MetPy A Meteorological Python Library for Data Analysis and Visualization

MetPy is an open-source, Python-based package for meteorology, providing domain-specific functionality built extensively on top of the robust scientific Python software stack, which includes libraries like NumPy, SciPy, Matplotlib, and xarray. The goal of the project is to bring the weather analysis...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Bulletin of the American Meteorological Society Ročník 103; číslo 10; s. E2273 - E2284
Hlavní autoři: May, Ryan M., Goebbert, Kevin H., Thielen, Jonathan E., Leeman, John R., Camron, M. Drew, Bruick, Zachary, Bruning, Eric C., Manser, Russell P., Arms, Sean C., Marsh, Patrick T.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Boston American Meteorological Society 01.10.2022
Témata:
ISSN:0003-0007, 1520-0477
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract MetPy is an open-source, Python-based package for meteorology, providing domain-specific functionality built extensively on top of the robust scientific Python software stack, which includes libraries like NumPy, SciPy, Matplotlib, and xarray. The goal of the project is to bring the weather analysis capabilities of GEMPAK (and similar software tools) into a modern computing paradigm. MetPy strives to employ best practices in its development, including software tests, continuous integration, and automated publishing of web-based documentation. As such, MetPy represents a sustainable, long-term project that fills a need for the meteorological community. MetPy’s development is substantially driven by its user community, both through feedback on a variety of open, public forums like Stack Overflow, and through code contributions facilitated by the GitHub collaborative software development platform. MetPy has recently seen the release of version 1.0, with robust functionality for analyzing and visualizing meteorological datasets. While previous versions of MetPy have already seen extensive use, the 1.0 release represents a significant milestone in terms of completeness and a commitment to long-term support for the programming interfaces. This article provides an overview of MetPy’s suite of capabilities, including its use of labeled arrays and physical unit information as its core data model, unit-aware calculations, cross sections, skew T and GEMPAK-like plotting, station model plots, and support for parsing a variety of meteorological data formats. The general road map for future planned development for MetPy is also discussed.
AbstractList MetPy is an open-source, Python-based package for meteorology, providing domain-specific functionality built extensively on top of the robust scientific Python software stack, which includes libraries like NumPy, SciPy, Matplotlib, and xarray. The goal of the project is to bring the weather analysis capabilities of GEMPAK (and similar software tools) into a modern computing paradigm. MetPy strives to employ best practices in its development, including software tests, continuous integration, and automated publishing of web-based documentation. As such, MetPy represents a sustainable, long-term project that fills a need for the meteorological community. MetPy’s development is substantially driven by its user community, both through feedback on a variety of open, public forums like Stack Overflow, and through code contributions facilitated by the GitHub collaborative software development platform. MetPy has recently seen the release of version 1.0, with robust functionality for analyzing and visualizing meteorological datasets. While previous versions of MetPy have already seen extensive use, the 1.0 release represents a significant milestone in terms of completeness and a commitment to long-term support for the programming interfaces. This article provides an overview of MetPy’s suite of capabilities, including its use of labeled arrays and physical unit information as its core data model, unit-aware calculations, cross sections, skew T and GEMPAK-like plotting, station model plots, and support for parsing a variety of meteorological data formats. The general road map for future planned development for MetPy is also discussed.
MetPy is an open-source, Python-based package for meteorology, providing domain-specific functionality built extensively on top of the robust scientific Python software stack, which includes libraries like NumPy, SciPy, Matplotlib, and xarray. The goal of the project is to bring the weather analysis capabilities of GEMPAK (and similar software tools) into a modern computing paradigm. MetPy strives to employ best practices in its development, including software tests, continuous integration, and automated publishing of web-based documentation. As such, MetPy represents a sustainable, long-term project that fills a need for the meteorological community. MetPy’s development is substantially driven by its user community, both through feedback on a variety of open, public forums like Stack Overflow, and through code contributions facilitated by the GitHub collaborative software development platform. MetPy has recently seen the release of version 1.0, with robust functionality for analyzing and visualizing meteorological datasets. While previous versions of MetPy have already seen extensive use, the 1.0 release represents a significant milestone in terms of completeness and a commitment to long-term support for the programming interfaces. This article provides an overview of MetPy’s suite of capabilities, including its use of labeled arrays and physical unit information as its core data model, unit-aware calculations, cross sections, skew T and GEMPAK-like plotting, station model plots, and support for parsing a variety of meteorological data formats. The general road map for future planned development for MetPy is also discussed.
