World models and predictive coding for cognitive and developmental robotics: frontiers and challenges
Creating autonomous robots that can actively explore the environment, acquire knowledge and learn skills continuously is the ultimate achievement envisioned in cognitive and developmental robotics. Importantly, if the aim is to create robots that can continuously develop through interactions with th...
Gespeichert in:
| Veröffentlicht in: | Advanced robotics Jg. 37; H. 13; S. 780 - 806 |
|---|---|
| Hauptverfasser: | , , , , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Taylor & Francis
03.07.2023
|
| Schlagworte: | |
| ISSN: | 0169-1864, 1568-5535 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Creating autonomous robots that can actively explore the environment, acquire knowledge and learn skills continuously is the ultimate achievement envisioned in cognitive and developmental robotics. Importantly, if the aim is to create robots that can continuously develop through interactions with their environment, their learning processes should be based on interactions with their physical and social world in the manner of human learning and cognitive development. Based on this context, in this paper, we focus on the two concepts of world models and predictive coding. Recently, world models have attracted renewed attention as a topic of considerable interest in artificial intelligence. Cognitive systems learn world models to better predict future sensory observations and optimize their policies, i.e. controllers. Alternatively, in neuroscience, predictive coding proposes that the brain continuously predicts its inputs and adapts to model its own dynamics and control behavior in its environment. Both ideas may be considered as underpinning the cognitive development of robots and humans capable of continual or lifelong learning. Although many studies have been conducted on predictive coding in cognitive robotics and neurorobotics, the relationship between world model-based approaches in AI and predictive coding in robotics has rarely been discussed. Therefore, in this paper, we clarify the definitions, relationships, and status of current research on these topics, as well as missing pieces of world models and predictive coding in conjunction with crucially related concepts such as the free-energy principle and active inference in the context of cognitive and developmental robotics. Furthermore, we outline the frontiers and challenges involved in world models and predictive coding toward the further integration of AI and robotics, as well as the creation of robots with real cognitive and developmental capabilities in the future. |
|---|---|
| AbstractList | Creating autonomous robots that can actively explore the environment, acquire knowledge and learn skills continuously is the ultimate achievement envisioned in cognitive and developmental robotics. Importantly, if the aim is to create robots that can continuously develop through interactions with their environment, their learning processes should be based on interactions with their physical and social world in the manner of human learning and cognitive development. Based on this context, in this paper, we focus on the two concepts of world models and predictive coding. Recently, world models have attracted renewed attention as a topic of considerable interest in artificial intelligence. Cognitive systems learn world models to better predict future sensory observations and optimize their policies, i.e. controllers. Alternatively, in neuroscience, predictive coding proposes that the brain continuously predicts its inputs and adapts to model its own dynamics and control behavior in its environment. Both ideas may be considered as underpinning the cognitive development of robots and humans capable of continual or lifelong learning. Although many studies have been conducted on predictive coding in cognitive robotics and neurorobotics, the relationship between world model-based approaches in AI and predictive coding in robotics has rarely been discussed. Therefore, in this paper, we clarify the definitions, relationships, and status of current research on these topics, as well as missing pieces of world models and predictive coding in conjunction with crucially related concepts such as the free-energy principle and active inference in the context of cognitive and developmental robotics. Furthermore, we outline the frontiers and challenges involved in world models and predictive coding toward the further integration of AI and robotics, as well as the creation of robots with real cognitive and developmental capabilities in the future. |
