Smart aging monitoring and early dementia recognition (SAMEDR): uncovering the hidden wellness parameter for preventive well-being monitoring to categorize cognitive impairment and dementia in community-dwelling elderly subjects through AI

Reasoning weakening because of dementia degrades the performance in activities of daily living (ADL). Present research work distinguishes care needs, dangers and monitors the effect of dementia on an individual. This research contrasts in ADL design execution between dementia-affected people and oth...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Neural computing & applications Ročník 35; číslo 33; s. 23739 - 23751
Hlavní autori: Ghayvat, Hemant, Gope, Prosanta
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: London Springer London 01.11.2023
Springer Nature B.V
Predmet:
ISSN:0941-0643, 1433-3058, 1433-3058
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Reasoning weakening because of dementia degrades the performance in activities of daily living (ADL). Present research work distinguishes care needs, dangers and monitors the effect of dementia on an individual. This research contrasts in ADL design execution between dementia-affected people and other healthy elderly with heterogeneous sensors. More than 300,000 sensors associated activation data were collected from the dementia patients and healthy controls with wellness sensors networks. Generated ADLs were envisioned and understood through the activity maps, diversity and other wellness parameters to categorize wellness healthy, and dementia affected the elderly. Diversity was significant between diseased and healthy subjects. Heterogeneous unobtrusive sensor data evaluate behavioral patterns associated with ADL, helpful to reveal the impact of cognitive degradation, to measure ADL variation throughout dementia. The primary focus of activity recognition in the current research is to transfer dementia subject occupied homes models to generalized age-matched healthy subject data models to utilize new services, label classified datasets and produce limited datasets due to less training. Current research proposes a novel Smart Aging Monitoring and Early Dementia Recognition system that provides the exchange of data models between dementia subject occupied homes (DSOH) to healthy subject occupied homes (HSOH) in a move to resolve the deficiency of training data. At that point, the key attributes are mapped onto each other utilizing a sensor data fusion that assures to retain the diversities between various HSOH & DSOH by diminishing the divergence between them. Moreover, additional tests have been conducted to quantify the excellence of the offered framework: primary, in contradiction of the precision of feature mapping techniques; next, computing the merit of categorizing data at DSOH; and, the last, the aptitude of the projected structure to function thriving due to noise data. The outcomes show encouraging pointers and highlight the boundaries of the projected approach.
AbstractList Reasoning weakening because of dementia degrades the performance in activities of daily living (ADL). Present research work distinguishes care needs, dangers and monitors the effect of dementia on an individual. This research contrasts in ADL design execution between dementia-affected people and other healthy elderly with heterogeneous sensors. More than 300,000 sensors associated activation data were collected from the dementia patients and healthy controls with wellness sensors networks. Generated ADLs were envisioned and understood through the activity maps, diversity and other wellness parameters to categorize wellness healthy, and dementia affected the elderly. Diversity was significant between diseased and healthy subjects. Heterogeneous unobtrusive sensor data evaluate behavioral patterns associated with ADL, helpful to reveal the impact of cognitive degradation, to measure ADL variation throughout dementia. The primary focus of activity recognition in the current research is to transfer dementia subject occupied homes models to generalized age-matched healthy subject data models to utilize new services, label classified datasets and produce limited datasets due to less training. Current research proposes a novel Smart Aging Monitoring and Early Dementia Recognition system that provides the exchange of data models between dementia subject occupied homes (DSOH) to healthy subject occupied homes (HSOH) in a move to resolve the deficiency of training data. At that point, the key attributes are mapped onto each other utilizing a sensor data fusion that assures to retain the diversities between various HSOH & DSOH by diminishing the divergence between them. Moreover, additional tests have been conducted to quantify the excellence of the offered framework: primary, in contradiction of the precision of feature mapping techniques; next, computing the merit of categorizing data at DSOH; and, the last, the aptitude of the projected structure to function thriving due to noise data. The outcomes show encouraging pointers and highlight the boundaries of the projected approach.
Reasoning weakening because of dementia degrades the performance in activities of daily living (ADL). Present research work distinguishes care needs, dangers and monitors the effect of dementia on an individual. This research contrasts in ADL design execution between dementia-affected people and other healthy elderly with heterogeneous sensors. More than 300,000 sensors associated activation data were collected from the dementia patients and healthy controls with wellness sensors networks. Generated ADLs were envisioned and understood through the activity maps, diversity and other wellness parameters to categorize wellness healthy, and dementia affected the elderly. Diversity was significant between diseased and healthy subjects. Heterogeneous unobtrusive sensor data evaluate behavioral patterns associated with ADL, helpful to reveal the impact of cognitive degradation, to measure ADL variation throughout dementia. The primary focus of activity recognition in the current research is to transfer dementia subject occupied homes models to generalized age-matched healthy subject data models to utilize new services, label classified datasets and produce limited datasets due to less training. Current research proposes a novel Smart Aging Monitoring and Early Dementia Recognition system that provides the exchange of data models between dementia subject occupied homes (DSOH) to healthy subject occupied homes (HSOH) in a move to resolve the deficiency of training data. At that point, the key attributes are mapped onto each other utilizing a sensor data fusion that assures to retain the diversities between various HSOH & DSOH by diminishing the divergence between them. Moreover, additional tests have been conducted to quantify the excellence of the offered framework: primary, in contradiction of the precision of feature mapping techniques; next, computing the merit of categorizing data at DSOH; and, the last, the aptitude of the projected structure to function thriving due to noise data. The outcomes show encouraging pointers and highlight the boundaries of the projected approach.
