmholtz H. (CIT0220) 1867
Helmholtz HV. (CIT0017) 1867
Ha D (CIT0026) 2018; 31
CIT0113
CIT0234
CIT0112
CIT0233
CIT0115
CIT0236
CIT0114
CIT0235
CIT0117
CIT0238
CIT0116
CIT0237
CIT0239
CIT0120
CIT0241
Russell SJ (CIT0140) 2016
CIT0240
CIT0001
CIT0122
CIT0243
CIT0121
CIT0242
Doya K (CIT0222) 2007
Anderson JR. (CIT0251) 2009
Kiverstein J. (CIT0008) 2007; 14
CIT0003
CIT0245
CIT0002
CIT0123
CIT0244
CIT0005
CIT0126
CIT0247
CIT0004
CIT0125
CIT0246
CIT0007
CIT0128
CIT0249
CIT0006
CIT0248
CIT0009
CIT0129
CIT0250
CIT0010
CIT0131
CIT0130
CIT0012
CIT0133
CIT0254
CIT0011
CIT0253
Levine S (CIT0031) 2016; 17
Brown T (CIT0271) 2020; 33
CIT0014
CIT0135
CIT0256
CIT0134
CIT0255
CIT0016
CIT0137
CIT0015
CIT0257
CIT0018
CIT0138
CIT0019
CIT0261
CIT0260
CIT0021
CIT0142
CIT0263
CIT0020
CIT0141
CIT0262
CIT0023
CIT0144
CIT0265
CIT0022
CIT0143
CIT0264
CIT0025
CIT0146
CIT0267
CIT0024
CIT0145
CIT0266
CIT0027
CIT0148
CIT0269
CIT0147
CIT0268
CIT0029
CIT0149
Racanière S (CIT0132) 2017; 30
CIT0209
CIT0208
CIT0201
CIT0200
CIT0203
CIT0202
CIT0205
CIT0204
CIT0207
CIT0206
CIT0210
Bingham E (CIT0258) 2019; 20
Pezzulo G (CIT0279) 2023
CIT0212
CIT0211
CIT0214
CIT0213
Gibson JJ. (CIT0153) 1979
CIT0216
CIT0215
CIT0218
CIT0217
CIT0100
CIT0221
Köhler W (CIT0136) 1925
Al N (CIT0139) 2014
CIT0109
CIT0102
CIT0223
CIT0101
CIT0104
CIT0225
CIT0103
CIT0224
CIT0106
CIT0227
CIT0105
CIT0226
CIT0108
CIT0229
CIT0107
CIT0228
CIT0072
CIT0193
CIT0071
CIT0192
CIT0074
CIT0195
CIT0073
CIT0194
CIT0076
CIT0197
CIT0075
CIT0196
CIT0078
CIT0199
CIT0077
CIT0198
CIT0070
CIT0191
CIT0190
CIT0079
Schmidhuber J. (CIT0028) 1990
CIT0083
CIT0082
CIT0085
CIT0084
CIT0087
CIT0086
CIT0089
CIT0088
Gumbsch C (CIT0124) 2021; 34
CIT0081
CIT0080
Fountas Z (CIT0118) 2020; 33
CIT0094
CIT0093
CIT0096
CIT0095
CIT0098
CIT0097
Mazzaglia P (CIT0119) 2021; 34
CIT0099
CIT0090
CIT0092
CIT0091
Laird JE. (CIT0252) 2008; 171
CIT0270
CIT0030
CIT0151
CIT0272
CIT0150
CIT0032
CIT0274
CIT0152
CIT0273
CIT0034
CIT0155
CIT0276
CIT0033
CIT0154
CIT0275
Paige B (CIT0259) 2017; 30
CIT0036
CIT0278
CIT0035
CIT0156
CIT0277
CIT0038
CIT0159
CIT0037
Gibson JJ. (CIT0157) 1966
CIT0158
CIT0039
CIT0160
CIT0281
CIT0280
CIT0041
CIT0162
CIT0283
CIT0040
CIT0161
CIT0282
CIT0043
CIT0164
CIT0285
CIT0042
CIT0163
CIT0284
CIT0045
CIT0166
CIT0287
CIT0044
CIT0165
CIT0286
Craik K. (CIT0219) 1943
CIT0047
CIT0168
CIT0289
CIT0167
CIT0288
CIT0049
CIT0048
CIT0169
CIT0050
CIT0171
CIT0292
CIT0170
CIT0291
CIT0052
CIT0173
CIT0051
CIT0172
CIT0293
Clark A. (CIT0046) 2015
CIT0054
CIT0175
CIT0053
CIT0174
CIT0056
CIT0177
CIT0055
CIT0176
Watter M (CIT0127) 2015; 28
CIT0290
CIT0058
CIT0179