| Author | Murata, Shingo Suzuki, Masahiro Nakamura, Tomoaki Ciria, Alejandra Lara, Bruno Ugur, Emre Taniguchi, Tadahiro Ognibene, Dimitri Jamone, Lorenzo Lanillos, Pablo Pezzulo, Giovanni |
| Author_xml | – sequence: 1 givenname: Tadahiro orcidid: 0000-0002-5682-2076 surname: Taniguchi fullname: Taniguchi, Tadahiro email: taniguchi@ci.ritsumei.ac.jp organization: Ritsumeikan University – sequence: 2 givenname: Shingo orcidid: 0000-0002-0790-1915 surname: Murata fullname: Murata, Shingo organization: Keio University – sequence: 3 givenname: Masahiro surname: Suzuki fullname: Suzuki, Masahiro organization: The University of Tokyo – sequence: 4 givenname: Dimitri orcidid: 0000-0002-9454-680X surname: Ognibene fullname: Ognibene, Dimitri organization: University of Essex – sequence: 5 givenname: Pablo surname: Lanillos fullname: Lanillos, Pablo organization: Spanish National Research Council – sequence: 6 givenname: Emre orcidid: 0000-0001-9597-2731 surname: Ugur fullname: Ugur, Emre organization: Bogazici University – sequence: 7 givenname: Lorenzo surname: Jamone fullname: Jamone, Lorenzo organization: Queen Mary University of London – sequence: 8 givenname: Tomoaki surname: Nakamura fullname: Nakamura, Tomoaki organization: The University of Electro-Communications – sequence: 9 givenname: Alejandra orcidid: 0000-0002-9216-9297 surname: Ciria fullname: Ciria, Alejandra organization: National Autonomous University of Mexico – sequence: 10 givenname: Bruno orcidid: 0000-0002-9844-6435 surname: Lara fullname: Lara, Bruno organization: Universidad Autónoma del Estado de Morelos – sequence: 11 givenname: Giovanni orcidid: 0000-0001-6813-8282 surname: Pezzulo fullname: Pezzulo, Giovanni organization: National Research Council of Italy |
| BookMark | eNqFkEtLAzEUhYNUsK3-BGH-wNQ856EbpfgCwY3ickiTOzWSSUoSKv33TmzduNDVPRzOOXC_GZo47wChc4IXBDf4ApOqJU3FFxRTtqCUCsroEZoSUTWlEExM0DRnyhw6QbMYPzDGDWf1FMGbD1YXg9dgYyGdLjYBtFHJbKFQXhu3LnofRrl25tvMGQ1bsH4zgEvSFsGvfDIqXhZ98C4ZCPsl9S6tBbeGeIqOe2kjnB3uHL3e3b4sH8qn5_vH5c1TqTgmqQSBV7SlIEXLNes5yEoLzbVWNc-KKgIyu6AYrzmvlMKCK9y0uCYar9gcif2uCj7GAH23CWaQYdcR3GVW3Q-rLrPqDqzG3tWvnjJJJjN-E6Sx_7av923jRlSD_MxIuyR31oc-SKdM7NjfE18OlIbR |
| CitedBy_id | crossref_primary_10_1063_5_0273567 crossref_primary_10_1177_10597123231206604 crossref_primary_10_1080_17588928_2025_2518942 crossref_primary_10_25300_MISQ_2025_18058 crossref_primary_10_1007_s43681_024_00592_6 crossref_primary_10_1016_j_neunet_2024_107075 crossref_primary_10_1109_TSMC_2023_3312585 crossref_primary_10_1111_nyas_15118 crossref_primary_10_1038_s41467_024_54257_3 crossref_primary_10_1073_pnas_2309058120 crossref_primary_10_1109_LRA_2024_3382534 crossref_primary_10_1109_TCDS_2023_3338491 crossref_primary_10_3390_s24072249 crossref_primary_10_1098_rsos_241678 crossref_primary_10_3389_frobt_2024_1353870 crossref_primary_10_1080_17588928_2024_2403348 crossref_primary_10_1007_s10015_025_01026_0 crossref_primary_10_1007_s10462_023_10670_6 crossref_primary_10_1016_j_tics_2023_10_002 crossref_primary_10_3758_s13423_024_02522_3 crossref_primary_10_1109_TSMC_2024_3481251 crossref_primary_10_3390_biomimetics8050445 crossref_primary_10_3390_s24113311 crossref_primary_10_1109_ACCESS_2025_3537859 |
| Cites_doi | 10.1073/pnas.2101043118 10.1515/jagi-2016-0001 10.1080/01691864.2021.2012512 10.1016/j.tics.2020.03.004 10.3389/fpsyg.2012.00151 10.1016/j.robot.2011.05.009 10.1115/1.3662552 10.1007/978-3-030-35888-4_31 10.1109/TCDS 10.1126/science.1145803 10.1207/s15516709cog0000_22 10.3389/fnhum.2014.00302 10.1109/34.982896 10.1080/01691864.2019.1632223 10.1109/TCDS.2017.2700207 10.1038/s41467-022-29632-7 10.1080/17588928.2015.1020053 10.5772/5775 10.1080/01691864.2019.1636714 10.1162/neco_a_01228 10.1177/1059712318824697 10.1016/j.patter.2022.100533 10.1109/TRO.2016.2597322 10.1109/TCDS.2016.2594134 10.1613/jair.1.13754 10.1016/j.neuron.2018.10.003 10.1038/nrn2575 10.1371/journal.pcbi.1000220 10.1093/oso/9780190905385.001.0001 10.1609/aimag.v38i4.2744 10.1109/TAMD.2014.2341351 10.1111/mila.v35.2 10.1109/TNNLS.2015.2492140 10.1162/089892998562744 10.1007/s00354-019-00084-w 10.1109/TCDS.2016.2581307 10.1177/027836499000900206 10.1609/aaai.v28i1.9004 10.1038/s41562-017-0064 10.1109/ICRA.2017.7989164 10.1109/IROS40897.2019.8967650 10.1207/S15326969ECO1204_04 10.1037/a0037665 10.1007/s11571-023-09963-x 10.1016/j.jmp.2017.09.004 10.1016/S0893-6080(02)00214-9 10.4108/icst.mobicase.2014.257786 10.1093/acprof:oso/9780199217274.003.0012 10.1109/TAMD.2011.2160943 10.1109/ICRA.2011.5979677 