Approximate results for rainbow labelings

A simple graph G = ( V , E ) is said to be antimagic if there exists a bijection f : E → [ 1 , | E | ] such that the sum of the values of f on edges incident to a vertex takes different values on distinct vertices. The graph G is distance antimagic if there exists a bijection f : V → [ 1 , | V | ] ,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Periodica mathematica Hungarica Jg. 74; H. 1; S. 11 - 21
Hauptverfasser: Lladó, Anna, Miller, Mirka
Format: Journal Article Verlag
Sprache:Englisch
Veröffentlicht: Dordrecht Springer Netherlands 01.03.2017
Springer Nature B.V
Schlagworte:
ISSN:0031-5303, 1588-2829
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract A simple graph G = ( V , E ) is said to be antimagic if there exists a bijection f : E → [ 1 , | E | ] such that the sum of the values of f on edges incident to a vertex takes different values on distinct vertices. The graph G is distance antimagic if there exists a bijection f : V → [ 1 , | V | ] , such that ∀ x , y ∈ V , ∑ x i ∈ N ( x ) f x i ≠ ∑ x j ∈ N ( y ) f x j . Using the polynomial method of Alon we prove that there are antimagic injections of any graph G with n vertices and m edges in the interval [ 1 , 2 n + m - 4 ] and, for trees with k inner vertices, in the interval [ 1 , m + k ] . In particular, a tree all of whose inner vertices are adjacent to a leaf is antimagic. This gives a partial positive answer to a conjecture by Hartsfield and Ringel. We also show that there are distance antimagic injections of a graph G with order n and maximum degree Δ in the interval [ 1 , n + t ( n - t ) ] , where t = min { Δ , ⌊ n / 2 ⌋ } , and, for trees with k leaves, in the interval [ 1 , 3 n - 4 k ] . In particular, all trees with n = 2 k vertices and no pairs of leaves sharing their neighbour are distance antimagic, a partial solution to a conjecture of Arumugam.
AbstractList The final publication is available at Springer via https://doi.org/10.1007/s10998-016-0151-2] A simple graph G=(V,E) is said to be antimagic if there exists a bijection f:E¿[1,|E|] such that the sum of the values of f on edges incident to a vertex takes different values on distinct vertices. The graph G is distance antimagic if there exists a bijection f:V¿[1,|V|], such that ¿x,y¿V, ¿xi¿N(x)f(xi)¿¿xj¿N(y)f(xj). Using the polynomial method of Alon we prove that there are antimagic injections of any graph G with n vertices and m edges in the interval [1,2n+m-4] and, for trees with k inner vertices, in the interval [1,m+k]. In particular, a tree all of whose inner vertices are adjacent to a leaf is antimagic. This gives a partial positive answer to a conjecture by Hartsfield and Ringel. We also show that there are distance antimagic injections of a graph G with order n and maximum degree ¿ in the interval [1,n+t(n-t)], where t=min{¿,¿n/2¿}, and, for trees with k leaves, in the interval [1,3n-4k]. In particular, all trees with n=2k vertices and no pairs of leaves sharing their neighbour are distance antimagic, a partial solution to a conjecture of Arumugam. Peer Reviewed
A simple graph G = ( V , E ) is said to be antimagic if there exists a bijection f : E → [ 1 , | E | ] such that the sum of the values of f on edges incident to a vertex takes different values on distinct vertices. The graph G is distance antimagic if there exists a bijection f : V → [ 1 , | V | ] , such that ∀ x , y ∈ V , ∑ x i ∈ N ( x ) f x i ≠ ∑ x j ∈ N ( y ) f x j . Using the polynomial method of Alon we prove that there are antimagic injections of any graph G with n vertices and m edges in the interval [ 1 , 2 n + m - 4 ] and, for trees with k inner vertices, in the interval [ 1 , m + k ] . In particular, a tree all of whose inner vertices are adjacent to a leaf is antimagic. This gives a partial positive answer to a conjecture by Hartsfield and Ringel. We also show that there are distance antimagic injections of a graph G with order n and maximum degree Δ in the interval [ 1 , n + t ( n - t ) ] , where t = min { Δ , ⌊ n / 2 ⌋ } , and, for trees with k leaves, in the interval [ 1 , 3 n - 4 k ] . In particular, all trees with n = 2 k vertices and no pairs of leaves sharing their neighbour are distance antimagic, a partial solution to a conjecture of Arumugam.