Author Ghayvat, Hemant
Gope, Prosanta
Author_xml – sequence: 1
  givenname: Hemant
  orcidid: 0000-0002-2487-0866
  surname: Ghayvat
  fullname: Ghayvat, Hemant
  email: hemant.ghayvat@lnu.se
  organization: Innovation Division, Denmark Faculty of Technology, Technical University of Denmark, Department of Computer Science and Media Technology and eHealth Institute, Linnaeus University, Building Realization and Robotics, Technical University of Munich
– sequence: 2
  givenname: Prosanta
  surname: Gope
  fullname: Gope, Prosanta
  organization: Department of Computer Science, University of Sheffield
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-105887$$DView record from Swedish Publication Index (Linnéuniversitetet)
BookMark eNp9kkFu1DAUhi1UJKaFC7CyxAYWATtOJg67UVtopSIkCmwtJ37JeJTYwXamGk7DWThRj4A9M4DURReWbfn7f__2e6foxFgDCL2k5C0lpHrnCSlzmpE0lpTVGX-CFrRgLGOk5CdoQeoiHRXsGTr1fkMIKZa8XKD721G6gGWvTY9Ha3SwLi2lURikG3ZYwQgmaIkdtLaPgLYGv75dfbq8-PLmPZ5Na7ew14Q14LVWCgy-g2Ew4D2epJMjBHC4sw5PDrbJbAt7ImvgwbXB4lYG6OPuJ-DjfZHW4yS1S0H2yf5l0iZC4zhHbJep5JlcYFCQovu52UAb_O9fYe3s3K_x6vo5etrJwcOL43yGvn24_Hp-ld18_nh9vrrJ2oLQkKm8rCoOjPGmKiSrmqppckqaQhLelc2yJDVbEsqLmnagOgnxGFTTMdV1pcwVO0PZwdffwTQ3YnI6_vROWKnFhf6-Etb1YjCzoLFAvIr8qwM_OftjBh_Exs7OxIgi5xWvaVWRPFL8QLXOeu-gE60OMpUkOKmHaCZSP4hDPwiSRuoHwaM0fyD9G-lRETu-Ykr1Afc_1SOqP6Hm0wk
CitedBy_id crossref_primary_10_2196_46014
crossref_primary_10_3389_fnins_2025_1617758
crossref_primary_10_1007_s00521_022_07055_1
crossref_primary_10_3390_su17146333
crossref_primary_10_1109_TII_2021_3136884
Cites_doi 10.1007/s00521-018-3867-5
10.1613/jair.1.11396
10.1109/TSMCB.2011.2166761
10.1109/ACCESS.2019.2920448
10.21037/qims.2018.10.17
10.1186/1748-5908-5-1
10.1016/j.jpdc.2018.07.020
10.1007/s00521-019-04069-0
10.1080/08839514.2019.1603784
10.1016/j.neunet.2018.07.011
10.3390/s19173658
10.1007/978-3-319-21671-3_9
10.1186/s40537-016-0043-6
10.33851/JMIS.2019.6.4.209
10.1109/TSMC.2013.2252338
10.1080/07421222.2020.1759961
10.1109/JSEN.2015.2475626
10.1109/TBME.2015.2404809
10.1016/j.eswa.2014.11.063
10.1109/TBME.2020.2990734
10.1007/s00521-013-1517-5
10.3390/s19040766
10.1002/gps.2494
10.1007/s10458-019-09430-0
10.1007/s11042-017-4796-5
10.1109/MPRV.2014.52
10.1016/j.artint.2018.11.004
10.1017/S1041610218001618
10.1007/978-981-15-5345-5_13
10.1007/978-3-030-01424-7_27
10.1007/s00521-019-04097-w
10.1007/978-3-642-04447-2_63
10.1109/SIBGRAPI-T.2019.00010
10.1007/s00521-020-04841-7
10.21437/Interspeech.2020-3137
ContentType Journal Article
Copyright The Author(s) 2021
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
ADTPV
AGRUY
AOWAS
D8T
D92
ZZAVC
DOI 10.1007/s00521-021-06139-8
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central Korea
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
SwePub
SWEPUB Linnéuniversitetet full text
SwePub Articles
SWEPUB Freely available online
SWEPUB Linnéuniversitetet
SwePub Articles full text
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Advanced Technologies & Aerospace Collection
CrossRef


Database_xml – sequence: 1
  dbid: P5Z
  name: Advanced Technologies & Aerospace Database
  url: https://search.proquest.com/hightechjournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1433-3058
EndPage 23751
ExternalDocumentID oai_DiVA_org_lnu_105887
10_1007_s00521_021_06139_8
GrantInformation_xml – fundername: Linnaeus University
– fundername: H2020 European Research Council
  grantid: 690425
  funderid: http://dx.doi.org/10.13039/100010663
– fundername: H2020 Marie Skłodowska-Curie Actions
  grantid: 754462
  funderid: http://dx.doi.org/10.13039/100010665
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
ADTPV
AGRUY
AOWAS
D8T
D92
ZZAVC
ID FETCH-LOGICAL-c401t-d25778e338b74a37b7bb210b4a08f5b650936018491fedfaebb2edbf3dff5a2d3
IEDL.DBID P5Z
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000658253400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0941-0643