10.1109/IROS40897.2019.8968597 10.1038/nature02024 10.1109/IROS51168.2021.9636394 10.1177/1059712317726357 10.1016/j.neunet.2019.10.014 10.1016/j.rcim.2022.102432 10.1016/j.neunet.2021.05.010 10.1016/j.tics.2020.02.006 10.1007/978-3-030-64919-7_8 10.3390/e24030361 10.1145/1553374.1553508 10.3389/fnbot.2022.843108 10.1016/j.neunet.2022.02.026 10.1111/nyas.2017.1396.issue-1 10.1016/j.neunet.2021.09.011 10.1609/aaai.v32i1.12077 10.1016/j.rcim.2019.101846 10.1073/pnas.1608282113 10.1017/S0140525X190012133 10.1007/978-3-031-28719-0_8 10.1007/978-3-642-00616-6_5 10.1371/journal.pone.0037843 10.1007/s00422-011-0424-z 10.1007/978-3-031-28719-0_4 10.1007/s10994-012-5278-7 10.1109/TCDS.2016.2615326 10.1109/SII55687.2023.10039424 10.1038/4580 10.1162/CPSY_a_00019 10.1177/105971230501300102 10.1523/ENEURO.0412-18.2019 10.1098/rstb.2008.0300 10.1016/j.plrev.2018.06.014 10.1093/acprof:oso/9780199682737.001.0001 10.1016/j.artint.2018.01.002 10.1016/j.neunet.2021.11.004 10.1016/j.neunet.2006.02.007 10.1177/0278364920987859 10.1080/02331880309257 10.1038/nrn2787 10.1177/0278364912455366 10.1016/j.robot.2019.03.003 10.1109/ICRA.2016.7487757 10.1007/s00422-010-0364-z 10.1016/j.tics.2012.08.006 10.7551/mitpress/12441.001.0001 10.1177/1059712307084689 10.3758/s13414-019-01760-1 10.21105/joss.04098 10.1007/s00422-019-00805-w 10.1109/tpami.2021.3057446 10.1016/j.jphysparis.2006.10.001 10.3389/fnbot.2018.00025 10.1109/IROS45743.2020.9340873 10.1016/j.pneurobio.2022.102329 10.1162/NECO_a_00912 10.1016/j.cub.2015.08.057 10.1037/0003-066X.58.9.697 10.1145/301153.301168 10.1162/neco_a_01383 10.1007/978-3-030-64919-7_1 10.1609/aaai.v34i06.6551 10.1016/j.cortex.2017.01.016 10.1109/IROS.2012.6385639 10.1109/CVPR46437.2021.00443 10.1016/j.tics.2020.05.012 10.1007/s10462-018-9646-y 10.1093/acprof:oso/9780190281069.001.0001 10.1109/TCDS.2022.3152383 10.1073/pnas.1912340117 10.1016/j.neunet.2006.02.005 10.1016/j.neuropsychologia.2023.108562 10.1109/CVPR.2008.4587522 10.1371/journal.pcbi.1002221 10.1007/978-3-030-64919-7_3 10.1073/pnas.1912328117 10.3389/fnbot.2022.848065 10.1109/IROS.2018.8593684 10.1515/semi.1992.89.4.319 10.1016/j.neunet.2019.04.022 10.1007/s13218-020-00701-7 10.1146/control.2018.1.issue-1 10.1109/ICDL-EpiRob48136.2020.9278100 10.1016/0959-4388(94)90066-3 10.18653/v1/2021.emnlp-main.788 10.1126/scirobotics.aax8177 10.1109/IJCNN48605.2020.9207382 10.1007/s43154-020-00029-y 10.1016/j.plrev.2019.01.017 10.1016/j.tics.2021.05.007 10.1111/nyas.v1464.1 10.1109/TRO.2007.914848 10.1016/j.plrev.2023.05.012 10.1016/j.inffus.2019.12.004 10.1109/DEVLRN.2016.7846838 10.1093/acprof:oso/9780199794553.001.0001 10.1023/A:1020820000972 10.3389/fpsyg.2019.01424 10.1016/j.neunet.2018.07.006 10.1109/IROS.2014.6942624 10.1111/tops.12142 10.1016/j.cognition.2009.07.005 10.7554/eLife.41703 10.1109/ICRA48506.2021.9560734 10.1126/scirobotics.aaw6326 10.1515/semi.2001.014 10.1098/rstb.1997.0095 10.1109/HUMANOIDS.2017.8246915 10.1016/j.cogsys.2017.08.003 10.1145/2974804.2980485 10.1371/journal.pcbi.1002211 10.3389/fnbot.2022.1045355 10.1038/ncomms15276 10.1515/itit-2014-1066 10.1109/HUMANOIDS.2015.7363477 10.1109/CVPR42600.2020.00116 10.1080/01691864.2021.2019613 10.1109/ICRA.2016.7487691 10.1016/0004-3702(91)90053-M 10.1016/S0921-8890(05)80025-9 10.1109/ICRA.2015.7139553 10.7551/mitpress/1247.001.0001 10.1109/DEVLRN.2014.6983027 10.1007/s00422-012-0512-8 10.24963/ijcai.2019/882 10.1109/CEEC47804.2019.8974334 10.1080/01691864.2016.1164622 10.1109/TAMD.4563672 10.1038/nn1790 10.1088/1748-3182/8/3/035002 10.1145/504729.504754 10.1016/S0377-2217(96)00385-2 10.1016/j.tics.2016.03.013 10.1109/TIP.2015.2487837 10.1007/s13218-015-0356-1 10.3389/fnbot.2018.00034 10.1017/S0140525X12000477 10.1109/TCDS.2021.3049907 10.1007/s00426-009-0236-0 10.1073/pnas.1912331117 10.1007/s12369-013-0181-3 10.1109/IROS47612.2022.9981610 10.1126/science.1195870 10.3389/fpsyg.2012.00130 10.1207/s15326969eco1504_3 10.1109/INSS.2010.5573462 10.1109/ICDL-EpiRob48136.2020.9278105 10.1016/j.conb.2006.03.001 10.1080/09540090310001655110 10.3389/fpsyt.2020.00762 10.1016/j.neunet.2021.01.033 10.1098/rstb.2005.1622 10.1109/IROS47612.2022.9981405 10.1016/B978-1-55860-141-3.50030-4 10.24963/ijcai.2020/371 10.1002/wcs.v2.5 10.1016/j.tics.2013.09.007 10.1109/TNNLS.2023.3240857 10.1016/j.neuron.2011.02.027 10.1080/15294145.2017.1294031 10.1109/ICRA40945.2020.9196878 |
| ContentType | Journal Article |
| Copyright | 2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group and The Robotics Society of Japan. 2023 |
| Copyright_xml | – notice: 2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group and The Robotics Society of Japan. 2023 |