A simple graph G = ( V , E ) is said to be antimagic if there exists a bijection f : E → [ 1 , | E | ] such that the sum of the values of f on edges incident to a vertex takes different values on distinct vertices. The graph G is distance antimagic if there exists a bijection f : V → [ 1 , | V | ] , such that ∀ x , y ∈ V , ∑ x i ∈ N ( x ) f x i ≠ ∑ x j ∈ N ( y ) f x j . Using the polynomial method of Alon we prove that there are antimagic injections of any graph G with n vertices and m edges in the interval [ 1 , 2 n + m - 4 ] and, for trees with k inner vertices, in the interval [ 1 , m + k ] . In particular, a tree all of whose inner vertices are adjacent to a leaf is antimagic. This gives a partial positive answer to a conjecture by Hartsfield and Ringel. We also show that there are distance antimagic injections of a graph G with order n and maximum degree Δ in the interval [ 1 , n + t ( n - t ) ] , where t = min { Δ , ⌊ n / 2 ⌋ } , and, for trees with k leaves, in the interval [ 1 , 3 n - 4 k ] . In particular, all trees with n = 2 k vertices and no pairs of leaves sharing their neighbour are distance antimagic, a partial solution to a conjecture of Arumugam.
Author Miller, Mirka
Lladó, Anna
Author_xml – sequence: 1
  givenname: Anna
  orcidid: 0000-0002-0993-6556
  surname: Lladó
  fullname: Lladó, Anna
  email: aina.llado@upc.edu
  organization: Department of Mathematics, Univ. Politècnica de Catalunya
– sequence: 2
  givenname: Mirka
  surname: Miller
  fullname: Miller, Mirka
  organization: School of Mathematical and Physical Sciences, University of Newcastle, Department of Mathematics, University of West Bohemia
BookMark eNp9kE1LAzEQhoNUsK3-AG8FTx5WZ5L9SI6l-AUFL3oO2WxStqybmmRR_70pW7EXPQwhMM_wvs-MTHrXG0IuEW4QoLoNCELwDLBMU2BGT8gUC84zyqmYkCkAw6xgwM7ILIQtQKIYTMn1crfz7rN9U9EsvAlDF8PCOr_wqu1r97HoVG26tt-Ec3JqVRfMxeGdk9f7u5fVY7Z-fnhaLdeZzgFjphUTpRWmwFw0lbKoc61rVZrcWqpLqwxjYFiDtqk1VLZuCgFlo3KAuhJcsDnB8a4Og5beaOO1itKp9vezHwoVlakQlGVirkYmdXkfTIhy6wbfp5gSOYeKF1jkaas6XPYuBG-s1G1UsXV9TG07iSD3LuXoUiaXcu9S0qNMP-TOJ2X-61-GjkxIu_3G-KNMf0LfmFaH1g
CitedBy_id crossref_primary_10_1007_s00009_020_01688_z
crossref_primary_10_1016_j_amc_2018_11_043
crossref_primary_10_3390_sym13112071
crossref_primary_10_3390_sym14071411
Cites_doi 10.1007/BF02773567
10.1017/S0963548398003411
10.1002/jgt.20112
10.1016/j.ejc.2004.04.008
10.1016/j.disc.2007.12.032
10.1016/j.disc.2007.07.027
10.1002/jgt.20027
10.1016/j.tcs.2006.12.003
10.1002/jgt.20347
10.1016/j.tcs.2008.10.023
10.1016/j.disc.2009.09.021
10.1016/j.disc.2008.04.012
10.1007/s11856-012-0020-5
10.1007/11533719_68
10.1007/978-3-642-19222-7_31
ContentType Journal Article
Publication
Contributor Universitat Politècnica de Catalunya. COMBGRAPH - Combinatòria, Teoria de Grafs i Aplicacions
Universitat Politècnica de Catalunya. Departament de Matemàtiques
Contributor_xml – sequence: 1
  fullname: Universitat Politècnica de Catalunya. Departament de Matemàtiques
– sequence: 2
  fullname: Universitat Politècnica de Catalunya. COMBGRAPH - Combinatòria, Teoria de Grafs i Aplicacions
Copyright Akadémiai Kiadó, Budapest, Hungary 2016
Copyright Springer Science & Business Media 2017
info:eu-repo/semantics/openAccess
Copyright_xml – notice: Akadémiai Kiadó, Budapest, Hungary 2016
– notice: Copyright Springer Science & Business Media 2017