CIT0057
CIT0178
CIT0059
CIT0061
CIT0182
CIT0060
CIT0181
CIT0063
CIT0184
CIT0062
CIT0183
CIT0065
CIT0186
CIT0064
CIT0185
CIT0067
CIT0188
CIT0066
CIT0187
CIT0180
CIT0069
CIT0068
CIT0189
References_xml – ident: CIT0241
  doi: 10.1073/pnas.2101043118
– ident: CIT0256
  doi: 10.1515/jagi-2016-0001
– ident: CIT0286
  doi: 10.1080/01691864.2021.2012512
– ident: CIT0056
  doi: 10.1016/j.tics.2020.03.004
– ident: CIT0054
  doi: 10.3389/fpsyg.2012.00151
– ident: CIT0165
  doi: 10.1016/j.robot.2011.05.009
– ident: CIT0033
  doi: 10.1115/1.3662552
– ident: CIT0190
  doi: 10.1007/978-3-030-35888-4_31
– volume-title: How can the human mind occur in the physical universe
  year: 2009
  ident: CIT0251
– ident: CIT0277
  doi: 10.1109/TCDS
– ident: CIT0292
  doi: 10.1126/science.1145803
– ident: CIT0253
  doi: 10.1207/s15516709cog0000_22
– ident: CIT0098
  doi: 10.3389/fnhum.2014.00302
– ident: CIT0069
  doi: 10.1109/34.982896
– ident: CIT0006
– ident: CIT0275
  doi: 10.1080/01691864.2019.1632223
– ident: CIT0172
  doi: 10.1109/TCDS.2017.2700207
– ident: CIT0049
  doi: 10.1038/s41467-022-29632-7
– ident: CIT0055
  doi: 10.1080/17588928.2015.1020053
– ident: CIT0210
  doi: 10.5772/5775
– ident: CIT0064
– ident: CIT0179
  doi: 10.1080/01691864.2019.1636714
– ident: CIT0095
  doi: 10.1162/neco_a_01228
– ident: CIT0111
  doi: 10.1177/1059712318824697
– ident: CIT0257
  doi: 10.1016/j.patter.2022.100533
– ident: CIT0215
  doi: 10.1109/TRO.2016.2597322
– ident: CIT0155
  doi: 10.1109/TCDS.2016.2594134
– ident: CIT0148
  doi: 10.1613/jair.1.13754
– volume-title: Behavior-based robotics
  year: 1998
  ident: CIT0013
– ident: CIT0235
  doi: 10.1016/j.neuron.2018.10.003
– ident: CIT0236
  doi: 10.1038/nrn2575
– ident: CIT0089
  doi: 10.1371/journal.pcbi.1000220
– ident: CIT0243
  doi: 10.1093/oso/9780190905385.001.0001
– ident: CIT0237
  doi: 10.1609/aimag.v38i4.2744
– volume: 14
  start-page: 127
  issue: 7
  year: 2007
  ident: CIT0008
  publication-title: J Conscious Stud
– ident: CIT0015
  doi: 10.1109/TAMD.2014.2341351
– ident: CIT0047
  doi: 10.1111/mila.v35.2
– ident: CIT0094
  doi: 10.1109/TNNLS.2015.2492140
– ident: CIT0138
  doi: 10.1162/089892998562744
– ident: CIT0254
– volume-title: Artificial intelligence: a modern approach
  year: 2016
  ident: CIT0140
– ident: CIT0266
  doi: 10.1007/s00354-019-00084-w
– ident: CIT0283
– ident: CIT0170
  doi: 10.1109/TCDS.2016.2581307
– ident: CIT0290
  doi: 10.1177/027836499000900206
– ident: CIT0143
  doi: 10.1609/aaai.v28i1.9004
– ident: CIT0188
  doi: 10.1038/s41562-017-0064
– volume: 20
  start-page: 973
  issue: 1