1433-3058
IngestDate Tue Nov 04 16:35:59 EST 2025
Wed Nov 05 15:26:49 EST 2025
Sat Nov 29 02:59:21 EST 2025
Tue Nov 18 22:41:13 EST 2025
Fri Feb 21 02:42:18 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 33
Keywords Smart home monitoring
Preventive healthcare diagnose
The activity of daily living
Pre-trained deep learning model
Transfer learning
Cognitive impairment
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c401t-d25778e338b74a37b7bb210b4a08f5b650936018491fedfaebb2edbf3dff5a2d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2487-0866
OpenAccessLink https://link.springer.com/10.1007/s00521-021-06139-8
PQID 2878917702
PQPubID 2043988
PageCount 13
ParticipantIDs swepub_primary_oai_DiVA_org_lnu_105887
proquest_journals_2878917702
crossref_citationtrail_10_1007_s00521_021_06139_8
crossref_primary_10_1007_s00521_021_06139_8
springer_journals_10_1007_s00521_021_06139_8
PublicationCentury 2000
PublicationDate 20231100
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: 20231100
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Neural computing & applications
PublicationTitleAbbrev Neural Comput & Applic
PublicationYear 2023
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References Da Silva, Costa (CR3) 2019; 64
Seera, Lim (CR14) 2014; 25
Da Silva, Warnell, Costa, Stone (CR4) 2020; 34
Dawadi, Cook, Schmitter-Edgecombe (CR23) 2013; 43
Haque, Pongos, Manzaneres, Lah, Levey, Clifford (CR19) 2020; 68
Trigg, Watts, Jones, Tod (CR22) 2011; 26
Vollmar, Mayer, Ostermann, Butzlaff, Sandars, Wilm, Rieger (CR15) 2010; 5
CR36
Wu, Guo, Hong, Xiao, Wu, Zhang (CR20) 2018; 8
CR12
CR11
CR10
Ghayvat, Liu, Mukhopadhyay, Gui (CR33) 2015; 15
Masciadri, Comai, Salice (CR5) 2019; 19
Zhu, Samtani, Chen, Nunamaker (CR28) 2020; 37
Samarah, Zamil, Rawashdeh, Hossain, Muhammad, Alamri (CR1) 2018; 122
Weiss, Khoshgoftaar, Wang (CR2) 2016; 3
Bian, Tao, Rui (CR35) 2011; 42
Bawa, Kumar (CR13) 2019; 31
Ali, Augusto, Windridge (CR17) 2019; 33
CR6
Ordóñez, Englebienne, De Toledo, Van Kasteren, Sanchis, Kröse (CR29) 2014; 13
Bakar, Ghayvat, Hasanm, Mukhopadhyay (CR32) 2016
Azkune, Almeida, López-de-Ipiña, Chen (CR8) 2015; 42
Chaabouni, Benois-Pineau, Tison, Amar, Zemmari (CR25) 2017; 76
CR7
CR26
Ghayvat, Awais, Pandya, Ren, Akbarzadeh, Chandra Mukhopadhyay, Chen, Gope, Chouhan, Chen (CR31) 2019; 19
Prakash, Madusanka, Bhattacharjee, Park, Kim, Choi (CR18) 2019; 6
CR24
Khan, Abraham, Hon (CR27) 2019; 7
Buda, Maki, Mazurowski (CR30) 2018; 106
Sukhija, Krishnan (CR34) 2019; 268
Naseer, Rani, Naz, Razzak, Imran, Xu (CR9) 2020; 32
Cheng, Liu, Zhang, Munsell, Shen (CR16) 2015; 62
Lawton, Brody (CR21) 1969; 9
VS Bawa (6139_CR13) 2019; 31
D Prakash (6139_CR18) 2019; 6
A Naseer (6139_CR9) 2020; 32
B Cheng (6139_CR16) 2015; 62
FL Da Silva (6139_CR3) 2019; 64
6139_CR24
S Samarah (6139_CR1) 2018; 122
S Chaabouni (6139_CR25) 2017; 76
SM Ali (6139_CR17) 2019; 33
M Buda (6139_CR30) 2018; 106
R Trigg (6139_CR22) 2011; 26
M Seera (6139_CR14) 2014; 25
C Wu (6139_CR20) 2018; 8
6139_CR26
H Ghayvat (6139_CR31) 2019; 19
RU Haque (6139_CR19) 2020; 68
H Zhu (6139_CR28) 2020; 37
S Sukhija (6139_CR34) 2019; 268
H Ghayvat (6139_CR33) 2015; 15
K Weiss (6139_CR2) 2016; 3
G Azkune (6139_CR8) 2015; 42
HC Vollmar (6139_CR15) 2010; 5
6139_CR11
6139_CR10
PN Dawadi (6139_CR23) 2013; 43
FJ Ordóñez (6139_CR29) 2014; 13
FL Da Silva (6139_CR4) 2020; 34
6139_CR12
6139_CR7
6139_CR6
UABUA Bakar (6139_CR32) 2016
A Masciadri (6139_CR5) 2019; 19
NM Khan (6139_CR27) 2019; 7
6139_CR36
W Bian (6139_CR35) 2011; 42
MP Lawton (6139_CR21) 1969; 9
References_xml – volume: 31
  start-page: 9061
  issue: 12
  year: 2019
  end-page: 9072
  ident: CR13
  article-title: Emotional sentiment analysis for a group of people based on transfer learning with a multi-modal system