– notice: info:eu-repo/semantics/openAccess
DBID AAYXX
CITATION
XX2
DOI 10.1007/s10998-016-0151-2
DatabaseName CrossRef
Recercat
DatabaseTitle CrossRef
DatabaseTitleList


DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1588-2829
EndPage 21
ExternalDocumentID oai_recercat_cat_2072_303066
10_1007_s10998_016_0151_2
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
29O
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
MET
MKB
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9R
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RKA
RNI
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
ZWQNP
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
XX2
ID FETCH-LOGICAL-c401t-ca396f9e5149d7af1c4ccba6e4ff2c6fae330e3d1fdbc07fbd5906da400b79893
IEDL.DBID RSV
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000394215900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0031-5303
IngestDate Fri Nov 07 13:50:44 EST 2025
Thu Sep 25 00:56:11 EDT 2025
Sat Nov 29 04:05:32 EST 2025
Tue Nov 18 22:29:28 EST 2025
Fri Feb 21 02:28:11 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Graph labeling
Polynomial method
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c401t-ca396f9e5149d7af1c4ccba6e4ff2c6fae330e3d1fdbc07fbd5906da400b79893
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0993-6556
OpenAccessLink https://recercat.cat/handle/2072/303066
PQID 1880785154
PQPubID 2043836
PageCount 11
ParticipantIDs csuc_recercat_oai_recercat_cat_2072_303066
proquest_journals_1880785154
crossref_citationtrail_10_1007_s10998_016_0151_2
crossref_primary_10_1007_s10998_016_0151_2
springer_journals_10_1007_s10998_016_0151_2
PublicationCentury 2000
PublicationDate 2017-03-01
PublicationDateYYYYMMDD 2017-03-01
PublicationDate_xml – month: 03
  year: 2017
  text: 2017-03-01
  day: 01
PublicationDecade 2010
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
– name: Heidelberg
PublicationTitle Periodica mathematica Hungarica
PublicationTitleAbbrev Period Math Hung
PublicationYear 2017
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References Hefetz (CR13) 2005; 50
Bollobás, Pikhurko (CR6) 2005; 26
Cheng (CR8) 2007; 374
Hartsfield, Ringel (CR12) 1994
CR4
Chawathe, Krishna (CR7) 2002
Karasev, Petrov (CR15) 2012; 192
CR19
CR18
Alon (CR1) 1999; 8
CR11
Lladó, López, Moragas (CR16) 2010; 310
Wang, Hsiao (CR20) 2008; 308
Alon (CR2) 2000; 117
Alon, Kaplan, Lev, Roditty, Yuster (CR3) 2004; 47
Kaplan, Lev, Roditty (CR14) 2009; 309
Cheng (CR9) 2008; 308
Bača, Miller (CR5) 2008
Cranston (CR10) 2009; 60
Miller, Rodger, Simantujak (CR17) 2003; 28
Zhang, Sun (CR21) 2009; 410
PD Chawathe (151_CR7) 2002
Y Cheng (151_CR9) 2008; 308
D Hefetz (151_CR13) 2005; 50
Y Cheng (151_CR8) 2007; 374
RN Karasev (151_CR15) 2012; 192
T-M Wang (151_CR20) 2008; 308
B Bollobás (151_CR6) 2005; 26
A Lladó (151_CR16) 2010; 310
N Alon (151_CR1) 1999; 8
151_CR19
N Alon (151_CR3) 2004; 47
151_CR4
M Bača (151_CR5) 2008
N Hartsfield (151_CR12) 1994
M Miller (151_CR17) 2003; 28
151_CR18
DW Cranston (151_CR10) 2009; 60
151_CR11
Y Zhang (151_CR21) 2009; 410
G Kaplan (151_CR14) 2009; 309
N Alon (151_CR2) 2000; 117
References_xml – ident: CR19
– volume: 117
  start-page: 125
  year: 2000
  end-page: 130
  ident: CR2
  article-title: Additive Latin transversals
  publication-title: Isr. J. Math.