Author Marsh, Patrick T.
Leeman, John R.
Manser, Russell P.
Bruick, Zachary
Camron, M. Drew
Thielen, Jonathan E.
Bruning, Eric C.
May, Ryan M.
Goebbert, Kevin H.
Arms, Sean C.
Author_xml – sequence: 1
  givenname: Ryan M.
  surname: May
  fullname: May, Ryan M.
– sequence: 2
  givenname: Kevin H.
  surname: Goebbert
  fullname: Goebbert, Kevin H.
– sequence: 3
  givenname: Jonathan E.
  surname: Thielen
  fullname: Thielen, Jonathan E.
– sequence: 4
  givenname: John R.
  surname: Leeman
  fullname: Leeman, John R.
– sequence: 5
  givenname: M. Drew
  surname: Camron
  fullname: Camron, M. Drew
– sequence: 6
  givenname: Zachary
  surname: Bruick
  fullname: Bruick, Zachary
– sequence: 7
  givenname: Eric C.
  surname: Bruning
  fullname: Bruning, Eric C.
– sequence: 8
  givenname: Russell P.
  surname: Manser
  fullname: Manser, Russell P.
– sequence: 9
  givenname: Sean C.
  surname: Arms
  fullname: Arms, Sean C.
– sequence: 10
  givenname: Patrick T.
  surname: Marsh
  fullname: Marsh, Patrick T.
BookMark eNp9jz1PwzAQhi3USrSFnYWJ2eXOjj8ylvIptQIJmC3HiaVEbVJsd-i_J1EQAwPLnV7pee70zsmk7dqKkCuEJaISt4XdR1pShhSQiSWekRkKBhQypSZkBgCc9kOdk3mMzRC5xhmZbqv0drogU293sbr82Qvy-fjwsX6mm9enl_VqQ10GmGhZau_QQe5YLkqQTjlnvSgYV95xneUgBJNSYo5aZnnBK88z7wsleB-U5QtyM949hO7rWMVkmu4Y2v6lYRpkLrC3e0qOlAtdjKHyxtXJprprU7D1ziCYobK5W23fzb1haIbKBnsR_oiHUO9tOP2nXI9KE1MXfnmmmOaZBv4N9DBhzA
CitedBy_id crossref_primary_10_5194_essd_16_2141_2024
crossref_primary_10_1002_asl_1288
crossref_primary_10_5194_hess_29_2445_2025
crossref_primary_10_1038_s43247_025_02327_9
crossref_primary_10_3390_atmos14091413
crossref_primary_10_1007_s11069_025_07292_2
crossref_primary_10_1186_s40645_025_00724_4
crossref_primary_10_1016_j_uclim_2024_101912
crossref_primary_10_1016_j_envdev_2025_101210
crossref_primary_10_1016_j_softx_2025_102263
crossref_primary_10_1029_2022JD037954
crossref_primary_10_1007_s12518_024_00569_4
crossref_primary_10_1016_j_atmosres_2025_108315
crossref_primary_10_5194_acp_24_9749_2024
crossref_primary_10_3390_atmos14030526
crossref_primary_10_1007_s12040_025_02565_7
crossref_primary_10_1016_j_atmosres_2025_107947
crossref_primary_10_1186_s40645_025_00685_8
crossref_primary_10_1038_s41598_025_15905_w
crossref_primary_10_5194_wcd_6_695_2025
crossref_primary_10_3390_fire7030092
crossref_primary_10_1002_joc_8228
crossref_primary_10_1016_j_atmosres_2025_108435
crossref_primary_10_1007_s10686_024_09949_5
crossref_primary_10_1029_2023JD038630
crossref_primary_10_21105_joss_08087
crossref_primary_10_1016_j_agrformet_2024_110079
crossref_primary_10_5194_acp_25_11025_2025
crossref_primary_10_1038_s43247_024_01885_8
crossref_primary_10_1002_joc_7983
crossref_primary_10_1038_s43856_025_01016_0
crossref_primary_10_1016_j_envres_2024_119347
crossref_primary_10_1016_j_wace_2025_100788
crossref_primary_10_1016_j_envsoft_2025_106656
crossref_primary_10_1073_pnas_2315425121
crossref_primary_10_3847_1538_4357_ad8ddf
crossref_primary_10_1002_qj_4866
crossref_primary_10_1002_qj_4945
crossref_primary_10_1002_qj_4946
crossref_primary_10_1029_2022JD037973
crossref_primary_10_1017_jog_2023_21
