MetPy A Meteorological Python Library for Data Analysis and Visualization
MetPy is an open-source, Python-based package for meteorology, providing domain-specific functionality built extensively on top of the robust scientific Python software stack, which includes libraries like NumPy, SciPy, Matplotlib, and xarray. The goal of the project is to bring the weather analysis...
Uloženo v:
| Vydáno v: | Bulletin of the American Meteorological Society Ročník 103; číslo 10; s. E2273 - E2284 |
|---|---|
| Hlavní autoři: | , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Boston
American Meteorological Society
01.10.2022
|
| Témata: | |
| ISSN: | 0003-0007, 1520-0477 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | MetPy is an open-source, Python-based package for meteorology, providing domain-specific functionality built extensively on top of the robust scientific Python software stack, which includes libraries like NumPy, SciPy, Matplotlib, and xarray. The goal of the project is to bring the weather analysis capabilities of GEMPAK (and similar software tools) into a modern computing paradigm. MetPy strives to employ best practices in its development, including software tests, continuous integration, and automated publishing of web-based documentation. As such, MetPy represents a sustainable, long-term project that fills a need for the meteorological community. MetPy’s development is substantially driven by its user community, both through feedback on a variety of open, public forums like Stack Overflow, and through code contributions facilitated by the GitHub collaborative software development platform. MetPy has recently seen the release of version 1.0, with robust functionality for analyzing and visualizing meteorological datasets. While previous versions of MetPy have already seen extensive use, the 1.0 release represents a significant milestone in terms of completeness and a commitment to long-term support for the programming interfaces. This article provides an overview of MetPy’s suite of capabilities, including its use of labeled arrays and physical unit information as its core data model, unit-aware calculations, cross sections, skew T and GEMPAK-like plotting, station model plots, and support for parsing a variety of meteorological data formats. The general road map for future planned development for MetPy is also discussed. |
|---|---|
| AbstractList | MetPy is an open-source, Python-based package for meteorology, providing domain-specific functionality built extensively on top of the robust scientific Python software stack, which includes libraries like NumPy, SciPy, Matplotlib, and xarray. The goal of the project is to bring the weather analysis capabilities of GEMPAK (and similar software tools) into a modern computing paradigm. MetPy strives to employ best practices in its development, including software tests, continuous integration, and automated publishing of web-based documentation. As such, MetPy represents a sustainable, long-term project that fills a need for the meteorological community. MetPy’s development is substantially driven by its user community, both through feedback on a variety of open, public forums like Stack Overflow, and through code contributions facilitated by the GitHub collaborative software development platform. MetPy has recently seen the release of version 1.0, with robust functionality for analyzing and visualizing meteorological datasets. While previous versions of MetPy have already seen extensive use, the 1.0 release represents a significant milestone in terms of completeness and a commitment to