  year: 2019
  ident: CIT0258
  publication-title: J Machine Learn Res
– ident: CIT0023
– volume: 30
  start-page: 5927
  year: 2017
  ident: CIT0259
  publication-title: Adv Neural Inf Process Syst
– ident: CIT0063
  doi: 10.1109/ICRA.2017.7989164
– ident: CIT0260
– ident: CIT0071
– volume: 30
  start-page: 1
  year: 2017
  ident: CIT0132
  publication-title: Adv Neural Inf Process Syst
– ident: CIT0195
  doi: 10.1109/IROS40897.2019.8967650
– ident: CIT0161
  doi: 10.1207/S15326969ECO1204_04
– ident: CIT0097
  doi: 10.1037/a0037665
– ident: CIT0150
– volume-title: Generating Meaning: Active Inference and the Scope and Limits of Passive AI
  year: 2023
  ident: CIT0279
– ident: CIT0144
– ident: CIT0058
  doi: 10.1007/s11571-023-09963-x
– ident: CIT0052
  doi: 10.1016/j.jmp.2017.09.004
– ident: CIT0088
  doi: 10.1016/S0893-6080(02)00214-9
– ident: CIT0193
  doi: 10.4108/icst.mobicase.2014.257786
– ident: CIT0276
  doi: 10.1093/acprof:oso/9780199217274.003.0012
– ident: CIT0141
  doi: 10.1109/TAMD.2011.2160943
– ident: CIT0164
  doi: 10.1109/ICRA.2011.5979677
– volume-title: Handbuch der physiologischen optik
  year: 1867
  ident: CIT0220
– ident: CIT0280
  doi: 10.1109/IROS40897.2019.8968597
– ident: CIT0014
  doi: 10.1038/nature02024
– ident: CIT0104
  doi: 10.1109/IROS51168.2021.9636394
– ident: CIT0154
  doi: 10.1177/1059712317726357
– ident: CIT0246
– ident: CIT0133
– ident: CIT0096
  doi: 10.1016/j.neunet.2019.10.014
– ident: CIT0182
  doi: 10.1016/j.rcim.2022.102432
– ident: CIT0034
– ident: CIT0110
  doi: 10.1016/j.neunet.2021.05.010
– ident: CIT0189
– ident: CIT0060
  doi: 10.1016/j.tics.2020.02.006
– ident: CIT0040
– volume-title: Making the world differentiable: on using self-supervised fully recurrent neural networks for dynamic reinforcement learning and planning in non-stationary environments
  year: 1990
  ident: CIT0028
– ident: CIT0032
  doi: 10.1007/978-3-030-64919-7_8
– ident: CIT0116
  doi: 10.3390/e24030361
– ident: CIT0128
– ident: CIT0074
  doi: 10.1145/1553374.1553508
– ident: CIT0117
  doi: 10.3389/fnbot.2022.843108
– ident: CIT0240
  doi: 10.1016/j.neunet.2022.02.026
– ident: CIT0105
– ident: CIT0245
  doi: 10.1111/nyas.2017.1396.issue-1
– ident: CIT0004
  doi: 10.1016/j.neunet.2021.09.011
– ident: CIT0151
  doi: 10.1609/aaai.v32i1.12077
– ident: CIT0180
  doi: 10.1016/j.rcim.2019.101846
– ident: CIT0238
  doi: 10.1073/pnas.1608282113
– ident: CIT0289
– ident: CIT0134
– ident: CIT0185
  doi: 10.1017/S0140525X190012133
– ident: CIT0285
  doi: 10.1007/978-3-031-28719-0_8
– ident: CIT0293
  doi: 10.1007/978-3-642-00616-6_5