crossref_primary_10_1016_j_energy_2025_136869
crossref_primary_10_1007_s00382_025_07641_8
crossref_primary_10_1007_s00376_024_3261_4
crossref_primary_10_1038_s41467_023_39465_7
crossref_primary_10_3389_fmars_2025_1546596
crossref_primary_10_1029_2023JD038804
crossref_primary_10_1177_17442591251317727
crossref_primary_10_5194_acp_24_13733_2024
crossref_primary_10_5194_acp_24_4487_2024
crossref_primary_10_5194_wcd_6_949_2025
Cites_doi 10.25080/Majora-92bf1922-00a
ContentType Journal Article
Copyright 2022 American Meteorological Society
Copyright American Meteorological Society 2022
Copyright_xml – notice: 2022 American Meteorological Society
– notice: Copyright American Meteorological Society 2022
DBID AAYXX
CITATION
3V.
7QH
7TG
7TN
7UA
7XB
88I
8AF
8FE
8FG
8FK
8G5
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
GNUQQ
GUQSH
H96
HCIFZ
KL.
L.G
M2O
M2P
MBDVC
P5Z
P62
PATMY
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PYCSY
Q9U
R05
S0X
DOI 10.1175/bams-d-21-0125.1
DatabaseName CrossRef
ProQuest Central (Corporate)
Aqualine
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Water Resources Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
STEM Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni Edition)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Health Research Premium Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
eLibrary
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Central Student
Research Library Prep
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Research Library
Science Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Databases
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
Environmental Science Collection
ProQuest Central Basic
University of Michigan
SIRS Editorial
DatabaseTitle CrossRef
University of Michigan
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Research Library Prep
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
SIRS Editorial
elibrary
ProQuest AP Science
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Aqualine
Environmental Science Collection
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Environmental Science Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList University of Michigan

CrossRef
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Oceanography
EISSN 1520-0477
EndPage E2284
ExternalDocumentID 10_1175_BAMS_D_21_0125_1
27283480
GroupedDBID -DZ
-~X
.4S
.DC
23N
2WC
2XV
4.4
5GY
6J9
6TJ
7XC
85S
88I
8AF
8FE
8FG
8FH
8G5
8R4
8R5
ABDBF
ABPPZ
ABUWG
ACGFO
ACGOD
ACIHN
ACMJI
ACUHS
AEAQA
AENEX
AEUYN
AFKRA
AFRAH
AGFAN
AIDUJ
ALMA_UNASSIGNED_HOLDINGS
ALQLQ
ARAPS
ARCSS
ATCPS
AZQEC
BCU
BEC
BENPR
BES
BGLVJ
BHPHI
BKOMP
BKSAR
BLC
BPHCQ
CCPQU
COF
CS3
D1K
DU5
DWQXO
E3Z
EAD
EAP
EAS
EBS
EDH
EDO
EMK
EPL
ESN
EST
ESX
FAC
FAS
FJW
FRP
GNUQQ
GUQSH
H13
HCIFZ
IAO
IEA
IEP
IGS
IOF
ISR
ITC
K6-
L7B
LK5
LU7
M2O
M2P
M2Q
M7R
MV1
OK1
P2P
P62
PATMY
PCBAR
PHGZM
PHGZT
PQQKQ
PROAC
PV9
PYCSY
Q2X
QF4
QM1
QM9
QN7
QO4
R05
RWA
RWE
RWL
RXW
RZL
S0X
SC5
SJFOW
SWMRO
TAE
TN5
TR2
TUS
U5U
WH7
X6Y
~02
186
AAEFR
AAYXX
ABBHK
ABCQX
ABEFU
ABUFD
ABXSQ
ADULT
ADXHL
AEKFB
AETEA
AEUPB
AFFHD
AFFNX
AFQQW
AI.