long-term support for the programming interfaces. This article provides an overview of MetPy’s suite of capabilities, including its use of labeled arrays and physical unit information as its core data model, unit-aware calculations, cross sections, skew T and GEMPAK-like plotting, station model plots, and support for parsing a variety of meteorological data formats. The general road map for future planned development for MetPy is also discussed. MetPy is an open-source, Python-based package for meteorology, providing domain-specific functionality built extensively on top of the robust scientific Python software stack, which includes libraries like NumPy, SciPy, Matplotlib, and xarray. The goal of the project is to bring the weather analysis capabilities of GEMPAK (and similar software tools) into a modern computing paradigm. MetPy strives to employ best practices in its development, including software tests, continuous integration, and automated publishing of web-based documentation. As such, MetPy represents a sustainable, long-term project that fills a need for the meteorological community. MetPy’s development is substantially driven by its user community, both through feedback on a variety of open, public forums like Stack Overflow, and through code contributions facilitated by the GitHub collaborative software development platform. MetPy has recently seen the release of version 1.0, with robust functionality for analyzing and visualizing meteorological datasets. While previous versions of MetPy have already seen extensive use, the 1.0 release represents a significant milestone in terms of completeness and a commitment to long-term support for the programming interfaces. This article provides an overview of MetPy’s suite of capabilities, including its use of labeled arrays and physical unit information as its core data model, unit-aware calculations, cross sections, skew T and GEMPAK-like plotting, station model plots, and support for parsing a variety of meteorological data formats. The general road map for future planned development for MetPy is also discussed. |
| Author | Marsh, Patrick T. Leeman, John R. Manser, Russell P. Bruick, Zachary Camron, M. Drew Thielen, Jonathan E. Bruning, Eric C. May, Ryan M. Goebbert, Kevin H. Arms, Sean C. |
| Author_xml | – sequence: 1 givenname: Ryan M. surname: May fullname: May, Ryan M. – sequence: 2 givenname: Kevin H. surname: Goebbert fullname: Goebbert, Kevin H. – sequence: 3 givenname: Jonathan E. surname: Thielen fullname: Thielen, Jonathan E. – sequence: 4 givenname: John R. surname: Leeman fullname: Leeman, John R. – sequence: 5 givenname: M. Drew surname: Camron fullname: Camron, M. Drew – sequence: 6 givenname: Zachary surname: Bruick fullname: Bruick, Zachary – sequence: 7 givenname: Eric C. surname: Bruning fullname: Bruning, Eric C. – sequence: 8 givenname: Russell P. surname: Manser fullname: Manser, Russell P. – sequence: 9 givenname: Sean C. surname: Arms fullname: Arms, Sean C. – sequence: 10 givenname: Patrick T. surname: Marsh fullname: Marsh, Patrick T. |
| BookMark | eNp9jz1PwzAQhi3USrSFnYWJ2eXOjj8ylvIptQIJmC3HiaVEbVJsd-i_J1EQAwPLnV7pee70zsmk7dqKkCuEJaISt4XdR1pShhSQiSWekRkKBhQypSZkBgCc9kOdk3mMzRC5xhmZbqv0drogU293sbr82Qvy-fjwsX6mm9enl_VqQ10GmGhZau_QQe5YLkqQTjlnvSgYV95xneUgBJNSYo5aZnnBK88z7wsleB-U5QtyM949hO7rWMVkmu4Y2v6lYRpkLrC3e0qOlAtdjKHyxtXJprprU7D1ziCYobK5W23fzb1haIbKBnsR_oiHUO9tOP2nXI9KE1MXfnmmmOaZBv4N9DBhzA |