– ident: CIT0092
  doi: 10.1371/journal.pone.0037843
– ident: CIT0051
  doi: 10.1007/s00422-011-0424-z
– volume-title: The mentality of apes: international library of psychology, philosophy, and scientific method
  year: 1925
  ident: CIT0136
– ident: CIT0115
  doi: 10.1007/978-3-031-28719-0_4
– ident: CIT0255
– ident: CIT0075
  doi: 10.1007/s10994-012-5278-7
– ident: CIT0171
  doi: 10.1109/TCDS.2016.2615326
– ident: CIT0287
  doi: 10.1109/SII55687.2023.10039424
– volume: 17
  start-page: 1334
  issue: 1
  year: 2016
  ident: CIT0031
  publication-title: J Machine Learn Res
– ident: CIT0272
– ident: CIT0018
  doi: 10.1038/4580
– ident: CIT0099
  doi: 10.1162/CPSY_a_00019
– ident: CIT0108
  doi: 10.1177/105971230501300102
– ident: CIT0043
  doi: 10.1523/ENEURO.0412-18.2019
– ident: CIT0044
  doi: 10.1098/rstb.2008.0300
– ident: CIT0216
  doi: 10.1016/j.plrev.2018.06.014
– ident: CIT0048
  doi: 10.1093/acprof:oso/9780199682737.001.0001
– ident: CIT0177
  doi: 10.1016/j.artint.2018.01.002
– ident: CIT0112
  doi: 10.1016/j.neunet.2021.11.004
– ident: CIT0107
  doi: 10.1016/j.neunet.2006.02.007
– ident: CIT0025
  doi: 10.1177/0278364920987859
– ident: CIT0036
  doi: 10.1080/02331880309257
– ident: CIT0045
  doi: 10.1038/nrn2787
– ident: CIT0145
– ident: CIT0214
  doi: 10.1177/0278364912455366
– ident: CIT0273
– ident: CIT0080
– ident: CIT0178
  doi: 10.1016/j.robot.2019.03.003
– ident: CIT0174
  doi: 10.1109/ICRA.2016.7487757
– ident: CIT0053
  doi: 10.1007/s00422-010-0364-z
– ident: CIT0129
– ident: CIT0076
  doi: 10.1016/j.tics.2012.08.006
– ident: CIT0196
– ident: CIT0041
– ident: CIT0020
  doi: 10.7551/mitpress/12441.001.0001
– ident: CIT0149
  doi: 10.1177/1059712307084689
– ident: CIT0248
  doi: 10.3758/s13414-019-01760-1
– ident: CIT0288
  doi: 10.21105/joss.04098
– ident: CIT0072
  doi: 10.1007/s00422-019-00805-w
– ident: CIT0003
  doi: 10.1109/tpami.2021.3057446
– ident: CIT0050
  doi: 10.1016/j.jphysparis.2006.10.001
– ident: CIT0265
  doi: 10.3389/fnbot.2018.00025
– ident: CIT0085
  doi: 10.1109/IROS45743.2020.9340873
– ident: CIT0123
  doi: 10.1016/j.pneurobio.2022.102329
– ident: CIT0224
  doi: 10.1162/NECO_a_00912
– ident: CIT0007
– ident: CIT0233
  doi: 10.1016/j.cub.2015.08.057
– ident: CIT0263
  doi: 10.1037/0003-066X.58.9.697
– ident: CIT0030
– ident: CIT0159
  doi: 10.1145/301153.301168
– ident: CIT0200
– ident: CIT0021
  doi: 10.1162/neco_a_01383
– ident: CIT0077
  doi: 10.1007/978-3-030-64919-7_1
– ident: CIT0201
  doi: 10.1609/aaai.v34i06.6551
– ident: CIT0066
  doi: 10.1016/j.cortex.2017.01.016
– ident: CIT0038