| DBID | 0YH AAYXX CITATION |
| DOI | 10.1080/01691864.2023.2225232 |
| DatabaseName | Taylor & Francis Open Access CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: 0YH name: Taylor & Francis Open Access url: https://www.tandfonline.com sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1568-5535 |
| EndPage | 806 |
| ExternalDocumentID | 10_1080_01691864_2023_2225232 2225232 |
| Genre | Review Article |
| GroupedDBID | -~X .QJ 0BK 0R~ 0YH 23M 30N 4.4 5GY AAENE AAGDL AAHIA AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABDBF ABFIM ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGFS ACTIO ACUHS ADCVX ADGTB ADMLS AEISY AENEX AEOZL AEPSL AEVUW AEYOC AFRVT AGDLA AGMYJ AHDZW AIJEM AIYEW AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AMFWP AQRUH AQTUD AVBZW AWYRJ BLEHA CCCUG CS3 DGEBU DKSSO EAP EBS EMK EPL EST ESX E~A E~B F5P GTTXZ H13 HF~ HZ~ H~P I-F IPNFZ J.P KYCEM LJTGL M4Z NX~ O9- P2P RIG RNANH ROSJB RTWRZ S-T SNACF TASJS TBQAZ TDBHL TEN TFL TFT TFW TTHFI TUROJ TUS UT5 ZGOLN ~S~ AAYXX CITATION |
| ID | FETCH-LOGICAL-c401t-e50b292ea594d3f4ea6d5d4ddc746d5d2c1ea4ea6ec347446cc054c089071d0b3 |
| IEDL.DBID | TFW |
| ISICitedReferencesCount | 30 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001016619600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0169-1864 |
| IngestDate | Sat Nov 29 02:28:43 EST 2025 Tue Nov 18 21:46:27 EST 2025 Mon Oct 20 23:45:50 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 13 |
| Language | English |
| License | open-access: http://creativecommons.org/licenses/by-nc-nd/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way. The terms on which this article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c401t-e50b292ea594d3f4ea6d5d4ddc746d5d2c1ea4ea6ec347446cc054c089071d0b3 |
| ORCID | 0000-0001-9597-2731 0000-0002-9216-9297 0000-0002-0790-1915 0000-0002-5682-2076 0000-0002-9844-6435 0000-0002-9454-680X 0000-0001-6813-8282 |
| OpenAccessLink | https://www.tandfonline.com/doi/abs/10.1080/01691864.2023.2225232 |
| PageCount | 27 |
| ParticipantIDs | crossref_citationtrail_10_1080_01691864_2023_2225232 crossref_primary_10_1080_01691864_2023_2225232 informaworld_taylorfrancis_310_1080_01691864_2023_2225232 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-07-03 |
| PublicationDateYYYYMMDD | 2023-07-03 |
| PublicationDate_xml | – month: 07 year: 2023 text: 2023-07-03 day: 03 |
| PublicationDecade | 2020 |
| PublicationTitle | Advanced robotics |
| PublicationYear | 2023 |
| Publisher | Taylor & Francis |
| Publisher_xml | – name: Taylor & Francis |
| References | CIT0230 CIT0111 CIT0232 Arkin RC. (CIT0013) 1998 CIT0110 CIT0231 von Helmholtz H. (CIT0220) 1867 Helmholtz HV. (CIT0017) 1867 Ha D (CIT0026) 2018; 31 CIT0113 CIT0234 CIT0112 CIT0233 CIT0115 CIT0236 CIT0114 CIT0235 CIT0117 CIT0238 CIT0116 CIT0237 CIT0239 CIT0120 CIT0241 Russell SJ (CIT0140) 2016 CIT0240 CIT0001 CIT0122 CIT0243 CIT0121 CIT0242 Doya K (CIT0222) 2007 Anderson JR. (CIT0251) 2009 Kiverstein J. (CIT0008) 2007; 14 CIT0003 CIT0245 CIT0002 CIT0123 CIT0244 CIT0005 CIT0126 CIT0247 CIT0004 CIT0125 CIT0246 CIT0007 CIT0128 CIT0249 CIT0006 CIT0248 CIT0009 CIT0129 CIT0250 CIT0010 CIT0131 CIT0130 CIT0012 CIT0133 CIT0254 CIT0011 CIT0253 Levine S (CIT0031) 2016; 17 Brown T (CIT0271) 2020; 33 CIT0014 CIT0135 CIT0256 CIT0134 CIT0255 CIT0016 CIT0137 CIT0015 CIT0257 CIT0018 CIT0138 CIT0019 CIT0261 CIT0260 CIT0021 CIT0142 CIT0263 CIT0020 CIT0141 CIT0262 CIT0023 CIT0144 CIT0265 CIT0022 CIT0143 CIT0264 CIT0025 CIT0146 CIT0267 CIT0024 CIT0145 CIT0266 CIT0027 CIT0148 CIT0269 CIT0147 CIT0268 CIT0029 CIT0149 Racanière S (CIT0132) 2017; 30 CIT0209 CIT0208 CIT0201 CIT0200 CIT0203 CIT0202 CIT0205 CIT0204 CIT0207 CIT0206 CIT0210 Bingham E (CIT0258) 2019; 20 Pezzulo G (CIT0279) 2023 CIT0212 CIT0211 CIT0214 CIT0213 Gibson JJ. (CIT0153) 1979 CIT0216 CIT0215 CIT0218 CIT0217 CIT0100 CIT0221 Köhler W (CIT0136) 1925 Al N (CIT0139) 2014 CIT0109 CIT0102 CIT0223 CIT0101 CIT0104 CIT0225 CIT0103 CIT0224 CIT0106 CIT0227 CIT0105 CIT0226 CIT0108 CIT0229 CIT0107 CIT0228 CIT0072 CIT0193 CIT0071 CIT0192 CIT0074 CIT0195 CIT0073 CIT0194 CIT0076 CIT0197 CIT0075 CIT0196 CIT0078 CIT0199 CIT0077 CIT0198 CIT0070 CIT0191 CIT0190 CIT0079 Schmidhuber J. (CIT0028) 1990 CIT0083 CIT0082 CIT0085 CIT0084 CIT0087 CIT0086 CIT0089 CIT0088 Gumbsch C (CIT0124) 2021; 34 CIT0081 CIT0080 Fountas Z (CIT0118) 2020; 33 CIT0094 CIT0093 CIT0096 CIT0095 CIT0098 CIT0097 Mazzaglia P (CIT0119) 2021; 34 CIT0099 CIT0090 CIT0092 CIT0091 Laird JE. (CIT0252) 2008; 171 CIT0270 CIT0030 CIT0151 