| CitedBy_id | crossref_primary_10_5194_essd_16_2141_2024 crossref_primary_10_1002_asl_1288 crossref_primary_10_5194_hess_29_2445_2025 crossref_primary_10_1038_s43247_025_02327_9 crossref_primary_10_3390_atmos14091413 crossref_primary_10_1007_s11069_025_07292_2 crossref_primary_10_1186_s40645_025_00724_4 crossref_primary_10_1016_j_uclim_2024_101912 crossref_primary_10_1016_j_envdev_2025_101210 crossref_primary_10_1016_j_softx_2025_102263 crossref_primary_10_1029_2022JD037954 crossref_primary_10_1007_s12518_024_00569_4 crossref_primary_10_1016_j_atmosres_2025_108315 crossref_primary_10_5194_acp_24_9749_2024 crossref_primary_10_3390_atmos14030526 crossref_primary_10_1007_s12040_025_02565_7 crossref_primary_10_1016_j_atmosres_2025_107947 crossref_primary_10_1186_s40645_025_00685_8 crossref_primary_10_1038_s41598_025_15905_w crossref_primary_10_5194_wcd_6_695_2025 crossref_primary_10_3390_fire7030092 crossref_primary_10_1002_joc_8228 crossref_primary_10_1016_j_atmosres_2025_108435 crossref_primary_10_1007_s10686_024_09949_5 crossref_primary_10_1029_2023JD038630 crossref_primary_10_21105_joss_08087 crossref_primary_10_1016_j_agrformet_2024_110079 crossref_primary_10_5194_acp_25_11025_2025 crossref_primary_10_1038_s43247_024_01885_8 crossref_primary_10_1002_joc_7983 crossref_primary_10_1038_s43856_025_01016_0 crossref_primary_10_1016_j_envres_2024_119347 crossref_primary_10_1016_j_wace_2025_100788 crossref_primary_10_1016_j_envsoft_2025_106656 crossref_primary_10_1073_pnas_2315425121 crossref_primary_10_3847_1538_4357_ad8ddf crossref_primary_10_1002_qj_4866 crossref_primary_10_1002_qj_4945 crossref_primary_10_1002_qj_4946 crossref_primary_10_1029_2022JD037973 crossref_primary_10_1017_jog_2023_21 crossref_primary_10_1016_j_energy_2025_136869 crossref_primary_10_1007_s00382_025_07641_8 crossref_primary_10_1007_s00376_024_3261_4 crossref_primary_10_1038_s41467_023_39465_7 crossref_primary_10_3389_fmars_2025_1546596 crossref_primary_10_1029_2023JD038804 crossref_primary_10_1177_17442591251317727 crossref_primary_10_5194_acp_24_13733_2024 crossref_primary_10_5194_acp_24_4487_2024 crossref_primary_10_5194_wcd_6_949_2025 |
| Cites_doi | 10.25080/Majora-92bf1922-00a |
| ContentType | Journal Article |
| Copyright | 2022 American Meteorological Society Copyright American Meteorological Society 2022 |
| Copyright_xml | – notice: 2022 American Meteorological Society – notice: Copyright American Meteorological Society 2022 |
| DBID | AAYXX CITATION 3V. 7QH 7TG 7TN 7UA 7XB 88I 8AF 8FE 8FG 8FK 8G5 ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W GNUQQ GUQSH H96 HCIFZ KL. L.G M2O M2P MBDVC P5Z P62 PATMY PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PYCSY Q9U R05 S0X |
| DOI | 10.1175/bams-d-21-0125.1 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Aqualine Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Water Resources Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) STEM Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni Edition) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Health Research Premium Collection Agricultural & Environmental Science Collection ProQuest Central Essentials eLibrary ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Central Student Research Library Prep Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Research Library Science Database Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Databases ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition Environmental Science Collection ProQuest Central Basic University of Michigan SIRS Editorial |