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-018-3867-5
– volume: 64
  start-page: 645
  year: 2019
  end-page: 703
  ident: CR3
  article-title: A survey on transfer learning for multiagent reinforcement learning systems
  publication-title: J Artif Intell Res
  doi: 10.1613/jair.1.11396
– volume: 42
  start-page: 298
  issue: 2
  year: 2011
  end-page: 307
  ident: CR35
  article-title: Cross-domain human action recognition
  publication-title: IEEE Transactions Syst Man Cybern Part B (Cybern)
  doi: 10.1109/TSMCB.2011.2166761
– volume: 7
  start-page: 72726
  year: 2019
  end-page: 72735
  ident: CR27
  article-title: Transfer learning with intelligent training data selection for prediction of Alzheimer’s disease
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2920448
– volume: 8
  start-page: 992
  issue: 10
  year: 2018
  ident: CR20
  article-title: Discrimination and conversion prediction of mild cognitive impairment using convolutional neural networks
  publication-title: Quant Imaging Med Surg
  doi: 10.21037/qims.2018.10.17
– ident: CR12
– volume: 5
  start-page: 1
  issue: 1
  year: 2010
  ident: CR15
  article-title: Knowledge transfer for the management of Dementia: a cluster-randomised trial of blended learning in general practice
  publication-title: Implement Sci
  doi: 10.1186/1748-5908-5-1
– ident: CR10
– volume: 122
  start-page: 122
  year: 2018
  end-page: 130
  ident: CR1
  article-title: Transferring activity recognition models in FOG computing architecture
  publication-title: J Parallel Distrib Comput
  doi: 10.1016/j.jpdc.2018.07.020
– ident: CR6
– volume: 32
  start-page: 839
  issue: 3
  year: 2020
  end-page: 854
  ident: CR9
  article-title: Refining Parkinson’s neurological disorder identification through deep transfer learning
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-019-04069-0
– volume: 33
  start-page: 747
  issue: 8
  year: 2019
  end-page: 774
  ident: CR17
  article-title: A survey of user-centred approaches for smart home transfer learning and new user home automation adaptation
  publication-title: Appl Artif Intell
  doi: 10.1080/08839514.2019.1603784
– volume: 106
  start-page: 249
  year: 2018
  end-page: 259
  ident: CR30
  article-title: A systematic study of the class imbalance problem in convolutional neural networks
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2018.07.011
– volume: 19
  start-page: 3658
  issue: 17
  year: 2019
  ident: CR5
  article-title: Wellness assessment of Alzheimer’s Patients in an instrumented health-care facility
  publication-title: Sensors
  doi: 10.3390/s19173658
– start-page: 191
  year: 2016
  end-page: 220
  ident: CR32
  article-title: Activity and anomaly detection in smart home: a survey
  publication-title: Next generation sensors and systems
  doi: 10.1007/978-3-319-21671-3_9
– volume: 3
  start-page: 9
  issue: 1
  year: 2016
  ident: CR2
  article-title: A survey of transfer learning
  publication-title: J Big data
  doi: 10.1186/s40537-016-0043-6
– volume: 6
  start-page: 209
  issue: 4
  year: 2019
  end-page: 216
  ident: CR18
  article-title: A comparative study of Alzheimer’s disease classification using multiple transfer learning models
  publication-title: J Multimed Information Syst
  doi: 10.33851/JMIS.2019.6.4.209
– volume: 9
  start-page: 179186
  issue: 3
  year: 1969
  ident: CR21
  article-title: Assessment of older people: self-maintaining and instrumental activities of daily living
  publication-title: Gerontologist
– volume: 43
  start-page: 1302
  issue: 6
  year: 2013
  end-page: 1313
  ident: CR23
  article-title: Automated cognitive health assessment using smart home monitoring of complex tasks
  publication-title: IEEE Trans Syst Man Cybern
  doi: 10.1109/TSMC.2013.2252338
– volume: 37
  start-page: 457
  issue: 2