  doi: 10.1007/BF02773567
– ident: CR18
– volume: 8
  start-page: 7
  year: 1999
  end-page: 29
  ident: CR1
  article-title: Combinatorial Nullstellensatz
  publication-title: Comb. Probab. Comput.
  doi: 10.1017/S0963548398003411
– volume: 50
  start-page: 263
  issue: 4
  year: 2005
  end-page: 272
  ident: CR13
  article-title: Anti-magic graphs via the combinatorial NullStellenSatz
  publication-title: J. Graph Theory
  doi: 10.1002/jgt.20112
– ident: CR4
– volume: 26
  start-page: 607
  issue: 5
  year: 2005
  end-page: 616
  ident: CR6
  article-title: Integer sets with prescribed pairwise differences being distinct
  publication-title: Eur. J. Comb.
  doi: 10.1016/j.ejc.2004.04.008
– year: 1994
  ident: CR12
  publication-title: Pearls in Graph Theory
– volume: 308
  start-page: 6441
  issue: 24
  year: 2008
  end-page: 6448
  ident: CR9
  article-title: A new class of antimagic Cartesian product graphs
  publication-title: Discrete Math.
  doi: 10.1016/j.disc.2007.12.032
– ident: CR11
– year: 2002
  ident: CR7
  publication-title: Antimagic Labeling of Complete m-Ary Trees, Number Theory and Discrete Mathematics, Trends in Mathematics
– volume: 308
  start-page: 3624
  issue: 16
  year: 2008
  end-page: 3633
  ident: CR20
  article-title: On anti-magic labeling for graph products
  publication-title: Discrete Math.
  doi: 10.1016/j.disc.2007.07.027
– volume: 47
  start-page: 297
  issue: 4
  year: 2004
  end-page: 309
  ident: CR3
  article-title: Dense graphs are antimagic
  publication-title: J. Graph Theory
  doi: 10.1002/jgt.20027
– volume: 374
  start-page: 66
  issue: 1–3
  year: 2007
  end-page: 73
  ident: CR8
  article-title: Lattice grids and prisms are antimagic
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/j.tcs.2006.12.003
– volume: 60
  start-page: 173
  issue: 3
  year: 2009
  end-page: 182
  ident: CR10
  article-title: Regular bipartite graphs are antimagic
  publication-title: J. Graph Theory
  doi: 10.1002/jgt.20347
– year: 2008
  ident: CR5
  publication-title: Super Edge-Antimagic Graphs: A Wealth of Problems and Some Solutions
– volume: 410
  start-page: 727
  issue: 8–10
  year: 2009
  end-page: 735
  ident: CR21
  article-title: The antimagicness of the Cartesian product of graphs
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/j.tcs.2008.10.023
– volume: 28
  start-page: 305
  year: 2003
  end-page: 315
  ident: CR17
  article-title: Distance magic labelings of graphs
  publication-title: Australas. J. Comb.
– volume: 310
  start-page: 838
  year: 2010
  end-page: 842
  ident: CR16
  article-title: Every tree is a large subtree of a tree that decomposes or
  publication-title: Discrete Math.
  doi: 10.1016/j.disc.2009.09.021
– volume: 309
  start-page: 2010
  year: 2009
  end-page: 2014
  ident: CR14
  article-title: On zero-sum partitions and anti-magic trees
  publication-title: Discrete Math.
  doi: 10.1016/j.disc.2008.04.012
– volume: 192
  start-page: 143
  year: 2012
  end-page: 156
  ident: CR15
  article-title: Partitions of nonzero elements of a finite field into pairs
  publication-title: Isr. J. Math.
  doi: 10.1007/s11856-012-0020-5
– volume: 8
  start-page: 7
  year: 1999
  ident: 151_CR1
  publication-title: Comb. Probab. Comput.
  doi: 10.1017/S0963548398003411
– volume: 60
  start-page: 173
  issue: 3
  year: 2009
  ident: 151_CR10
  publication-title: J. Graph Theory
  doi: 10.1002/jgt.20347
– volume: 308
  start-page: 3624
  issue: 16
  year: 2008
  ident: 151_CR20
  publication-title: Discrete Math.