BAIFH
BANNL
BBTPI
BCR
C1A
CAG
CITATION
EJD
H~9
IZHOT
JAAYA
JENOY
JKQEH
JLEZI
JLXEF
JPL
JST
NEJ
OHT
PEA
PQGLB
ROL
SA0
VH1
VOH
WHG
ZY4
3V.
7QH
7TG
7TN
7UA
7XB
8FK
C1K
F1W
H96
KL.
L.G
MBDVC
PKEHL
PQEST
PQUKI
Q9U
ID FETCH-LOGICAL-c401t-dd8fc1c09c295d06c7ccaf5b237fc384905526661918649b3ef34ffb7539b37a3
IEDL.DBID M2P
ISICitedReferencesCount 118
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000884420100009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0003-0007
IngestDate Sat Aug 16 18:51:08 EDT 2025
Sat Nov 29 02:59:43 EST 2025
Tue Nov 18 22:18:58 EST 2025
Thu Jul 03 21:29:46 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License http://www.ametsoc.org/PUBSReuseLicenses
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c401t-dd8fc1c09c295d06c7ccaf5b237fc384905526661918649b3ef34ffb7539b37a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://journals.ametsoc.org/downloadpdf/journals/bams/103/10/BAMS-D-21-0125.1.pdf
PQID 2806951666
PQPubID 31345
ParticipantIDs proquest_journals_2806951666
crossref_citationtrail_10_1175_BAMS_D_21_0125_1
crossref_primary_10_1175_BAMS_D_21_0125_1
jstor_primary_27283480
PublicationCentury 2000
PublicationDate 20221001
2022-10-00
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: 20221001
  day: 1
PublicationDecade 2020
PublicationPlace Boston
PublicationPlace_xml – name: Boston
PublicationTitle Bulletin of the American Meteorological Society
PublicationYear 2022
Publisher American Meteorological Society
Publisher_xml – name: American Meteorological Society
References (bib22) 2021
(bib14) 2022
(bib12) 2021
Reid, W. V. (bib18) 2010; 330
Stoelinga, M. T. (bib21) 2018
Virtanen, P. (bib25) 2020; 17
(bib27) 2021
Grecco, H. E. (bib4) 2021
Leemans, R. (bib9) 2009; 1
Raspaud, M. (bib17) 2018; 99
Hoyer, S. (bib7) 2017; 5
(bib23) 2019
Schueth, A. (bib19) 2021; 149
(bib24) 2021
Blumberg, W. G. (bib1) 2017; 98
(bib13) 2019
Hunter, J. H. (bib8) 2007; 9
McKinney, W. (bib11) 2010
Harris, C. R. (bib5) 2020; 585
Wade, A. R. (bib26) 2021; 78
(bib3) 2018
(bib20) 2022
(bib2) 2022
(bib15) 2022
McDonald, J. M. (bib10) 2021; 149
References_xml – volume: 330
  start-page: 916
  year: 2010
  ident: bib18
  article-title: Earth system science for global sustainability: Grand challenges
– volume: 149
  start-page: 821
  year: 2021
  ident: bib10
  article-title: Cold pool characteristics of tornadic quasi-linear convective systems and other convective modes observed during VORTEX-SE
– volume: 1
  start-page: 4
  year: 2009
  ident: bib9
  article-title: Developing a common strategy for integrative global environmental change research and outreach: The Earth System Science Partnership (ESSP)
– year: 2021
  ident: bib4
– year: 2021
  ident: bib24
– volume: 98
  start-page: 1625
  year: 2017
  ident: bib1
  article-title: SHARPpy: An open-source sounding analysis toolkit for the atmospheric sciences
– volume: 17
  start-page: 261
  year: 2020
  ident: bib25
  article-title: SciPy 1.0: Fundamental algorithms for scientific computing in Python
– year: 2018
  ident: bib3
– year: 2022