  year: 2020
  end-page: 483
  ident: CR28
  article-title: Human identification for activities of daily living: a deep transfer learning approach
  publication-title: J Manag Inf Syst
  doi: 10.1080/07421222.2020.1759961
– volume: 15
  start-page: 7341
  issue: 12
  year: 2015
  end-page: 7348
  ident: CR33
  article-title: Wellness sensor networks: a proposal and implementation for smart home for assisted living
  publication-title: IEEE Sens J
  doi: 10.1109/JSEN.2015.2475626
– volume: 62
  start-page: 1805
  issue: 7
  year: 2015
  end-page: 1817
  ident: CR16
  article-title: Domain transfer learning for MCI conversion prediction
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2015.2404809
– volume: 42
  start-page: 3115
  issue: 6
  year: 2015
  end-page: 3128
  ident: CR8
  article-title: Extending knowledge-driven activity models through data-driven learning techniques
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2014.11.063
– volume: 68
  start-page: 11
  year: 2020
  end-page: 18
  ident: CR19
  article-title: Deep convolutional neural networks and transfer learning for measuring cognitive impairment using eye-tracking in a distributed tablet-based environment
  publication-title: IEEE Transactions Biomed Eng
  doi: 10.1109/TBME.2020.2990734
– ident: CR11
– volume: 25
  start-page: 469
  issue: 2
  year: 2014
  end-page: 480
  ident: CR14
  article-title: Transfer learning using the online Fuzzy Min-Max neural network
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-013-1517-5
– volume: 19
  start-page: 766
  issue: 4
  year: 2019
  ident: CR31
  article-title: Smart aging system: uncovering the hidden wellness parameter for well-being monitoring and anomaly detection
  publication-title: Sensors
  doi: 10.3390/s19040766
– ident: CR36
– volume: 26
  start-page: 8391
  year: 2011
  ident: CR22
  article-title: Predictors of quality of life ratings from persons with Dementia: the role of insight
  publication-title: Int J Geriatr Psychiatry
  doi: 10.1002/gps.2494
– volume: 34
  start-page: 9
  issue: 1
  year: 2020
  ident: CR4
  article-title: Agents teaching agents: a survey on inter-agent transfer learning
  publication-title: Auton Agent Multi-Agent Syst
  doi: 10.1007/s10458-019-09430-0
– ident: CR7
– volume: 76
  start-page: 22527
  issue: 21
  year: 2017
  end-page: 22546
  ident: CR25
  article-title: Prediction of visual attention with deep CNN on artificially degraded videos for studies of attention of patients with Dementia
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-017-4796-5
– ident: CR26
– ident: CR24
– volume: 13
  start-page: 67
  issue: 3
  year: 2014
  end-page: 75
  ident: CR29
  article-title: In-home activity recognition: bayesian inference for hidden Markov models
  publication-title: IEEE Pervasive Comput
  doi: 10.1109/MPRV.2014.52
– volume: 268
  start-page: 30
  year: 2019
  end-page: 53
  ident: CR34
  article-title: Supervised heterogeneous feature transfer via random forests
  publication-title: Artif Intell
  doi: 10.1016/j.artint.2018.11.004
– volume: 3
  start-page: 9
  issue: 1
  year: 2016
  ident: 6139_CR2
  publication-title: J Big data
  doi: 10.1186/s40537-016-0043-6
– volume: 62
  start-page: 1805
  issue: 7
  year: 2015
  ident: 6139_CR16
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2015.2404809
– ident: 6139_CR26
  doi: 10.1017/S1041610218001618
– volume: 68
  start-page: 11
  year: 2020
  ident: 6139_CR19
  publication-title: IEEE Transactions Biomed Eng
  doi: 10.1109/TBME.2020.2990734
– volume: 8
  start-page: 992
  issue: 10
  year: 2018
  ident: 6139_CR20
  publication-title: Quant Imaging Med Surg
  doi: 10.21037/qims.2018.10.17
– volume: 268
  start-page: 30
  year: 2019
  ident: 6139_CR34
  publication-title: Artif Intell
  doi: 10.1016/j.artint.2018.11.004
– volume: 43