  doi: 10.1016/j.disc.2007.07.027
– volume: 50
  start-page: 263
  issue: 4
  year: 2005
  ident: 151_CR13
  publication-title: J. Graph Theory
  doi: 10.1002/jgt.20112
– volume: 309
  start-page: 2010
  year: 2009
  ident: 151_CR14
  publication-title: Discrete Math.
  doi: 10.1016/j.disc.2008.04.012
– ident: 151_CR19
  doi: 10.1007/11533719_68
– volume: 410
  start-page: 727
  issue: 8–10
  year: 2009
  ident: 151_CR21
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/j.tcs.2008.10.023
– volume-title: Pearls in Graph Theory
  year: 1994
  ident: 151_CR12
– ident: 151_CR11
– volume: 26
  start-page: 607
  issue: 5
  year: 2005
  ident: 151_CR6
  publication-title: Eur. J. Comb.
  doi: 10.1016/j.ejc.2004.04.008
– volume: 308
  start-page: 6441
  issue: 24
  year: 2008
  ident: 151_CR9
  publication-title: Discrete Math.
  doi: 10.1016/j.disc.2007.12.032
– volume: 117
  start-page: 125
  year: 2000
  ident: 151_CR2
  publication-title: Isr. J. Math.
  doi: 10.1007/BF02773567
– volume: 47
  start-page: 297
  issue: 4
  year: 2004
  ident: 151_CR3
  publication-title: J. Graph Theory
  doi: 10.1002/jgt.20027
– volume: 192
  start-page: 143
  year: 2012
  ident: 151_CR15
  publication-title: Isr. J. Math.
  doi: 10.1007/s11856-012-0020-5
– ident: 151_CR18
  doi: 10.1007/978-3-642-19222-7_31
– volume-title: Antimagic Labeling of Complete m-Ary Trees, Number Theory and Discrete Mathematics, Trends in Mathematics
  year: 2002
  ident: 151_CR7
– volume: 310
  start-page: 838
  year: 2010
  ident: 151_CR16
  publication-title: Discrete Math.
  doi: 10.1016/j.disc.2009.09.021
– volume: 374
  start-page: 66
  issue: 1–3
  year: 2007
  ident: 151_CR8
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/j.tcs.2006.12.003
– ident: 151_CR4
– volume-title: Super Edge-Antimagic Graphs: A Wealth of Problems and Some Solutions
  year: 2008
  ident: 151_CR5
– volume: 28
  start-page: 305
  year: 2003
  ident: 151_CR17
  publication-title: Australas. J. Comb.
SSID ssj0010030
Score 2.0883048
Snippet A simple graph G = ( V , E ) is said to be antimagic if there exists a bijection f : E → [ 1 , | E | ] such that the sum of the values of f on edges incident...
A simple graph G = ( V , E ) is said to be antimagic if there exists a bijection f : E → [ 1 , | E | ] such that the sum of the values of f on edges incident...
The final publication is available at Springer via https://doi.org/10.1007/s10998-016-0151-2] A simple graph G=(V,E) is said to be antimagic if there exists a...