| DatabaseTitle | CrossRef University of Michigan Aquatic Science & Fisheries Abstracts (ASFA) Professional Research Library Prep ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials SIRS Editorial elibrary ProQuest AP Science ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest One Applied & Life Sciences ProQuest One Sustainability Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Research Library ProQuest Central (New) Advanced Technologies & Aerospace Collection ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Aqualine Environmental Science Collection Advanced Technologies & Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Environmental Science Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
| DatabaseTitleList | University of Michigan CrossRef |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Meteorology & Climatology Oceanography |
| EISSN | 1520-0477 |
| EndPage | E2284 |
| ExternalDocumentID | 10_1175_BAMS_D_21_0125_1 27283480 |
| GroupedDBID | -DZ -~X .4S .DC 23N 2WC 2XV 4.4 5GY 6J9 6TJ 7XC 85S 88I 8AF 8FE 8FG 8FH 8G5 8R4 8R5 ABDBF ABPPZ ABUWG ACGFO ACGOD ACIHN ACMJI ACUHS AEAQA AENEX AEUYN AFKRA AFRAH AGFAN AIDUJ ALMA_UNASSIGNED_HOLDINGS ALQLQ ARAPS ARCSS ATCPS AZQEC BCU BEC BENPR BES BGLVJ BHPHI BKOMP BKSAR BLC BPHCQ CCPQU COF CS3 D1K DU5 DWQXO E3Z EAD EAP EAS EBS EDH EDO EMK EPL ESN EST ESX FAC FAS FJW FRP GNUQQ GUQSH H13 HCIFZ IAO IEA IEP IGS IOF ISR ITC K6- L7B LK5 LU7 M2O M2P M2Q M7R MV1 OK1 P2P P62 PATMY PCBAR PHGZM PHGZT PQQKQ PROAC PV9 PYCSY Q2X QF4 QM1 QM9 QN7 QO4 R05 RWA RWE RWL RXW RZL S0X SC5 SJFOW SWMRO TAE TN5 TR2 TUS U5U WH7 X6Y ~02 186 AAEFR AAYXX ABBHK ABCQX ABEFU ABUFD ABXSQ ADULT ADXHL AEKFB AETEA AEUPB AFFHD AFFNX AFQQW AI. BAIFH BANNL BBTPI BCR C1A CAG CITATION EJD H~9 IZHOT JAAYA JENOY JKQEH JLEZI JLXEF JPL JST NEJ OHT PEA PQGLB ROL SA0 VH1 VOH WHG ZY4 3V. 7QH 7TG 7TN 7UA 7XB 8FK C1K F1W H96 KL. L.G MBDVC PKEHL PQEST PQUKI Q9U |
| ID | FETCH-LOGICAL-c401t-dd8fc1c09c295d06c7ccaf5b237fc384905526661918649b3ef34ffb7539b37a3 |
| IEDL.DBID | M2P |
| ISICitedReferencesCount | 118 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000884420100009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0003-0007 |
| IngestDate | Sat Aug 16 18:51:08 EDT 2025 Sat Nov 29 02:59:43 EST 2025 Tue Nov 18 22:18:58 EST 2025 Thu Jul 03 21:29:46 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Language | English |
| License | http://www.ametsoc.org/PUBSReuseLicenses |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c401t-dd8fc1c09c295d06c7ccaf5b237fc384905526661918649b3ef34ffb7539b37a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://journals.ametsoc.org/downloadpdf/journals/bams/103/10/BAMS-D-21-0125.1.pdf |
| PQID | 2806951666 |
| PQPubID | 31345 |
| ParticipantIDs | proquest_journals_2806951666 crossref_citationtrail_10_1175_BAMS_D_21_0125_1 crossref_primary_10_1175_BAMS_D_21_0125_1 jstor_primary_27283480 |
| PublicationCentury | 2000 |
| PublicationDate | 20221001 2022-10-00 |
| PublicationDateYYYYMMDD | 2022-10-01 |
| PublicationDate_xml | – month: 10 year: 2022 text: 20221001 day: 1 |
| PublicationDecade | 2020 |
| PublicationPlace | Boston |
| PublicationPlace_xml | – name: Boston |
| PublicationTitle | Bulletin of the American Meteorological Society |
| PublicationYear | 2022 |
| Publisher | American Meteorological Society |
| Publisher_xml | – name: American Meteorological Society |
| References | (bib22) 2021 (bib14) 2022 (bib12) 2021 Reid, W. V. (bib18) 2010; 330 Stoelinga, M. T. (bib21) 2018 Virtanen, P. (bib25) 2020; 17 (bib27) 2021 Grecco, H. E. (bib4) 2021 Leemans, R. (bib9) 2009; 1 Raspaud, M. (bib17) 2018; 99 Hoyer, S. (bib7) 2017; 5 (bib23) 2019 Schueth, A. (bib19) 2021; 149 (bib24) 2021 Blumberg, W. G. (bib1) 2017; 98 (bib13) 2019 Hunter, J. H. (bib8) 2007; 9 McKinney, W. (bib11) 2010 Harris, C. R. (bib5) 2020; 585 Wade, A. R. (bib26) 2021; 78 (bib3) 2018 (bib20) 2022 (bib2) 2022 (bib15) 2022 McDonald, J. M. (bib10) 2021; 149 |