– ident: CIT0269
  doi: 10.1109/IROS.2012.6385639
– ident: CIT0087
  doi: 10.1109/CVPR46437.2021.00443
– ident: CIT0199
– ident: CIT0078
  doi: 10.1016/j.tics.2020.05.012
– ident: CIT0250
  doi: 10.1007/s10462-018-9646-y
– ident: CIT0024
  doi: 10.1093/acprof:oso/9780190281069.001.0001
– ident: CIT0175
  doi: 10.1109/TCDS.2022.3152383
– ident: CIT0223
  doi: 10.1073/pnas.1912340117
– ident: CIT0203
  doi: 10.1016/j.neunet.2006.02.005
– ident: CIT0244
  doi: 10.1016/j.neuropsychologia.2023.108562
– ident: CIT0070
  doi: 10.1109/CVPR.2008.4587522
– ident: CIT0091
  doi: 10.1371/journal.pcbi.1002221
– ident: CIT0103
  doi: 10.1007/978-3-030-64919-7_3
– ident: CIT0073
– ident: CIT0228
  doi: 10.1073/pnas.1912328117
– ident: CIT0181
  doi: 10.3389/fnbot.2022.848065
– ident: CIT0106
  doi: 10.1109/IROS.2018.8593684
– ident: CIT0009
  doi: 10.1515/semi.1992.89.4.319
– ident: CIT0207
  doi: 10.1016/j.neunet.2019.04.022
– ident: CIT0282
  doi: 10.1007/s13218-020-00701-7
– ident: CIT0194
– ident: CIT0121
  doi: 10.1146/control.2018.1.issue-1
– ident: CIT0268
  doi: 10.1109/ICDL-EpiRob48136.2020.9278100
– ident: CIT0239
  doi: 10.1016/0959-4388(94)90066-3
– ident: CIT0191
  doi: 10.18653/v1/2021.emnlp-main.788
– ident: CIT0281
  doi: 10.1126/scirobotics.aax8177
– ident: CIT0135
– ident: CIT0114
  doi: 10.1109/IJCNN48605.2020.9207382
– ident: CIT0218
  doi: 10.1007/s43154-020-00029-y
– ident: CIT0217
  doi: 10.1016/j.plrev.2019.01.017
– ident: CIT0242
  doi: 10.1016/j.tics.2021.05.007
– ident: CIT0234
  doi: 10.1111/nyas.v1464.1
– volume: 171
  start-page: 224
  year: 2008
  ident: CIT0252
  publication-title: Front Artificial Intell Appl
– volume: 34
  start-page: 17518
  year: 2021
  ident: CIT0124
  publication-title: Adv Neural Inf Process Syst
– ident: CIT0163
  doi: 10.1109/TRO.2007.914848
– ident: CIT0205
  doi: 10.1016/j.plrev.2023.05.012
– ident: CIT0002
  doi: 10.1016/j.inffus.2019.12.004
– ident: CIT0109
  doi: 10.1109/DEVLRN.2016.7846838
– ident: CIT0262
  doi: 10.1093/acprof:oso/9780199794553.001.0001
– ident: CIT0084
– ident: CIT0137
  doi: 10.1023/A:1020820000972
– ident: CIT0232
  doi: 10.3389/fpsyg.2019.01424
– volume-title: Surfing uncertainty: prediction, action, and the embodied mind
  year: 2015
  ident: CIT0046
– ident: CIT0113
– ident: CIT0122
  doi: 10.1016/j.neunet.2018.07.006
– volume-title: Handbuch der physiologischen optik
  year: 1867
  ident: CIT0017
– ident: CIT0166
  doi: 10.1109/IROS.2014.6942624
– ident: CIT0206
  doi: 10.1111/tops.12142
– ident: CIT0197
  doi: 10.1016/j.cognition.2009.07.005
– ident: CIT0068
  doi: 10.7554/eLife.41703