CIT0272 CIT0150 CIT0032 CIT0274 CIT0152 CIT0273 CIT0034 CIT0155 CIT0276 CIT0033 CIT0154 CIT0275 Paige B (CIT0259) 2017; 30 CIT0036 CIT0278 CIT0035 CIT0156 CIT0277 CIT0038 CIT0159 CIT0037 Gibson JJ. (CIT0157) 1966 CIT0158 CIT0039 CIT0160 CIT0281 CIT0280 CIT0041 CIT0162 CIT0283 CIT0040 CIT0161 CIT0282 CIT0043 CIT0164 CIT0285 CIT0042 CIT0163 CIT0284 CIT0045 CIT0166 CIT0287 CIT0044 CIT0165 CIT0286 Craik K. (CIT0219) 1943 CIT0047 CIT0168 CIT0289 CIT0167 CIT0288 CIT0049 CIT0048 CIT0169 CIT0050 CIT0171 CIT0292 CIT0170 CIT0291 CIT0052 CIT0173 CIT0051 CIT0172 CIT0293 Clark A. (CIT0046) 2015 CIT0054 CIT0175 CIT0053 CIT0174 CIT0056 CIT0177 CIT0055 CIT0176 Watter M (CIT0127) 2015; 28 CIT0290 CIT0058 CIT0179 CIT0057 CIT0178 CIT0059 CIT0061 CIT0182 CIT0060 CIT0181 CIT0063 CIT0184 CIT0062 CIT0183 CIT0065 CIT0186 CIT0064 CIT0185 CIT0067 CIT0188 CIT0066 CIT0187 CIT0180 CIT0069 CIT0068 CIT0189 |
| References_xml | – ident: CIT0241 doi: 10.1073/pnas.2101043118 – ident: CIT0256 doi: 10.1515/jagi-2016-0001 – ident: CIT0286 doi: 10.1080/01691864.2021.2012512 – ident: CIT0056 doi: 10.1016/j.tics.2020.03.004 – ident: CIT0054 doi: 10.3389/fpsyg.2012.00151 – ident: CIT0165 doi: 10.1016/j.robot.2011.05.009 – ident: CIT0033 doi: 10.1115/1.3662552 – ident: CIT0190 doi: 10.1007/978-3-030-35888-4_31 – volume-title: How can the human mind occur in the physical universe year: 2009 ident: CIT0251 – ident: CIT0277 doi: 10.1109/TCDS – ident: CIT0292 doi: 10.1126/science.1145803 – ident: CIT0253 doi: 10.1207/s15516709cog0000_22 – ident: CIT0098 doi: 10.3389/fnhum.2014.00302 – ident: CIT0069 doi: 10.1109/34.982896 – ident: CIT0006 – ident: CIT0275 doi: 10.1080/01691864.2019.1632223 – ident: CIT0172 doi: 10.1109/TCDS.2017.2700207 – ident: CIT0049 doi: 10.1038/s41467-022-29632-7 – ident: CIT0055 doi: 10.1080/17588928.2015.1020053 – ident: CIT0210 doi: 10.5772/5775 – ident: CIT0064 – ident: CIT0179 doi: 10.1080/01691864.2019.1636714 – ident: CIT0095 doi: 10.1162/neco_a_01228 – ident: CIT0111 doi: 10.1177/1059712318824697 – ident: CIT0257 doi: 10.1016/j.patter.2022.100533 – ident: CIT0215 doi: 10.1109/TRO.2016.2597322 – ident: CIT0155 doi: 10.1109/TCDS.2016.2594134 – ident: CIT0148 doi: 10.1613/jair.1.13754 – volume-title: Behavior-based robotics year: 1998 ident: CIT0013 – ident: CIT0235 doi: 10.1016/j.neuron.2018.10.003 – ident: CIT0236 doi: 10.1038/nrn2575 – ident: CIT0089 doi: 10.1371/journal.pcbi.1000220 – ident: CIT0243 doi: 10.1093/oso/9780190905385.001.0001 – ident: CIT0237 doi: 10.1609/aimag.v38i4.2744 – volume: 14 start-page: 127 issue: 7 year: 2007 ident: CIT0008 publication-title: J Conscious Stud – ident: CIT0015 doi: 10.1109/TAMD.2014.2341351 – ident: CIT0047 doi: 10.1111/mila.v35.2 – ident: CIT0094 doi: 10.1109/TNNLS.2015.2492140 – ident: CIT0138 doi: 10.1162/089892998562744 – ident: CIT0254 – volume-title: Artificial intelligence: a modern approach year: 2016 ident: CIT0140 – ident: CIT0266 doi: 10.1007/s00354-019-00084-w – ident: CIT0283 – ident: CIT0170 doi: 10.1109/TCDS.2016.2581307 – ident: CIT0290 doi: 10.1177/027836499000900206 – ident: CIT0143 doi: 10.1609/aaai.v28i1.9004 – ident: CIT0188 doi: 10.1038/s41562-017-0064 – volume: 20 start-page: 973 issue: 1 year: 2019 ident: CIT0258 publication-title: J Machine Learn Res – ident: CIT0023 – volume: 30 start-page: 5927 year: 2017 ident: CIT0259 publication-title: Adv Neural Inf Process Syst – ident: CIT0063 doi: 10.1109/ICRA.2017.7989164 – ident: CIT0260 – ident: CIT0071 – volume: 30 start-page: 1 year: 2017 ident: CIT0132 publication-title: Adv Neural Inf Process Syst – ident: CIT0195 doi: 10.1109/IROS40897.2019.8967650 – ident: CIT0161 doi: 10.1207/S15326969ECO1204_04 – ident: CIT0097 doi: 10.1037/a0037665 – ident: CIT0150 – volume-title: Generating Meaning: Active Inference and the Scope and Limits of Passive AI year: 2023 ident: CIT0279 – ident: CIT0144 – ident: CIT0058 doi: 10.1007/s11571-023-09963-x – ident: CIT0052 doi: 10.1016/j.jmp.2017.09.004 – ident: CIT0088 doi: 10.1016/S0893-6080(02)00214-9 – ident: CIT0193 doi: 10.4108/icst.mobicase.2014.257786 – ident: CIT0276 doi: 10.1093/acprof:oso/9780199217274.003.0012 – ident: CIT0141 doi: 10.1109/TAMD.2011.2160943 – ident: CIT0164 doi: 10.1109/ICRA.2011.5979677 – volume-title: Handbuch der physiologischen optik year: 1867 ident: CIT0220 – ident: CIT0280 doi: 10.1109/IROS40897.2019.8968597 – ident: CIT0014 doi: 10.1038/nature02024 – ident: CIT0104 doi: 10.1109/IROS51168.2021.9636394 – ident: CIT0154 doi: 10.1177/1059712317726357 – ident: CIT0246 – ident: CIT0133 – ident: CIT0096 doi: 10.1016/j.neunet.2019.10.014 – ident: CIT0182 doi: 10.1016/j.rcim.2022.102432 – ident: CIT0034 – ident: CIT0110 doi: 10.1016/j.neunet.2021.05.010 – ident: CIT0189 – ident: CIT0060 doi: 10.1016/j.tics.2020.02.006 – ident: CIT0040 – volume-title: Making the world differentiable: on using self-supervised fully recurrent neural networks for dynamic reinforcement learning and planning in non-stationary environments year: 1990 ident: CIT0028 – ident: CIT0032 doi: 10.1007/978-3-030-64919-7_8 – ident: CIT0116 doi: 10.3390/e24030361 – ident: CIT0128 – ident: CIT0074 doi: 10.1145/1553374.1553508 – ident: CIT0117 doi: 10.3389/fnbot.2022.843108 – ident: CIT0240 doi: 10.1016/j.neunet.2022.02.026 – ident: CIT0105 – ident: CIT0245 doi: 10.1111/nyas.2017.1396.issue-1 – ident: CIT0004 doi: 10.1016/j.neunet.2021.09.011 – ident: CIT0151 doi: 10.1609/aaai.v32i1.12077 – ident: CIT0180 doi: 10.1016/j.rcim.2019.101846 – ident: CIT0238 doi: 10.1073/pnas.1608282113 – ident: CIT0289 – ident: CIT0134 – ident: CIT0185 doi: 10.1017/S0140525X190012133 – ident: CIT0285 doi: 10.1007/978-3-031-28719-0_8 – ident: CIT0293 doi: 10.1007/978-3-642-00616-6_5 – ident: CIT0092 doi: 10.1371/journal.pone.0037843 – ident: CIT0051 doi: 10.1007/s00422-011-0424-z – volume-title: The mentality of apes: international library of psychology, philosophy, and scientific method year: 1925 ident: CIT0136 – ident: CIT0115 doi: 10.1007/978-3-031-28719-0_4 – ident: CIT0255 – ident: CIT0075 doi: 10.1007/s10994-012-5278-7 – ident: CIT0171 doi: 10.1109/TCDS.2016.2615326 – ident: CIT0287 doi: 10.1109/SII55687.2023.10039424 – volume: 17 start-page: 1334 issue: 1 year: 2016 ident: CIT0031 publication-title: J Machine Learn Res – ident: CIT0272 – ident: CIT0018 doi: 10.1038/4580 – ident: CIT0099 doi: 10.1162/CPSY_a_00019 – ident: CIT0108 doi: 10.1177/105971230501300102 – ident: CIT0043 doi: 10.1523/ENEURO.0412-18.2019 – ident: CIT0044 doi: 10.1098/rstb.2008.0300 – ident: CIT0216 doi: 10.1016/j.plrev.2018.06.014 – ident: CIT0048 doi: 10.1093/acprof:oso/9780199682737.001.0001 – ident: CIT0177 doi: 10.1016/j.artint.2018.01.002 – ident: CIT0112 doi: 10.1016/j.neunet.2021.11.004 – ident: CIT0107 doi: 10.1016/j.neunet.2006.02.007 – ident: CIT0025 doi: 10.1177/0278364920987859 – ident: CIT0036 doi: 10.1080/02331880309257 – ident: CIT0045 doi: 10.1038/nrn2787 – ident: CIT0145 – ident: CIT0214 doi: 10.1177/0278364912455366 – ident: CIT0273 – ident: CIT0080 – ident: CIT0178 doi: 10.1016/j.robot.2019.03.003 – ident: CIT0174 doi: 10.1109/ICRA.2016.7487757 – ident: CIT0053 doi: 10.1007/s00422-010-0364-z – ident: CIT0129 – ident: CIT0076 doi: 10.1016/j.tics.2012.08.006 – ident: CIT0196 – ident: CIT0041 – ident: CIT0020 doi: 10.7551/mitpress/12441.001.0001 – ident: CIT0149 doi: 10.1177/1059712307084689 – ident: CIT0248 doi: 10.3758/s13414-019-01760-1 – ident: CIT0288 doi: 10.21105/joss.04098 – ident: CIT0072 doi: 10.1007/s00422-019-00805-w – ident: CIT0003 doi: 10.1109/tpami.2021.3057446 – ident: CIT0050 doi: 10.1016/j.jphysparis.2006.10.001 – ident: CIT0265 doi: 10.3389/fnbot.2018.00025 – ident: CIT0085 doi: 10.1109/IROS45743.2020.9340873 – ident: CIT0123 doi: 10.1016/j.pneurobio.2022.102329 – ident: CIT0224 doi: 10.1162/NECO_a_00912 – ident: CIT0007 – ident: CIT0233 doi: 10.1016/j.cub.2015.08.057 – ident: CIT0263 doi: 10.1037/0003-066X.58.9.697 – ident: CIT0030 – ident: CIT0159 doi: 10.1145/301153.301168 – ident: CIT0200 – ident: CIT0021 doi: 10.1162/neco_a_01383 – ident: CIT0077 doi: 10.1007/978-3-030-64919-7_1 – ident: CIT0201 doi: 10.1609/aaai.v34i06.6551 – ident: CIT0066 doi: 10.1016/j.cortex.2017.01.016 – ident: CIT0038 – ident: CIT0269 doi: 10.1109/IROS.2012.6385639 – ident: CIT0087 doi: 10.1109/CVPR46437.2021.00443 – ident: CIT0199 – ident: CIT0078 doi: 10.1016/j.tics.2020.05.012 – ident: CIT0250 doi: 10.1007/s10462-018-9646-y – ident: CIT0024 doi: 10.1093/acprof:oso/9780190281069.001.0001 – ident: CIT0175 doi: 10.1109/TCDS.2022.3152383 – ident: CIT0223 doi: 10.1073/pnas.1912340117 – ident: CIT0203 doi: 10.1016/j.neunet.2006.02.005 – ident: CIT0244 doi: 10.1016/j.neuropsychologia.2023.108562 – ident: CIT0070 doi: 10.1109/CVPR.2008.4587522 – ident: CIT0091 doi: 10.1371/journal.pcbi.1002221 – ident: CIT0103 doi: 10.1007/978-3-030-64919-7_3 – ident: CIT0073 – ident: CIT0228 doi: 10.1073/pnas.1912328117 – ident: CIT0181 doi: 10.3389/fnbot.2022.848065 – ident: CIT0106 doi: 10.1109/IROS.2018.8593684 – ident: CIT0009 doi: 10.1515/semi.1992.89.4.319 – ident: CIT0207 doi: 10.1016/j.neunet.2019.04.022 – ident: CIT0282 doi: 10.1007/s13218-020-00701-7 – ident: CIT0194 – ident: CIT0121 doi: 10.1146/control.2018.1.issue-1 – ident: CIT0268 doi: 10.1109/ICDL-EpiRob48136.2020.9278100 – ident: CIT0239 doi: 10.1016/0959-4388(94)90066-3 – ident: CIT0191 doi: 10.18653/v1/2021.emnlp-main.788 – ident: CIT0281 doi: 10.1126/scirobotics.aax8177 – ident: CIT0135 – ident: CIT0114 doi: 10.1109/IJCNN48605.2020.9207382 – ident: CIT0218 doi: 10.1007/s43154-020-00029-y – ident: CIT0217 doi: 10.1016/j.plrev.2019.01.017 – ident: CIT0242 doi: 10.1016/j.tics.2021.05.007 – ident: CIT0234 doi: 10.1111/nyas.v1464.1 – volume: 171 start-page: 224 year: 2008 ident: CIT0252 publication-title: Front Artificial Intell Appl – volume: 34 start-page: 17518 year: 2021 ident: CIT0124 publication-title: Adv Neural Inf Process Syst – ident: CIT0163 doi: 10.1109/TRO.2007.914848 – ident: CIT0205 doi: 10.1016/j.plrev.2023.05.012 – ident: CIT0002 doi: 10.1016/j.inffus.2019.12.004 – ident: CIT0109 doi: 10.1109/DEVLRN.2016.7846838 – ident: CIT0262 doi: 10.1093/acprof:oso/9780199794553.001.0001 – ident: CIT0084 – ident: CIT0137 doi: 10.1023/A:1020820000972 – ident: CIT0232 doi: 10.3389/fpsyg.2019.01424 – volume-title: Surfing uncertainty: prediction, action, and the embodied mind year: 2015 ident: CIT0046 – ident: CIT0113 – ident: CIT0122 doi: 10.1016/j.neunet.2018.07.006 – volume-title: Handbuch der physiologischen optik year: 1867 ident: CIT0017 – ident: CIT0166 doi: 10.1109/IROS.2014.6942624 – ident: CIT0206 doi: 10.1111/tops.12142 – ident: CIT0197 doi: 10.1016/j.cognition.2009.07.005 – ident: CIT0068 doi: 10.7554/eLife.41703 – ident: CIT0079 – ident: CIT0209 – ident: CIT0039 – ident: CIT0081 doi: 10.1109/ICRA48506.2021.9560734 – ident: CIT0062 doi: 10.1126/scirobotics.aaw6326 – ident: CIT0010 doi: 10.1515/semi.2001.014 – ident: CIT0221 doi: 10.1098/rstb.1997.0095 – ident: CIT0274 – volume: 33 start-page: 1877 year: 2020 ident: CIT0271 publication-title: Adv Neural Inf Process Syst – volume: 28 start-page: 1 year: 2015 ident: CIT0127 publication-title: Adv Neural Inf Process Syst – volume: 31 start-page: 2450 year: 2018 ident: CIT0026 publication-title: Adv Neural Inf Process Syst – ident: CIT0169 doi: 10.1109/HUMANOIDS.2017.8246915 – ident: CIT0158 – ident: CIT0249 doi: 10.1016/j.cogsys.2017.08.003 – ident: CIT0176 doi: 10.1145/2974804.2980485 – ident: CIT0226 doi: 10.1371/journal.pcbi.1002211 – ident: CIT0156 doi: 10.3389/fnbot.2022.1045355 – ident: CIT0230 doi: 10.1038/ncomms15276 – ident: CIT0264 doi: 10.1515/itit-2014-1066 – ident: CIT0147 doi: 10.1109/HUMANOIDS.2015.7363477 – ident: CIT0204 – ident: CIT0067 doi: 10.1109/CVPR42600.2020.00116 – ident: CIT0142 doi: 10.1080/01691864.2021.2019613 – ident: CIT0011 – ident: CIT0168 doi: 10.1109/ICRA.2016.7487691 – ident: CIT0012 doi: 10.1016/0004-3702(91)90053-M – ident: CIT0291 doi: 10.1016/S0921-8890(05)80025-9 – ident: CIT0212 doi: 10.1109/TCDS – ident: CIT0146 doi: 10.1109/ICRA.2015.7139553 – ident: CIT0160 doi: 10.7551/mitpress/1247.001.0001 – ident: CIT0167 doi: 10.1109/DEVLRN.2014.6983027 – ident: CIT0057 doi: 10.1007/s00422-012-0512-8 – ident: CIT0213 doi: 10.24963/ijcai.2019/882 – ident: CIT0187 doi: 10.1109/CEEC47804.2019.8974334 – ident: CIT0278 doi: 10.1080/01691864.2016.1164622 – ident: CIT0093 doi: 10.1109/TAMD.4563672 – ident: CIT0225 doi: 10.1038/nn1790 – ident: CIT0183 doi: 10.1088/1748-3182/8/3/035002 – ident: CIT0035 doi: 10.1145/504729.504754 – ident: CIT0130 doi: 10.1016/S0377-2217(96)00385-2 – ident: CIT0247 doi: 10.1016/j.tics.2016.03.013 – ident: CIT0065 doi: 10.1109/TIP.2015.2487837 – ident: CIT0037 – ident: CIT0125 – ident: CIT0120 doi: 10.1007/s13218-015-0356-1 – ident: CIT0261 doi: 10.3389/fnbot.2018.00034 – ident: CIT0016 doi: 10.1017/S0140525X12000477 – ident: CIT0022 doi: 10.1109/TCDS.2021.3049907 – ident: CIT0090 doi: 10.1007/s00426-009-0236-0 – ident: CIT0198 – ident: CIT0227 doi: 10.1073/pnas.1912331117 – ident: CIT0211 doi: 10.1007/s12369-013-0181-3 – ident: CIT0005 – ident: CIT0082 doi: 10.1109/IROS47612.2022.9981610 – ident: CIT0131 – volume: 33 start-page: 11662 year: 2020 ident: CIT0118 publication-title: Adv Neural Inf Process Syst – ident: CIT0202 – ident: CIT0229 doi: 10.1126/science.1195870 – ident: CIT0059 doi: 10.3389/fpsyg.2012.00130 – ident: CIT0162 doi: 10.1207/s15326969eco1504_3 – ident: CIT0192 doi: 10.1109/INSS.2010.5573462 – ident: CIT0126 – ident: CIT0102 doi: 10.1109/ICDL-EpiRob48136.2020.9278105 – ident: CIT0061 – ident: CIT0027 – volume-title: Bayesian brain: probabilistic approaches to neural coding year: 2007 ident: CIT0222 – ident: CIT0270 – ident: CIT0186 doi: 10.1016/j.conb.2006.03.001 – ident: CIT0001 doi: 10.1080/09540090310001655110 – ident: CIT0100 