| References_xml | – volume: 330 start-page: 916 year: 2010 ident: bib18 article-title: Earth system science for global sustainability: Grand challenges – volume: 149 start-page: 821 year: 2021 ident: bib10 article-title: Cold pool characteristics of tornadic quasi-linear convective systems and other convective modes observed during VORTEX-SE – volume: 1 start-page: 4 year: 2009 ident: bib9 article-title: Developing a common strategy for integrative global environmental change research and outreach: The Earth System Science Partnership (ESSP) – year: 2021 ident: bib4 – year: 2021 ident: bib24 – volume: 98 start-page: 1625 year: 2017 ident: bib1 article-title: SHARPpy: An open-source sounding analysis toolkit for the atmospheric sciences – volume: 17 start-page: 261 year: 2020 ident: bib25 article-title: SciPy 1.0: Fundamental algorithms for scientific computing in Python – year: 2018 ident: bib3 – year: 2022 ident: bib14 – year: 2019 ident: bib23 – volume: 149 start-page: 1651 year: 2021 ident: bib19 article-title: Comparing observations and simulations of the streamwise vorticity current and the forward flank convergence boundary in a supercell storm – volume: 585 start-page: 357 year: 2020 ident: bib5 article-title: Array programming with NumPy – volume: 9 start-page: 90 year: 2007 ident: bib8 article-title: Matplotlib: A 2D graphics environment – year: 2021 ident: bib12 – year: 2018 ident: bib21 – volume: 99 start-page: 1329 year: 2018 ident: bib17 article-title: PyTroll: An open-source, community-driven Python framework to process Earth observation satellite data – year: 2010 ident: bib11 article-title: Data structures for statistical computing in PYTHON doi: 10.25080/Majora-92bf1922-00a – year: 2022 ident: bib20 article-title: Sphinx documentation – volume: 78 start-page: 1389 year: 2021 ident: bib26 article-title: Dynamics of simulated high-shear low-CAPE supercells – year: 2022 ident: bib15 – year: 2019 ident: bib13 – year: 2021 ident: bib27 – year: 2022 ident: bib2 – year: 2021 ident: bib22 – volume: 5 start-page: 10 year: 2017 ident: bib7 article-title: xarray: N-D labeled arrays and datasets in Python |
| SSID | ssj0003381 |
| Score | 2.6548166 |
| Snippet | MetPy is an open-source, Python-based package for meteorology, providing domain-specific functionality built extensively on top of the robust scientific Python... |
| SourceID | proquest crossref jstor |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | E2273 |
| SubjectTerms | Algorithms Arrays Atmospheric sciences Automation Best practice Best practices Code reuse Data analysis Data models Data science Documentation Interfaces Libraries Metadata Meteorological data Meteorology Overflow Programming languages Python Robustness Software Software development Software development tools Software testing Visualization Weather analysis |
| Subtitle | A Meteorological Python Library for Data Analysis and Visualization |
| Title | MetPy |
| URI | https://www.jstor.org/stable/27283480 https://www.proquest.com/docview/2806951666 |
| Volume | 103 |