– ident: CIT0079
– ident: CIT0209
– ident: CIT0039
– ident: CIT0081
  doi: 10.1109/ICRA48506.2021.9560734
– ident: CIT0062
  doi: 10.1126/scirobotics.aaw6326
– ident: CIT0010
  doi: 10.1515/semi.2001.014
– ident: CIT0221
  doi: 10.1098/rstb.1997.0095
– ident: CIT0274
– volume: 33
  start-page: 1877
  year: 2020
  ident: CIT0271
  publication-title: Adv Neural Inf Process Syst
– volume: 28
  start-page: 1
  year: 2015
  ident: CIT0127
  publication-title: Adv Neural Inf Process Syst
– volume: 31
  start-page: 2450
  year: 2018
  ident: CIT0026
  publication-title: Adv Neural Inf Process Syst
– ident: CIT0169
  doi: 10.1109/HUMANOIDS.2017.8246915
– ident: CIT0158
– ident: CIT0249
  doi: 10.1016/j.cogsys.2017.08.003
– ident: CIT0176
  doi: 10.1145/2974804.2980485
– ident: CIT0226
  doi: 10.1371/journal.pcbi.1002211
– ident: CIT0156
  doi: 10.3389/fnbot.2022.1045355
– ident: CIT0230
  doi: 10.1038/ncomms15276
– ident: CIT0264
  doi: 10.1515/itit-2014-1066
– ident: CIT0147
  doi: 10.1109/HUMANOIDS.2015.7363477
– ident: CIT0204
– ident: CIT0067
  doi: 10.1109/CVPR42600.2020.00116
– ident: CIT0142
  doi: 10.1080/01691864.2021.2019613
– ident: CIT0011
– ident: CIT0168
  doi: 10.1109/ICRA.2016.7487691
– ident: CIT0012
  doi: 10.1016/0004-3702(91)90053-M
– ident: CIT0291
  doi: 10.1016/S0921-8890(05)80025-9
– ident: CIT0212
  doi: 10.1109/TCDS
– ident: CIT0146
  doi: 10.1109/ICRA.2015.7139553
– ident: CIT0160
  doi: 10.7551/mitpress/1247.001.0001
– ident: CIT0167
  doi: 10.1109/DEVLRN.2014.6983027
– ident: CIT0057
  doi: 10.1007/s00422-012-0512-8
– ident: CIT0213
  doi: 10.24963/ijcai.2019/882
– ident: CIT0187
  doi: 10.1109/CEEC47804.2019.8974334
– ident: CIT0278
  doi: 10.1080/01691864.2016.1164622
– ident: CIT0093
  doi: 10.1109/TAMD.4563672
– ident: CIT0225
  doi: 10.1038/nn1790
– ident: CIT0183
  doi: 10.1088/1748-3182/8/3/035002
– ident: CIT0035
  doi: 10.1145/504729.504754
– ident: CIT0130
  doi: 10.1016/S0377-2217(96)00385-2
– ident: CIT0247
  doi: 10.1016/j.tics.2016.03.013
– ident: CIT0065
  doi: 10.1109/TIP.2015.2487837
– ident: CIT0037
– ident: CIT0125
– ident: CIT0120
  doi: 10.1007/s13218-015-0356-1
– ident: CIT0261
  doi: 10.3389/fnbot.2018.00034
– ident: CIT0016
  doi: 10.1017/S0140525X12000477
– ident: CIT0022
  doi: 10.1109/TCDS.2021.3049907
– ident: CIT0090
  doi: 10.1007/s00426-009-0236-0
– ident: CIT0198
– ident: CIT0227
  doi: 10.1073/pnas.1912331117
– ident: CIT0211
  doi: 10.1007/s12369-013-0181-3
– ident: CIT0005
– ident: CIT0082
  doi: 10.1109/IROS47612.2022.9981610
– ident: CIT0131
– volume: 33
  start-page: 11662