doi: 10.3389/fpsyt.2020.00762 – ident: CIT0101 doi: 10.1016/j.neunet.2021.01.033 – ident: CIT0019 doi: 10.1098/rstb.2005.1622 – ident: CIT0086 doi: 10.1109/IROS47612.2022.9981405 – ident: CIT0029 doi: 10.1016/B978-1-55860-141-3.50030-4 – ident: CIT0152 doi: 10.24963/ijcai.2020/371 – volume-title: The nature of explanation year: 1943 ident: CIT0219 – volume-title: Atkinson and hilgard's introduction to psychology year: 2014 ident: CIT0139 – ident: CIT0083 – volume-title: The ecological approach to visual perception year: 1979 ident: CIT0153 – ident: CIT0042 doi: 10.1002/wcs.v2.5 – ident: CIT0284 doi: 10.1016/j.tics.2013.09.007 – volume-title: The senses considered as perceptual systems year: 1966 ident: CIT0157 – ident: CIT0267 doi: 10.1109/TNNLS.2023.3240857 – ident: CIT0231 doi: 10.1016/j.neuron.2011.02.027 – ident: CIT0184 doi: 10.1080/15294145.2017.1294031 – volume: 34 start-page: 13870 year: 2021 ident: CIT0119 publication-title: Adv Neural Inf Process Syst – ident: CIT0208 – ident: CIT0173 doi: 10.1109/ICRA40945.2020.9196878 |
| SSID | ssj0008437 |
| Score | 2.5598319 |
| SecondaryResourceType | review_article |
| Snippet | Creating autonomous robots that can actively explore the environment, acquire knowledge and learn skills continuously is the ultimate achievement envisioned in... |
| SourceID | crossref informaworld |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 780 |
| SubjectTerms | active inference cognitive robotics free-energy principle predictive coding World model |
| Title | World models and predictive coding for cognitive and developmental robotics: frontiers and challenges |
| URI | https://www.tandfonline.com/doi/abs/10.1080/01691864.2023.2225232 |
| Volume | 37 |
| WOSCitedRecordID | wos001016619600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAWR databaseName: Taylor & Francis Online Journals customDbUrl: eissn: 1568-5535 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008437 issn: 0169-1864 databaseCode: TFW dateStart: 19860101 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELagYoCBN6I8Kg-sKYntNA4bQlSdKoYiyhT5FQkJNSgJ_H7unKS0AzDAlkQ-x7o45zvny_cRcgWTQkvNQ5RvF4GAJTXQKh4FNnEytyyPjQq92EQyncr5PH1o0YRVC6vEGjpviCJ8rMaXW-mqQ8RdI4FIJEe4I8L4EAsWSAsgCkNmj6C-2fhpGYulaFgzwSJAk-4fnu96WVud1rhLV1ad8d4_jHef7LYpJ71t5sgB2XCLQ7KzQkR4RJzH1FAvi1NRuBF9K_ELDsZCagpc3ygMki7BRr6N_QIcQf9loQvkfL6hOZIioMS2b2U6uZbqmDyO72d3k6AVYAgMlF114OJQs5Q5FafC8lw4NbKxFdaaROARM5FTeNUZLhIoLI2BDNCEEiruyIaan5Deoli4U0JdYlKhFeSbkPFoaZVMncmh54g5biXrE9E5PjMtOzmKZLxmUUdi2noxQy9mrRf7ZLg0e2voOX4zSFefalb7fZG8ETHJ-I-2Z3-wPSfbeOqBvvyC9Ory3V2SLfNRv1TlgGyGz5OBn7qfpuzplQ |
| linkProvider | Taylor & Francis |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT4QwEJ7oaqIefBvXZw9eWYGWpXgzxs0a1z2tyXoi9EFiYmDDor_fToGVPagHvRHolGYYOjPt9PsAroxRCC6oi_TtzGHGpToiCfqOCjVPlZ8GMnEt2UQ4HvPpNGqfhcGySsyh0woows7V-HPjYnRTEneNCCIe7-OSiE97mLGYuGAV1gIecrRy92W4mI05q3AzjYiDMs0pnu-6WfJPS-ilLb8z2PmPEe_Cdh11ktvKTPZgRWf7sNXCIjwAbctqiGXGmRPzJjIrcBMHp0Mic3RxxIySLOqNbBv1VXNk-i9ykSPs8w1JERcBWbZtK9kwtswP4XlwP7kbOjUHgyNN5lU6OnCFH_k6CSKmaMp00leBYkrJkOGVLz2d4F0tKQtNbimlCQKly03S7SlX0CPoZHmmj4HoUEZMJCbkNEGP4CrhkZap6dnzNVXc7wJrNB_LGqAceTLeYq_BMa21GKMW41qLXegtxGYVQsdvAlH7s8alXRpJKx6TmP4oe_IH2UvYGE6eRvHoYfx4Cpv4yNb90jPolMW7Pod1-VG-zosLa8GfmBXsig |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT4NAEJ5oNUYPvo31uQevVGCXsngzKtFomh5q7I2wDxITUxpAf787C9T2oB70RmBn2AzDzswyfB_AhXEKwQV1kb6dOcyEVEekQd9RoeaZ8rNApq4lmwgHAz4eR8Omm7Bs2iqxhs5qoAi7VuPLPVVZ2xF3iQAiHu_jjohPe1iwmLRgGVZM6hygY4_il9lizFkNm2lEHJRpf-L5Ts1CeFoAL50LO_HWP0x4GzabnJNc106yA0t6sgsbc0iEe6BtUw2xvDglMTci0wI_4eBiSGSOAY6YSZJZt5Edo746joz-Ihc5gj5fkQxREZBj246SLV9LuQ_P8d3o5t5pGBgcaequytGBK_zI12kQMUUzptO-ChRTSoYMj3zp6RTPaklZaCpLKU0KKF1uSm5PuYIeQGeST_QhEB3KiInUJJwm5RFcpTzSMjOaPV9Txf0usNbwiWzgyZEl4y3xWhTTxooJWjFprNiF3kxsWuNz_CYQzT_VpLIbI1nNYpLQH2WP_iB7DmvD2zh5ehg8HsM6XrFNv_QEOlXxrk9hVX5Ur2VxZv33EyX063g |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=World+models+and+predictive+coding+for+cognitive+and+developmental+robotics%3A+frontiers+and+challenges&rft.jtitle=Advanced+robotics&rft.au=Taniguchi%2C+Tadahiro&rft.au=Murata%2C+Shingo&rft.au=Suzuki%2C+Masahiro&rft.au=Ognibene%2C+Dimitri&rft.date=2023-07-03&rft.pub=Taylor+%26+Francis&rft.issn=0169-1864&rft.eissn=1568-5535&rft.volume=37&rft.issue=13&rft.spage=780&rft.epage=806&rft_id=info:doi/10.1080%2F01691864.2023.2225232&rft.externalDBID=0YH&rft.externalDocID=2225232 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-1864&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-1864&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-1864&client=summon |