  ident: bib14
– year: 2019
  ident: bib23
– volume: 149
  start-page: 1651
  year: 2021
  ident: bib19
  article-title: Comparing observations and simulations of the streamwise vorticity current and the forward flank convergence boundary in a supercell storm
– volume: 585
  start-page: 357
  year: 2020
  ident: bib5
  article-title: Array programming with NumPy
– volume: 9
  start-page: 90
  year: 2007
  ident: bib8
  article-title: Matplotlib: A 2D graphics environment
– year: 2021
  ident: bib12
– year: 2018
  ident: bib21
– volume: 99
  start-page: 1329
  year: 2018
  ident: bib17
  article-title: PyTroll: An open-source, community-driven Python framework to process Earth observation satellite data
– year: 2010
  ident: bib11
  article-title: Data structures for statistical computing in PYTHON
  doi: 10.25080/Majora-92bf1922-00a
– year: 2022
  ident: bib20
  article-title: Sphinx documentation
– volume: 78
  start-page: 1389
  year: 2021
  ident: bib26
  article-title: Dynamics of simulated high-shear low-CAPE supercells
– year: 2022
  ident: bib15
– year: 2019
  ident: bib13
– year: 2021
  ident: bib27
– year: 2022
  ident: bib2
– year: 2021
  ident: bib22
– volume: 5
  start-page: 10
  year: 2017
  ident: bib7
  article-title: xarray: N-D labeled arrays and datasets in Python
SSID ssj0003381
Score 2.6548166
Snippet MetPy is an open-source, Python-based package for meteorology, providing domain-specific functionality built extensively on top of the robust scientific Python...
SourceID proquest
crossref
jstor
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage E2273
SubjectTerms Algorithms
Arrays
Atmospheric sciences
Automation
Best practice
Best practices
Code reuse
Data analysis
Data models
Data science
Documentation
Interfaces
Libraries
Metadata
Meteorological data
Meteorology
Overflow
Programming languages
Python
Robustness
Software
Software development
Software development tools
Software testing
Visualization
Weather analysis
Subtitle A Meteorological Python Library for Data Analysis and Visualization
Title MetPy
URI https://www.jstor.org/stable/27283480
https://www.proquest.com/docview/2806951666
Volume 103
WOSCitedRecordID wos000884420100009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1520-0477
  dateEnd: 20231211
  omitProxy: false
  ssIdentifier: ssj0003381
  issn: 0003-0007
  databaseCode: P5Z
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 1520-0477
  dateEnd: 20231211
  omitProxy: false
  ssIdentifier: ssj0003381
  issn: 0003-0007
  databaseCode: PCBAR
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Environmental Science Database
  customDbUrl:
  eissn: 1520-0477
  dateEnd: 20231211
  omitProxy: false
  ssIdentifier: ssj0003381
  issn: 0003-0007
  databaseCode: PATMY
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/environmentalscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1520-0477
  dateEnd: 20231211
  omitProxy: false
  ssIdentifier: ssj0003381
  issn: 0003-0007
  databaseCode: BENPR
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 1520-0477