  start-page: 1302
  issue: 6
  year: 2013
  ident: 6139_CR23
  publication-title: IEEE Trans Syst Man Cybern
  doi: 10.1109/TSMC.2013.2252338
– volume: 37
  start-page: 457
  issue: 2
  year: 2020
  ident: 6139_CR28
  publication-title: J Manag Inf Syst
  doi: 10.1080/07421222.2020.1759961
– volume: 64
  start-page: 645
  year: 2019
  ident: 6139_CR3
  publication-title: J Artif Intell Res
  doi: 10.1613/jair.1.11396
– ident: 6139_CR6
  doi: 10.1007/978-981-15-5345-5_13
– volume: 13
  start-page: 67
  issue: 3
  year: 2014
  ident: 6139_CR29
  publication-title: IEEE Pervasive Comput
  doi: 10.1109/MPRV.2014.52
– ident: 6139_CR12
  doi: 10.1007/978-3-030-01424-7_27
– volume: 19
  start-page: 3658
  issue: 17
  year: 2019
  ident: 6139_CR5
  publication-title: Sensors
  doi: 10.3390/s19173658
– volume: 33
  start-page: 747
  issue: 8
  year: 2019
  ident: 6139_CR17
  publication-title: Appl Artif Intell
  doi: 10.1080/08839514.2019.1603784
– volume: 42
  start-page: 298
  issue: 2
  year: 2011
  ident: 6139_CR35
  publication-title: IEEE Transactions Syst Man Cybern Part B (Cybern)
  doi: 10.1109/TSMCB.2011.2166761
– volume: 32
  start-page: 839
  issue: 3
  year: 2020
  ident: 6139_CR9
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-019-04069-0
– ident: 6139_CR11
  doi: 10.1007/s00521-019-04097-w
– volume: 6
  start-page: 209
  issue: 4
  year: 2019
  ident: 6139_CR18
  publication-title: J Multimed Information Syst
  doi: 10.33851/JMIS.2019.6.4.209
– volume: 122
  start-page: 122
  year: 2018
  ident: 6139_CR1
  publication-title: J Parallel Distrib Comput
  doi: 10.1016/j.jpdc.2018.07.020
– volume: 42
  start-page: 3115
  issue: 6
  year: 2015
  ident: 6139_CR8
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2014.11.063
– ident: 6139_CR36
  doi: 10.1007/978-3-642-04447-2_63
– volume: 9
  start-page: 179186
  issue: 3
  year: 1969
  ident: 6139_CR21
  publication-title: Gerontologist
– volume: 7
  start-page: 72726
  year: 2019
  ident: 6139_CR27
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2920448
– volume: 76
  start-page: 22527
  issue: 21
  year: 2017
  ident: 6139_CR25
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-017-4796-5
– volume: 15
  start-page: 7341
  issue: 12
  year: 2015
  ident: 6139_CR33
  publication-title: IEEE Sens J
  doi: 10.1109/JSEN.2015.2475626
– volume: 5
  start-page: 1
  issue: 1
  year: 2010
  ident: 6139_CR15
  publication-title: Implement Sci
  doi: 10.1186/1748-5908-5-1
– volume: 25
  start-page: 469
  issue: 2
  year: 2014
  ident: 6139_CR14
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-013-1517-5
– ident: 6139_CR7
  doi: 10.1109/SIBGRAPI-T.2019.00010
– volume: 31
  start-page: 9061
  issue: 12
  year: 2019
  ident: 6139_CR13
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-018-3867-5
– ident: 6139_CR10
  doi: 10.1007/s00521-020-04841-7
– volume: 106
  start-page: 249
  year: 2018
  ident: 6139_CR30
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2018.07.011
– start-page: 191
  volume-title: Next generation sensors and systems
  year: 2016
  ident: 6139_CR32
  doi: 10.1007/978-3-319-21671-3_9
– volume: 34
  start-page: 9
  issue: 1
  year: 2020
  ident: 6139_CR4
  publication-title: Auton Agent Multi-Agent Syst
  doi: 10.1007/s10458-019-09430-0
– volume: 19
  start-page: 766
  issue: 4
  year: 2019
  ident: 6139_CR31
  publication-title: Sensors
  doi: 10.3390/s19040766
– ident: 6139_CR24
  doi: 10.21437/Interspeech.2020-3137
– volume: 26
  start-page: 8391
  year: 2011
  ident: 6139_CR22
  publication-title: Int J Geriatr Psychiatry
  doi: 10.1002/gps.2494
SSID ssj0004685
Score 2.3733919
SecondaryResourceType review_article
Snippet Reasoning weakening because of dementia degrades the performance in activities of daily living (ADL). Present research work distinguishes care needs, dangers...