SourceID csuc
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 11
SubjectTerms 05 Combinatorics
05C Graph theory
11 Number theory
11C Polynomials and matrices
Classificació AMS
Combinatòria
Decision trees
Grafs, Teoria de
Graph labeling
Graph theory
Leaves
Matemàtica discreta
Matemàtiques i estadística
Mathematics
Mathematics and Statistics
Polinomis
Polynomial method
Polynomials
Teoria de nombres
Trees (mathematics)
Àlgebra
Àrees temàtiques de la UPC
Title Approximate results for rainbow labelings
URI https://link.springer.com/article/10.1007/s10998-016-0151-2
https://www.proquest.com/docview/1880785154
https://recercat.cat/handle/2072/303066
Volume 74
WOSCitedRecordID wos000394215900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer LINK
  customDbUrl:
  eissn: 1588-2829
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0010030
  issn: 0031-5303
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8QwFA4yetCDu1gdpQcvKoUuSdMeB3Hw4iBuzC0kLykMDKO0HfHn-9LNGVFBDz2Epgt52_d4eV8IOYuNUgxkgsqruEdjxj2pmfS4BhVoalF6Uh02wUejZDxO75o-7qLd7d6WJCtPvdDsVrWDBTYDZoGHfncVo11irfH-4bkrHVi1rbkYA4-hg25Lmd-9YikY9aCYwxLQ_FIbrULOcOtfP7tNNhuE6Q5qldghK2a2SzZuO3rWYo-cDyyT-PsEx8bFfHs-LQsX0aub19UeF1Wj6lMv9snT8Prx6sZrzkzwADOl0gMZpXGWGsRBqeYyC4ACKBkbmmUhxJk0UeSbSAeZVuDzTGmW-rGWaMqKpwheDkhv9jIzh8SVMqMMMF-SoaJ-whUNjEH4Iv0IAFGmQ_x28QQ0hOL2XIup-KRCtqsg7CYyuwoidMhF98hrzabx-2SUiEDPb3KQpbBM2N3AXqHPQxHZrCd2SL-Vm2issBCWa44jpGTUIZetnBZu__Tloz_NPibroY311ca0PumV-dyckDV4KydFflop5wfSPtzn
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB6kCurBt1itmoMXlUAem2xzLGJRbItold6W3ckGCqVKkoo_39k0qa2ooIcclmwezM7OfMPMfAtwFmqlApRNUl7FbRYG3JZxIG0eo3JjZlB6szhsgvd6zcEgui_7uLOq2r1KSRaWeq7ZrWgHc00EHLg22d1lRg7L1PE9PD7PUgdGbadcjK4dkIGuUpnfvWLBGdUwm-AC0PySGy1cTnvzXz-7BRslwrRaU5XYhiU93oH17oyeNduF85ZhEn8f0lhbFG9PRnlmEXq10mm2xyLVKPrUsz14al_3r27s8swEGylSym2UfhQmkSYcFMVcJi4yRCVDzZLEwzCR2vcd7cduEit0eKLiIHLCWNJWVjwi8LIPtfHLWB-AJWXCAqR4SXqKOU2umKs1wRfp-IiEMuvgVMITWBKKm3MtRuKTCtlIQZgiMiMF4dXhYvbI65RN4_fJtCKCLL9OUebCMGHPBubyHO4J30Q9YR0a1bqJchdmwnDNcYKUAavDZbVOc7d_-vLhn2afwupNv9sRndve3RGsecbvF0VqDajl6UQfwwq-5cMsPSkU9QM11t_L
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZS8QwEB5kFdEHb3E9--CLSrFH2mwfRV0UdRE88C0kkwQWZJVtV_z5TnqsByqID30ITQ9mJsk3zMw3ALupUSpB2SHjVdxnacJ9qRPpc40q1Myh9E7ZbIL3ep2Hh-y67nOaN9nuTUiyqmlwLE2D4vBZ28MPhW9laVjovOEk9GkPnmSuZ5Bz12_ux2EEZ8IVL2PoJ7RZN2HN717x6WBqYT7CT6DzS5y0PH668__-8QWYq5Gnd1SZyiJMmMESzF6NaVvzZdg7cgzjr30aG4_88NFjkXuEar1hFQXyyGTK-vV8Be66p7fHZ37dS8FH8qAKH2WcpTYzhI8yzaUNkSEqmRpmbYSplSaOAxPr0GqFAbdKJ1mQaklLXPGMQM0qtAZPA7MGnpSWJUh-lIwUCzpcsdAYgjUyiBEJfbYhaAQpsCYad_0uHsU7RbKTgnDJZU4KImrD_viR54pl4_fJpB1BJ4IZoiyEY8geD9wVBTwSsfOG0jZsNjoU9erMheOg4wQ1E9aGg0ZnH27_9OX1P83egenrk664PO9dbMBM5OBAmbu2Ca1iODJbMIUvRT8fbpc2-walr-iv
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Approximate+results+for+rainbow+labelings&rft.jtitle=Periodica+mathematica+Hungarica&rft.au=Llad%C3%B3%2C+Anna&rft.au=Miller%2C+Mirka&rft.date=2017-03-01&rft.pub=Springer+Nature+B.V&rft.issn=0031-5303&rft.eissn=1588-2829&rft.volume=74&rft.issue=1&rft.spage=11&rft.epage=21&rft_id=info:doi/10.1007%2Fs10998-016-0151-2&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-5303&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-5303&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-5303&client=summon