| WOSCitedRecordID | wos000884420100009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1520-0477 dateEnd: 20231211 omitProxy: false ssIdentifier: ssj0003381 issn: 0003-0007 databaseCode: P5Z dateStart: 20160101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 1520-0477 dateEnd: 20231211 omitProxy: false ssIdentifier: ssj0003381 issn: 0003-0007 databaseCode: PCBAR dateStart: 20160101 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: Environmental Science Database customDbUrl: eissn: 1520-0477 dateEnd: 20231211 omitProxy: false ssIdentifier: ssj0003381 issn: 0003-0007 databaseCode: PATMY dateStart: 20160101 isFulltext: true titleUrlDefault: http://search.proquest.com/environmentalscience providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1520-0477 dateEnd: 20231211 omitProxy: false ssIdentifier: ssj0003381 issn: 0003-0007 databaseCode: BENPR dateStart: 20160101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Research Library customDbUrl: eissn: 1520-0477 dateEnd: 20231211 omitProxy: false ssIdentifier: ssj0003381 issn: 0003-0007 databaseCode: M2O dateStart: 20160101 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 1520-0477 dateEnd: 20231211 omitProxy: false ssIdentifier: ssj0003381 issn: 0003-0007 databaseCode: M2P dateStart: 20160101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NSxwxFH_4dRDBqlVcu5UcpNBDujPJZDPTS1FXkVLXQVoRLyHJTGBBZu3uVtj_3pdsdhcpePESyEwCQ17mvd8veR8AJzxx1nInqRFdTTOTCNSDiabSSiM4s4abkGf2l-z38_v7oowHbuPoVjnXiUFRV0Prz8g7_gYQ0QCi7R9Pf6mvGuVvV2MJjVVYR2STepeua1YuNDHSr2XFPDSGi2tK0TlDnkx7lHkuzcS39JVZmnkm_qedg8m5_PDej92B7Qg2yelsd-zCSt3sQesacfJwFI7TyRdy_jhA0Bp6e7B1Y2vdxCzWH-EnDi2n38kpWc7xQiXl1KccIDHogSDwJT090WSe4oTopiJ3g7GP2JzFee7Dn8uL3-dXNBZfoBYp14RWVe5sapPCskJUSddKlLUThnHpLM-zIhECjTvyrzTvZoXhteOZcwbpD3ak5gew1gyb-hBIbYXGJ0VtERAgBTVOJ5URxiA2MnntWtCZr72yMTO5L5DxqAJDkUJ5aameYqny0lJpC74uZjzNsnK8MfYgiHMxkEmEVFmetKA9F56KP-5YLSV39PbrT7DJfCRE8Otrw9pk9K_-DBv2eTIYj45h_eyiX94e-_14E9oS21I8vADOE-e9 |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Pb9MwFH4aAwk0iR9jE2UDfAAkDqaJHdcJEkJjZdpYV3oYaDfPdmyp0pRubQH1n9rfyLOTtEJIu-3A0YkdyfGX974v9nsP4DVPvLXcS2pET9PMJALtYKKptNIIzqzhJuaZHcjhMD87K0ZrcN3GwoRjla1NjIa6nNjwj7wbdgCRDSDb_nR5RUPVqLC72pbQqGFx7Ba_UbLNPh71cX3fMHbw5XT_kDZVBahFLTGnZZl7m9qksKwQZdKzEifhhWFcesvzrEiEQK-FwiLNe1lhuPM8894gr8eG1ByfewfuZiGzWDgqyEZLy49yb1WhD53vcltUdD-jLqd9yoJ2Z-J9-pcbrE9C_uMNoos7ePS_vZzH8LAh02SvRv8TWHPVJnROUAdMpnG7gLwl-xdjJOWxtQkb36zTVZOl-yl8xa6jxQeyR1ZjAmjJaBFSKpAmqIMgsSd9PdekTeFCdFWSH-NZiEit41i34PutzHQb1qtJ5Z4BcVZovFI4i4QHJbbxOimNMAa5n8md70C3XWtlm8zroQDIhYoKTAoV0KH6iqUqoEOlHXi3HHFZZx25oe92hM-yI5NIGbM86cBuCxbVGKaZWiHl-c23X8H9w9OTgRocDY934AELUR_xDOMurM-nP90LuGd_zcez6cv4DRA4v21c_QH5sEB9 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1db9MwFL0aAyGExMdgojDAD4DEg2lix3WChNBYqBgbJQ-AJl6M7dhSpSkdbQH1r_HruHaSVghpb3vg0YkdKfGx7znx_QB4whNvLfeSGjHSNDOJwH0w0VRaaQRn1nAT88wey8kkPzkpqi343cfCBLfKfk-MG3U9s-Ef-TCcACIbQLY99J1bRFWOX599p6GCVDhp7ctptBA5cqtfKN8Wrw5LnOunjI3ffjp4R7sKA9SirljSus69TW1SWFaIOhlZiS_khWFcesvzrEiEQAuGIiPNR1lhuPM8894gx8eG1ByfewkuS9SYwZ2wEl_XVgCl36ZaHxri9RGpGL5BjU5LyoKOZ-JF-pdJbL0i_7EM0dyNb_7PH-oW3OhINtlvV8Vt2HLNDgw-oD6YzeMxAnlGDk6nSNZjaweuf7RON1327jvwHrtWq5dkn2zGBDCTahVSLZAu2IMg4SelXmrSp3YhuqnJl-kiRKq28a134fOFvOkubDezxt0D4qzQeKVwFokQSm_jdVIbYQxyQpM7P4BhP-_KdhnZQ2GQUxWVmRQqIEWViqUqIEWlA3i-HnHWZiM5p-9uhNK6I5NIJbM8GcBeDxzVbVgLtUHN_fNvP4arCCd1fDg5egDXWAgGia6Ne7C9nP9wD-GK_bmcLuaP4nIg8O2iYfUHx-5JaQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MetPy&rft.jtitle=Bulletin+of+the+American+Meteorological+Society&rft.au=May%2C+Ryan+M.&rft.au=Goebbert%2C+Kevin+H.&rft.au=Thielen%2C+Jonathan+E.&rft.au=Leeman%2C+John+R.&rft.date=2022-10-01&rft.pub=American+Meteorological+Society&rft.issn=0003-0007&rft.eissn=1520-0477&rft.volume=103&rft.issue=10&rft.spage=E2273&rft.epage=E2284&rft_id=info:doi/10.1175%2Fbams-d-21-0125.1&rft.externalDocID=27283480 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-0007&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-0007&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-0007&client=summon |