SourceID swepub
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 23739
SubjectTerms Activities of daily living
Activity recognition
Artificial Intelligence
Cognitive impairment
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Data integration
Data Mining and Knowledge Discovery
Data models
Datasets
Datavetenskap
Dementia
Image Processing and Computer Vision
Mathematical models
Monitoring
Multisensor fusion
Older people
Parameters
Performance degradation
Pre-trained deep learning model
Preventive healthcare diagnose
Probability and Statistics in Computer Science
S.I. : Deep Neuro-Fuzzy Analytics in Smart Ecosystems
S.I: Deep Neuro-Fuzzy Analytics for Intelligent Big Data Processing in Smart Ecosystems
Sensors
Smart home monitoring
The activity of daily living
Training
Transfer learning
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS-RAEG587MGLj13FN3WQxWUNdCbJpMfb4AMFFXF2xVvonu5owMnIJCPor_G3-Iv8CVb1dOIDEfSQQ0h3dUGq69Fd9RVjG7obca4C40UCw1UMUFAPomH3fKMi3lTcF8pC5h_FJyfi4qJ16orCiirbvbqStJq6LnajE0wMfelBG9TyxDibRHMnqGHDWef8VTWkbcSJcQuNDANXKvMxjbfm6MXHrK9F30GIWrOzP_M9hmfZtHMzoT2Sizk2ZvKfbKZq4QBuR_9iT50eyg7YVkXQs_ub1gCZazCEfQzanh9mEupUo34Om5328d7u2Z9tQLNISaA0B11JuCJEkhzoRJB0KBCyeI8ybgCdY7hxeFG3xo7wlHm3bNkHytC6xLd7A3VqE1AtZzYgRixnNU9ZjoNshUt552miSVQMdR5H1ouholOm4vHBdSOC9uE8-7-_92_nwHNNILwuhn6lp1GnxMJgJK3iUAaxipXCMFWFkos0UgQAGGBQKcKWnxqdSoOfjVZpoNM0kg0dLLCJvJ-bRQbSD31huA4iIdFv8lWsZVOItKk1T2PdWGJ-JQtJ1yGkU6OO66TGdra_NOH00C9NxBL7W8-5GeGDfDp6tRKxxOmKIsGYVWDQHHNkYKuSpJfPn1H7PRLNemXCCt_NzttJf3CZXOdDnBmhFVn-Gt0VNtVAV25UcbnKJsrB0KyxH93bMisG63azPQOdUSp3
  priority: 102
  providerName: Springer Nature
Title Smart aging monitoring and early dementia recognition (SAMEDR): uncovering the hidden wellness parameter for preventive well-being monitoring to categorize cognitive impairment and dementia in community-dwelling elderly subjects through AI
URI https://link.springer.com/article/10.1007/s00521-021-06139-8
https://www.proquest.com/docview/2878917702
https://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-105887
Volume 35
WOSCitedRecordID wos000658253400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 1433-3058
  databaseCode: P5Z
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 1433-3058
  databaseCode: BENPR
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 1433-3058