  dateEnd: 20231211
  omitProxy: false
  ssIdentifier: ssj0003381
  issn: 0003-0007
  databaseCode: M2O
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1520-0477
  dateEnd: 20231211
  omitProxy: false
  ssIdentifier: ssj0003381
  issn: 0003-0007
  databaseCode: M2P
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NSxwxFH_4dRDBqlVcu5UcpNBDujPJZDPTS1FXkVLXQVoRLyHJTGBBZu3uVtj_3pdsdhcpePESyEwCQ17mvd8veR8AJzxx1nInqRFdTTOTCNSDiabSSiM4s4abkGf2l-z38_v7oowHbuPoVjnXiUFRV0Prz8g7_gYQ0QCi7R9Pf6mvGuVvV2MJjVVYR2STepeua1YuNDHSr2XFPDSGi2tK0TlDnkx7lHkuzcS39JVZmnkm_qedg8m5_PDej92B7Qg2yelsd-zCSt3sQesacfJwFI7TyRdy_jhA0Bp6e7B1Y2vdxCzWH-EnDi2n38kpWc7xQiXl1KccIDHogSDwJT090WSe4oTopiJ3g7GP2JzFee7Dn8uL3-dXNBZfoBYp14RWVe5sapPCskJUSddKlLUThnHpLM-zIhECjTvyrzTvZoXhteOZcwbpD3ak5gew1gyb-hBIbYXGJ0VtERAgBTVOJ5URxiA2MnntWtCZr72yMTO5L5DxqAJDkUJ5aameYqny0lJpC74uZjzNsnK8MfYgiHMxkEmEVFmetKA9F56KP-5YLSV39PbrT7DJfCRE8Otrw9pk9K_-DBv2eTIYj45h_eyiX94e-_14E9oS21I8vADOE-e9
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Pb9MwFH4aAwk0iR9jE2UDfAAkDqaJHdcJEkJjZdpYV3oYaDfPdmyp0pRubQH1n9rfyLOTtEJIu-3A0YkdyfGX974v9nsP4DVPvLXcS2pET9PMJALtYKKptNIIzqzhJuaZHcjhMD87K0ZrcN3GwoRjla1NjIa6nNjwj7wbdgCRDSDb_nR5RUPVqLC72pbQqGFx7Ba_UbLNPh71cX3fMHbw5XT_kDZVBahFLTGnZZl7m9qksKwQZdKzEifhhWFcesvzrEiEQK-FwiLNe1lhuPM8894gr8eG1ByfewfuZiGzWDgqyEZLy49yb1WhD53vcltUdD-jLqd9yoJ2Z-J9-pcbrE9C_uMNoos7ePS_vZzH8LAh02SvRv8TWHPVJnROUAdMpnG7gLwl-xdjJOWxtQkb36zTVZOl-yl8xa6jxQeyR1ZjAmjJaBFSKpAmqIMgsSd9PdekTeFCdFWSH-NZiEit41i34PutzHQb1qtJ5Z4BcVZovFI4i4QHJbbxOimNMAa5n8md70C3XWtlm8zroQDIhYoKTAoV0KH6iqUqoEOlHXi3HHFZZx25oe92hM-yI5NIGbM86cBuCxbVGKaZWiHl-c23X8H9w9OTgRocDY934AELUR_xDOMurM-nP90LuGd_zcez6cv4DRA4v21c_QH5sEB9
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1db9MwFL0aAyGExMdgojDAD4DEg2lix3WChNBYqBgbJQ-AJl6M7dhSpSkdbQH1r_HruHaSVghpb3vg0YkdKfGx7znx_QB4whNvLfeSGjHSNDOJwH0w0VRaaQRn1nAT88wey8kkPzkpqi343cfCBLfKfk-MG3U9s-Ef-TCcACIbQLY99J1bRFWOX599p6GCVDhp7ctptBA5cqtfKN8Wrw5LnOunjI3ffjp4R7sKA9SirljSus69TW1SWFaIOhlZiS_khWFcesvzrEiEQAuGIiPNR1lhuPM8894gx8eG1ByfewkuS9SYwZ2wEl_XVgCl36ZaHxri9RGpGL5BjU5LyoKOZ-JF-pdJbL0i_7EM0dyNb_7PH-oW3OhINtlvV8Vt2HLNDgw-oD6YzeMxAnlGDk6nSNZjaweuf7RON1327jvwHrtWq5dkn2zGBDCTahVSLZAu2IMg4SelXmrSp3YhuqnJl-kiRKq28a134fOFvOkubDezxt0D4qzQeKVwFokQSm_jdVIbYQxyQpM7P4BhP-_KdhnZQ2GQUxWVmRQqIEWViqUqIEWlA3i-HnHWZiM5p-9uhNK6I5NIJbM8GcBeDxzVbVgLtUHN_fNvP4arCCd1fDg5egDXWAgGia6Ne7C9nP9wD-GK_bmcLuaP4nIg8O2iYfUHx-5JaQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MetPy&rft.jtitle=Bulletin+of+the+American+Meteorological+Society&rft.au=May%2C+Ryan+M.&rft.au=Goebbert%2C+Kevin+H.&rft.au=Thielen%2C+Jonathan+E.&rft.au=Leeman%2C+John+R.&rft.date=2022-10-01&rft.pub=American+Meteorological+Society&rft.issn=0003-0007&rft.eissn=1520-0477&rft.volume=103&rft.issue=10&rft.spage=E2273&rft.epage=E2284&rft_id=info:doi/10.1175%2Fbams-d-21-0125.1&rft.externalDocID=27283480
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-0007&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-0007&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-0007&client=summon