  year: 2020
  ident: CIT0118
  publication-title: Adv Neural Inf Process Syst
– ident: CIT0202
– ident: CIT0229
  doi: 10.1126/science.1195870
– ident: CIT0059
  doi: 10.3389/fpsyg.2012.00130
– ident: CIT0162
  doi: 10.1207/s15326969eco1504_3
– ident: CIT0192
  doi: 10.1109/INSS.2010.5573462
– ident: CIT0126
– ident: CIT0102
  doi: 10.1109/ICDL-EpiRob48136.2020.9278105
– ident: CIT0061
– ident: CIT0027
– volume-title: Bayesian brain: probabilistic approaches to neural coding
  year: 2007
  ident: CIT0222
– ident: CIT0270
– ident: CIT0186
  doi: 10.1016/j.conb.2006.03.001
– ident: CIT0001
  doi: 10.1080/09540090310001655110
– ident: CIT0100
  doi: 10.3389/fpsyt.2020.00762
– ident: CIT0101
  doi: 10.1016/j.neunet.2021.01.033
– ident: CIT0019
  doi: 10.1098/rstb.2005.1622
– ident: CIT0086
  doi: 10.1109/IROS47612.2022.9981405
– ident: CIT0029
  doi: 10.1016/B978-1-55860-141-3.50030-4
– ident: CIT0152
  doi: 10.24963/ijcai.2020/371
– volume-title: The nature of explanation
  year: 1943
  ident: CIT0219
– volume-title: Atkinson and hilgard's introduction to psychology
  year: 2014
  ident: CIT0139
– ident: CIT0083
– volume-title: The ecological approach to visual perception
  year: 1979
  ident: CIT0153
– ident: CIT0042
  doi: 10.1002/wcs.v2.5
– ident: CIT0284
  doi: 10.1016/j.tics.2013.09.007
– volume-title: The senses considered as perceptual systems
  year: 1966
  ident: CIT0157
– ident: CIT0267
  doi: 10.1109/TNNLS.2023.3240857
– ident: CIT0231
  doi: 10.1016/j.neuron.2011.02.027
– ident: CIT0184
  doi: 10.1080/15294145.2017.1294031
– volume: 34
  start-page: 13870
  year: 2021
  ident: CIT0119
  publication-title: Adv Neural Inf Process Syst
– ident: CIT0208
– ident: CIT0173
  doi: 10.1109/ICRA40945.2020.9196878
SSID ssj0008437
Score 2.5598319
SecondaryResourceType review_article
Snippet Creating autonomous robots that can actively explore the environment, acquire knowledge and learn skills continuously is the ultimate achievement envisioned in...
SourceID crossref
informaworld
SourceType Enrichment Source
Index Database
Publisher
StartPage 780
SubjectTerms active inference
cognitive robotics
free-energy principle
predictive coding
World model
Title World models and predictive coding for cognitive and developmental robotics: frontiers and challenges
URI https://www.tandfonline.com/doi/abs/10.1080/01691864.2023.2225232
Volume 37
WOSCitedRecordID wos001016619600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Online Journals
  customDbUrl:
  eissn: 1568-5535
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008437
  issn: 0169-1864
  databaseCode: TFW
  dateStart: 19860101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELagYoCBN6I8Kg-sKYntNA4bQlSdKoYiyhT5FQkJNSgJ_H7unKS0AzDAlkQ-x7o45zvny_cRcgWTQkvNQ5RvF4GAJTXQKh4FNnEytyyPjQq92EQyncr5PH1o0YRVC6vEGjpviCJ8rMaXW-mqQ8RdI4FIJEe4I8L4EAsWSAsgCkNmj6C-2fhpGYulaFgzwSJAk-4fnu96WVud1rhLV1ad8d4_jHef7LYpJ71t5sgB2XCLQ7KzQkR4RJzH1FAvi1NRuBF9K_ELDsZCagpc3ygMki7BRr6N_QIcQf9loQvkfL6hOZIioMS2b2U6uZbqmDyO72d3k6AVYAgMlF114OJQs5Q5FafC8lw4NbKxFdaaROARM5FTeNUZLhIoLI2BDNCEEiruyIaan5Deoli4U0JdYlKhFeSbkPFoaZVMncmh54g5biXrE9E5PjMtOzmKZLxmUUdi2noxQy9mrRf7ZLg0e2voOX4zSFefalb7fZG8ETHJ-I-2Z3-wPSfbeOqBvvyC9Ory3V2SLfNRv1TlgGyGz5OBn7qfpuzplQ
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT4QwEJ7oaqIefBvXZw9eWYGWpXgzxs0a1z2tyXoi9EFiYmDDor_fToGVPagHvRHolGYYOjPt9PsAroxRCC6oi_TtzGHGpToiCfqOCjVPlZ8GMnEt2UQ4HvPpNGqfhcGySsyh0woows7V-HPjYnRTEneNCCIe7-OSiE97mLGYuGAV1gIecrRy92W4mI05q3AzjYiDMs0pnu-6WfJPS-ilLb8z2PmPEe_Cdh11ktvKTPZgRWf7sNXCIjwAbctqiGXGmRPzJjIrcBMHp0Mic3RxxIySLOqNbBv1VXNk-i9ykSPs8w1JERcBWbZtK9kwtswP4XlwP7kbOjUHgyNN5lU6OnCFH_k6CSKmaMp00leBYkrJkOGVLz2d4F0tKQtNbimlCQKly03S7SlX0CPoZHmmj4HoUEZMJCbkNEGP4CrhkZap6dnzNVXc7wJrNB_LGqAceTLeYq_BMa21GKMW41qLXegtxGYVQsdvAlH7s8alXRpJKx6TmP4oe_IH2UvYGE6eRvHoYfx4Cpv4yNb90jPolMW7Pod1-VG-zosLa8GfmBXsig
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT4NAEJ5oNUYPvo31uQevVGCXsngzKtFomh5q7I2wDxITUxpAf787C9T2oB70RmBn2AzDzswyfB_AhXEKwQV1kb6dOcyEVEekQd9RoeaZ8rNApq4lmwgHAz4eR8Omm7Bs2iqxhs5qoAi7VuPLPVVZ2xF3iQAiHu_jjohPe1iwmLRgGVZM6hygY4_il9lizFkNm2lEHJRpf-L5Ts1CeFoAL50LO_HWP0x4GzabnJNc106yA0t6sgsbc0iEe6BtUw2xvDglMTci0wI_4eBiSGSOAY6YSZJZt5Edo746joz-Ihc5gj5fkQxREZBj246SLV9LuQ_P8d3o5t5pGBgcaequytGBK_zI12kQMUUzptO-ChRTSoYMj3zp6RTPaklZaCpLKU0KKF1uSm5PuYIeQGeST_QhEB3KiInUJJwm5RFcpTzSMjOaPV9Txf0usNbwiWzgyZEl4y3xWhTTxooJWjFprNiF3kxsWuNz_CYQzT_VpLIbI1nNYpLQH2WP_iB7DmvD2zh5ehg8HsM6XrFNv_QEOlXxrk9hVX5Ur2VxZv33EyX063g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=World+models+and+predictive+coding+for+cognitive+and+developmental+robotics%3A+frontiers+and+challenges&rft.jtitle=Advanced+robotics&rft.au=Taniguchi%2C+Tadahiro&rft.au=Murata%2C+Shingo&rft.au=Suzuki%2C+Masahiro&rft.au=Ognibene%2C+Dimitri&rft.date=2023-07-03&rft.pub=Taylor+%26+Francis&rft.issn=0169-1864&rft.eissn=1568-5535&rft.volume=37&rft.issue=13&rft.spage=780&rft.epage=806&rft_id=info:doi/10.1080%2F01691864.2023.2225232&rft.externalDBID=0YH&rft.externalDocID=2225232
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-1864&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-1864&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-1864&client=summon