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF5By4EL5SkCpZoDQiBYsY7teMMFBZoKJIiiBKqKi7XrXRdLjR1ipxL8af4CM5u1Az3kwsGWbO9jDrPz8sw3jD01WSyEDi2PJbqr6KCgHETFzgOrYzHQIpDaQeZ_SiYTeXY2nPqAW-3TKluZ6AS1qTKKkb9Gy16ia5GI_tvlD05do-jvqm-hcZ3tE0oCtW6Yxt_-qot0LTnRg6Hsnij0RTOudI7iofiWLtRoQy7_VUxba7P7QXoFTNQpoJOD_yX9NrvlTU8YbXjlDrtmy7vsoG3rAP6U32O_5wvkJ3Dti2DhzjyRBqo0YAkPGYyLKRYKuvSjqoTn89Hn8fHsxRtAVUmJoTQHzUv4TiglJVCUkOQqENr4grJwAA1mWHoMqUvrRnBtr2zbVEBZW-f49MtCl-4EVN9ZrIgQR1lHU1HiIFf10vzkhtakVSx1I0fS67WmyFMNvkERjD7eZ19Pxl_ef-C-LwTP0BtsuEExk0iLzrVOIhUmOtEaPVcdKSHzWBMmYIh-poyGQW5Nrix-tkbnocnzWPVN-IDtlVVpHzJQQRRIK0wYS4WmVKATowZS5gNjRJ6Yfo8FLVOkmQdNp94dF2kH9-wYKRV0ESOlssdednOWG8iQnaMPW6ZJvfio0y3H9Nirlv-2n3et9mzDo93OBB9-XJyO0mp1nl6Ua5wZo2J5tHvbx-xmH625TdHlIdtrVmv7hN3ILpuiXh2x_XfjyXR25E4b3mfz0z9o3TYw
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF6VggQXylOEFpgDIBBYrF_xBqlCEWnVqGlU0VJVXIzXuy6WGjuNnaLyo_hr_IXOrB-BHnLrgYMPtvel9TzXM98w9lLFPufS1ZYv0F1FBwXlICp2y9bS513JbSENZP4oGI_F8XFvf4X9bnJhKKyykYlGUKs8pjPyD2jZC3QtAu58mp5ZVDWK_q42JTQqstjVFz_RZSs2hwP8vq8cZ3vr8POOVVcVsGL0JUpLIZEGQqNrJgMvcgMZSIl-j_QiLhJfEqKci16K8Hp2olUSaXytlUxclSR-5CgXx73Bbnqew4mL9v1vf-VhmhKg6DFRNJHn1kk6JlWPzl_xKV2oQXuW-FcRLqzb9ofsFfBSo_C21_63rbrH7tamNfQrXrjPVnT2gK01ZSuglmIP2Z-DCfILmPJMMDEyjbYCokyBJrxnUObMNI2gDa_KM3hz0N_bGnx5-xHQFKDAV-qD5jP8IBSWDOgUlPQGEJr6hKKMAB0CmNYYWefatLCkvjJtmQNFpZ3g3S8NbTgXUP5qOqOFmJW1a0ozbGSyesoLS9GYNIqmauu49GIu6WStgLoAE_SHj9jXa9n2x2w1yzP9hEFke7bQXLm-iNBUtGWgoq4QSVcpngTK6TC7IcIwrkHhqTbJadjCWRvCDTldRLih6LB3bZ9pBYmytPVGQ6RhLR6LcEGhHfa-offF62Wjva54op2Z4NEH6VE_zGcn4Wk2x54-Ks6ny6d9wW7vHO6NwtFwvLvO7jhouVYJphtstZzN9TN2Kz4v02L23HA4sO_XzSeXjmySMA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbhMxELagIMSF8isKLcwBIRCs6s3uZp3eoqYRFSWqCFS9WXZsl5UaJ0o2leBpeBaeiEfojPenpUKVEIc9rNY_I-3YM5898w1jr8wk41wnNsoEwlUEKLgPomGPYqsz3tU8FjpQ5h_ko5E4Pu4dXsriD9HuzZVkldNALE2-3J4bt90mvtFpJsJgetAe9SJxk91KKZCe8Pr46FJmZCjKiRiGWqZJnTbz9zH-NE0X_mZ7RXqFTjSYoOH6_wt_n92r3U_oV_rygN2w_iFbb0o7QL3SH7Hf4ynqFIQSRjAN657mA-UNWOJEBhPOFQsFbQjSzMObcf_T3uDz2x1Ac0nBodQHXUz4RkwlHuikkPZWIMbxKUXiADrNMK95pM5saBFpe2XacgYUuXWCbz8stCFPQDmexYIECZK1MhUeG4XMl_J7ZGhMGsVSRXIUfbnSdPq0_PWzrlIE_f3H7Otw78vuh6guDhFNEBKWkcG9JhcWEbbOU5XkOtca4atOFRcu00QMmCDYFGkvdtY4ZfGzNdolxrlMdUzyhK35mbdPGag4jYXlJsmEQn8q1rlRXSFc1xjuctPZYHGjF3JSM6dTAY9T2XI-h18qOT30S6XYYO_aPvOKN-Ta1puNusl6D1lKxLICwXTOUYD3jVZdfL5utNeVmrYzE4f4oDjqy9niRJ76FfbM0Lo8-7dxX7I7h4OhPNgffXzO7nbQ26uSMjfZWrlY2S12e3JWFsvFi7AGzwE0ODY_
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Smart+aging+monitoring+and+early+dementia+recognition+%28SAMEDR%29%3A+uncovering+the+hidden+wellness+parameter+for+preventive+well-being+monitoring+to+categorize+cognitive+impairment+and+dementia+in+community-dwelling+elderly+subjects+through+AI&rft.jtitle=Neural+computing+%26+applications&rft.au=Ghayvat%2C+Hemant&rft.au=Gope%2C+Prosanta&rft.date=2023-11-01&rft.pub=Springer+Nature+B.V&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=35&rft.issue=33&rft.spage=23739&rft.epage=23751&rft_id=info:doi/10.1007%2Fs00521-021-06139-8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon