Approximate results for rainbow labelings
A simple graph G = ( V , E ) is said to be antimagic if there exists a bijection f : E → [ 1 , | E | ] such that the sum of the values of f on edges incident to a vertex takes different values on distinct vertices. The graph G is distance antimagic if there exists a bijection f : V → [ 1 , | V | ] ,...
Gespeichert in:
| Veröffentlicht in: | Periodica mathematica Hungarica Jg. 74; H. 1; S. 11 - 21 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article Verlag |
| Sprache: | Englisch |
| Veröffentlicht: |
Dordrecht
Springer Netherlands
01.03.2017
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 0031-5303, 1588-2829 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | A simple graph
G
=
(
V
,
E
)
is said to be antimagic if there exists a bijection
f
:
E
→
[
1
,
|
E
|
]
such that the sum of the values of
f
on edges incident to a vertex takes different values on distinct vertices. The graph
G
is distance antimagic if there exists a bijection
f
:
V
→
[
1
,
|
V
|
]
,
such that
∀
x
,
y
∈
V
,
∑
x
i
∈
N
(
x
)
f
x
i
≠
∑
x
j
∈
N
(
y
)
f
x
j
.
Using the polynomial method of Alon we prove that there are antimagic injections of any graph
G
with
n
vertices and
m
edges in the interval
[
1
,
2
n
+
m
-
4
]
and, for trees with
k
inner vertices, in the interval
[
1
,
m
+
k
]
.
In particular, a tree all of whose inner vertices are adjacent to a leaf is antimagic. This gives a partial positive answer to a conjecture by Hartsfield and Ringel. We also show that there are distance antimagic injections of a graph
G
with order
n
and maximum degree
Δ
in the interval
[
1
,
n
+
t
(
n
-
t
)
]
,
where
t
=
min
{
Δ
,
⌊
n
/
2
⌋
}
,
and, for trees with
k
leaves, in the interval
[
1
,
3
n
-
4
k
]
.
In particular, all trees with
n
=
2
k
vertices and no pairs of leaves sharing their neighbour are distance antimagic, a partial solution to a conjecture of Arumugam. |
|---|---|
| AbstractList | The final publication is available at Springer via https://doi.org/10.1007/s10998-016-0151-2]
A simple graph G=(V,E) is said to be antimagic if there exists a bijection f:E¿[1,|E|] such that the sum of the values of f on edges incident to a vertex takes different values on distinct vertices. The graph G is distance antimagic if there exists a bijection f:V¿[1,|V|], such that ¿x,y¿V, ¿xi¿N(x)f(xi)¿¿xj¿N(y)f(xj). Using the polynomial method of Alon we prove that there are antimagic injections of any graph G with n vertices and m edges in the interval [1,2n+m-4] and, for trees with k inner vertices, in the interval [1,m+k]. In particular, a tree all of whose inner vertices are adjacent to a leaf is antimagic. This gives a partial positive answer to a conjecture by Hartsfield and Ringel. We also show that there are distance antimagic injections of a graph G with order n and maximum degree ¿ in the interval [1,n+t(n-t)], where t=min{¿,¿n/2¿}, and, for trees with k leaves, in the interval [1,3n-4k]. In particular, all trees with n=2k vertices and no pairs of leaves sharing their neighbour are distance antimagic, a partial solution to a conjecture of Arumugam.
Peer Reviewed A simple graph G = ( V , E ) is said to be antimagic if there exists a bijection f : E → [ 1 , | E | ] such that the sum of the values of f on edges incident to a vertex takes different values on distinct vertices. The graph G is distance antimagic if there exists a bijection f : V → [ 1 , | V | ] , such that ∀ x , y ∈ V , ∑ x i ∈ N ( x ) f x i ≠ ∑ x j ∈ N ( y ) f x j . Using the polynomial method of Alon we prove that there are antimagic injections of any graph G with n vertices and m edges in the interval [ 1 , 2 n + m - 4 ] and, for trees with k inner vertices, in the interval [ 1 , m + k ] . In particular, a tree all of whose inner vertices are adjacent to a leaf is antimagic. This gives a partial positive answer to a conjecture by Hartsfield and Ringel. We also show that there are distance antimagic injections of a graph G with order n and maximum degree Δ in the interval [ 1 , n + t ( n - t ) ] , where t = min { Δ , ⌊ n / 2 ⌋ } , and, for trees with k leaves, in the interval [ 1 , 3 n - 4 k ] . In particular, all trees with n = 2 k vertices and no pairs of leaves sharing their neighbour are distance antimagic, a partial solution to a conjecture of Arumugam. A simple graph G = ( V , E ) is said to be antimagic if there exists a bijection f : E → [ 1 , | E | ] such that the sum of the values of f on edges incident to a vertex takes different values on distinct vertices. The graph G is distance antimagic if there exists a bijection f : V → [ 1 , | V | ] , such that ∀ x , y ∈ V , ∑ x i ∈ N ( x ) f x i ≠ ∑ x j ∈ N ( y ) f x j . Using the polynomial method of Alon we prove that there are antimagic injections of any graph G with n vertices and m edges in the interval [ 1 , 2 n + m - 4 ] and, for trees with k inner vertices, in the interval [ 1 , m + k ] . In particular, a tree all of whose inner vertices are adjacent to a leaf is antimagic. This gives a partial positive answer to a conjecture by Hartsfield and Ringel. We also show that there are distance antimagic injections of a graph G with order n and maximum degree Δ in the interval [ 1 , n + t ( n - t ) ] , where t = min { Δ , ⌊ n / 2 ⌋ } , and, for trees with k leaves, in the interval [ 1 , 3 n - 4 k ] . In particular, all trees with n = 2 k vertices and no pairs of leaves sharing their neighbour are distance antimagic, a partial solution to a conjecture of Arumugam. |
| Author | Miller, Mirka Lladó, Anna |
| Author_xml | – sequence: 1 givenname: Anna orcidid: 0000-0002-0993-6556 surname: Lladó fullname: Lladó, Anna email: aina.llado@upc.edu organization: Department of Mathematics, Univ. Politècnica de Catalunya – sequence: 2 givenname: Mirka surname: Miller fullname: Miller, Mirka organization: School of Mathematical and Physical Sciences, University of Newcastle, Department of Mathematics, University of West Bohemia |
| BookMark | eNp9kE1LAzEQhoNUsK3-AG8FTx5WZ5L9SI6l-AUFL3oO2WxStqybmmRR_70pW7EXPQwhMM_wvs-MTHrXG0IuEW4QoLoNCELwDLBMU2BGT8gUC84zyqmYkCkAw6xgwM7ILIQtQKIYTMn1crfz7rN9U9EsvAlDF8PCOr_wqu1r97HoVG26tt-Ec3JqVRfMxeGdk9f7u5fVY7Z-fnhaLdeZzgFjphUTpRWmwFw0lbKoc61rVZrcWqpLqwxjYFiDtqk1VLZuCgFlo3KAuhJcsDnB8a4Og5beaOO1itKp9vezHwoVlakQlGVirkYmdXkfTIhy6wbfp5gSOYeKF1jkaas6XPYuBG-s1G1UsXV9TG07iSD3LuXoUiaXcu9S0qNMP-TOJ2X-61-GjkxIu_3G-KNMf0LfmFaH1g |
| CitedBy_id | crossref_primary_10_1007_s00009_020_01688_z crossref_primary_10_1016_j_amc_2018_11_043 crossref_primary_10_3390_sym13112071 crossref_primary_10_3390_sym14071411 |
| Cites_doi | 10.1007/BF02773567 10.1017/S0963548398003411 10.1002/jgt.20112 10.1016/j.ejc.2004.04.008 10.1016/j.disc.2007.12.032 10.1016/j.disc.2007.07.027 10.1002/jgt.20027 10.1016/j.tcs.2006.12.003 10.1002/jgt.20347 10.1016/j.tcs.2008.10.023 10.1016/j.disc.2009.09.021 10.1016/j.disc.2008.04.012 10.1007/s11856-012-0020-5 10.1007/11533719_68 10.1007/978-3-642-19222-7_31 |
| ContentType | Journal Article Publication |
| Contributor | Universitat Politècnica de Catalunya. COMBGRAPH - Combinatòria, Teoria de Grafs i Aplicacions Universitat Politècnica de Catalunya. Departament de Matemàtiques |
| Contributor_xml | – sequence: 1 fullname: Universitat Politècnica de Catalunya. Departament de Matemàtiques – sequence: 2 fullname: Universitat Politècnica de Catalunya. COMBGRAPH - Combinatòria, Teoria de Grafs i Aplicacions |
| Copyright | Akadémiai Kiadó, Budapest, Hungary 2016 Copyright Springer Science & Business Media 2017 info:eu-repo/semantics/openAccess |
| Copyright_xml | – notice: Akadémiai Kiadó, Budapest, Hungary 2016 – notice: Copyright Springer Science & Business Media 2017 – notice: info:eu-repo/semantics/openAccess |
| DBID | AAYXX CITATION XX2 |
| DOI | 10.1007/s10998-016-0151-2 |
| DatabaseName | CrossRef Recercat |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 1588-2829 |
| EndPage | 21 |
| ExternalDocumentID | oai_recercat_cat_2072_303066 10_1007_s10998_016_0151_2 |
| GroupedDBID | -52 -5D -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 29O 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- MET MKB N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9R PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RKA RNI ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TN5 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR ZWQNP ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION XX2 |
| ID | FETCH-LOGICAL-c401t-ca396f9e5149d7af1c4ccba6e4ff2c6fae330e3d1fdbc07fbd5906da400b79893 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000394215900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0031-5303 |
| IngestDate | Fri Nov 07 13:50:44 EST 2025 Thu Sep 25 00:56:11 EDT 2025 Sat Nov 29 04:05:32 EST 2025 Tue Nov 18 22:29:28 EST 2025 Fri Feb 21 02:28:11 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Graph labeling Polynomial method |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c401t-ca396f9e5149d7af1c4ccba6e4ff2c6fae330e3d1fdbc07fbd5906da400b79893 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-0993-6556 |
| OpenAccessLink | https://recercat.cat/handle/2072/303066 |
| PQID | 1880785154 |
| PQPubID | 2043836 |
| PageCount | 11 |
| ParticipantIDs | csuc_recercat_oai_recercat_cat_2072_303066 proquest_journals_1880785154 crossref_citationtrail_10_1007_s10998_016_0151_2 crossref_primary_10_1007_s10998_016_0151_2 springer_journals_10_1007_s10998_016_0151_2 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-03-01 |
| PublicationDateYYYYMMDD | 2017-03-01 |
| PublicationDate_xml | – month: 03 year: 2017 text: 2017-03-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Dordrecht |
| PublicationPlace_xml | – name: Dordrecht – name: Heidelberg |
| PublicationTitle | Periodica mathematica Hungarica |
| PublicationTitleAbbrev | Period Math Hung |
| PublicationYear | 2017 |
| Publisher | Springer Netherlands Springer Nature B.V |
| Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V |
| References | Hefetz (CR13) 2005; 50 Bollobás, Pikhurko (CR6) 2005; 26 Cheng (CR8) 2007; 374 Hartsfield, Ringel (CR12) 1994 CR4 Chawathe, Krishna (CR7) 2002 Karasev, Petrov (CR15) 2012; 192 CR19 CR18 Alon (CR1) 1999; 8 CR11 Lladó, López, Moragas (CR16) 2010; 310 Wang, Hsiao (CR20) 2008; 308 Alon (CR2) 2000; 117 Alon, Kaplan, Lev, Roditty, Yuster (CR3) 2004; 47 Kaplan, Lev, Roditty (CR14) 2009; 309 Cheng (CR9) 2008; 308 Bača, Miller (CR5) 2008 Cranston (CR10) 2009; 60 Miller, Rodger, Simantujak (CR17) 2003; 28 Zhang, Sun (CR21) 2009; 410 PD Chawathe (151_CR7) 2002 Y Cheng (151_CR9) 2008; 308 D Hefetz (151_CR13) 2005; 50 Y Cheng (151_CR8) 2007; 374 RN Karasev (151_CR15) 2012; 192 T-M Wang (151_CR20) 2008; 308 B Bollobás (151_CR6) 2005; 26 A Lladó (151_CR16) 2010; 310 N Alon (151_CR1) 1999; 8 151_CR19 N Alon (151_CR3) 2004; 47 151_CR4 M Bača (151_CR5) 2008 N Hartsfield (151_CR12) 1994 M Miller (151_CR17) 2003; 28 151_CR18 DW Cranston (151_CR10) 2009; 60 151_CR11 Y Zhang (151_CR21) 2009; 410 G Kaplan (151_CR14) 2009; 309 N Alon (151_CR2) 2000; 117 |
| References_xml | – ident: CR19 – volume: 117 start-page: 125 year: 2000 end-page: 130 ident: CR2 article-title: Additive Latin transversals publication-title: Isr. J. Math. doi: 10.1007/BF02773567 – ident: CR18 – volume: 8 start-page: 7 year: 1999 end-page: 29 ident: CR1 article-title: Combinatorial Nullstellensatz publication-title: Comb. Probab. Comput. doi: 10.1017/S0963548398003411 – volume: 50 start-page: 263 issue: 4 year: 2005 end-page: 272 ident: CR13 article-title: Anti-magic graphs via the combinatorial NullStellenSatz publication-title: J. Graph Theory doi: 10.1002/jgt.20112 – ident: CR4 – volume: 26 start-page: 607 issue: 5 year: 2005 end-page: 616 ident: CR6 article-title: Integer sets with prescribed pairwise differences being distinct publication-title: Eur. J. Comb. doi: 10.1016/j.ejc.2004.04.008 – year: 1994 ident: CR12 publication-title: Pearls in Graph Theory – volume: 308 start-page: 6441 issue: 24 year: 2008 end-page: 6448 ident: CR9 article-title: A new class of antimagic Cartesian product graphs publication-title: Discrete Math. doi: 10.1016/j.disc.2007.12.032 – ident: CR11 – year: 2002 ident: CR7 publication-title: Antimagic Labeling of Complete m-Ary Trees, Number Theory and Discrete Mathematics, Trends in Mathematics – volume: 308 start-page: 3624 issue: 16 year: 2008 end-page: 3633 ident: CR20 article-title: On anti-magic labeling for graph products publication-title: Discrete Math. doi: 10.1016/j.disc.2007.07.027 – volume: 47 start-page: 297 issue: 4 year: 2004 end-page: 309 ident: CR3 article-title: Dense graphs are antimagic publication-title: J. Graph Theory doi: 10.1002/jgt.20027 – volume: 374 start-page: 66 issue: 1–3 year: 2007 end-page: 73 ident: CR8 article-title: Lattice grids and prisms are antimagic publication-title: Theor. Comput. Sci. doi: 10.1016/j.tcs.2006.12.003 – volume: 60 start-page: 173 issue: 3 year: 2009 end-page: 182 ident: CR10 article-title: Regular bipartite graphs are antimagic publication-title: J. Graph Theory doi: 10.1002/jgt.20347 – year: 2008 ident: CR5 publication-title: Super Edge-Antimagic Graphs: A Wealth of Problems and Some Solutions – volume: 410 start-page: 727 issue: 8–10 year: 2009 end-page: 735 ident: CR21 article-title: The antimagicness of the Cartesian product of graphs publication-title: Theor. Comput. Sci. doi: 10.1016/j.tcs.2008.10.023 – volume: 28 start-page: 305 year: 2003 end-page: 315 ident: CR17 article-title: Distance magic labelings of graphs publication-title: Australas. J. Comb. – volume: 310 start-page: 838 year: 2010 end-page: 842 ident: CR16 article-title: Every tree is a large subtree of a tree that decomposes or publication-title: Discrete Math. doi: 10.1016/j.disc.2009.09.021 – volume: 309 start-page: 2010 year: 2009 end-page: 2014 ident: CR14 article-title: On zero-sum partitions and anti-magic trees publication-title: Discrete Math. doi: 10.1016/j.disc.2008.04.012 – volume: 192 start-page: 143 year: 2012 end-page: 156 ident: CR15 article-title: Partitions of nonzero elements of a finite field into pairs publication-title: Isr. J. Math. doi: 10.1007/s11856-012-0020-5 – volume: 8 start-page: 7 year: 1999 ident: 151_CR1 publication-title: Comb. Probab. Comput. doi: 10.1017/S0963548398003411 – volume: 60 start-page: 173 issue: 3 year: 2009 ident: 151_CR10 publication-title: J. Graph Theory doi: 10.1002/jgt.20347 – volume: 308 start-page: 3624 issue: 16 year: 2008 ident: 151_CR20 publication-title: Discrete Math. doi: 10.1016/j.disc.2007.07.027 – volume: 50 start-page: 263 issue: 4 year: 2005 ident: 151_CR13 publication-title: J. Graph Theory doi: 10.1002/jgt.20112 – volume: 309 start-page: 2010 year: 2009 ident: 151_CR14 publication-title: Discrete Math. doi: 10.1016/j.disc.2008.04.012 – ident: 151_CR19 doi: 10.1007/11533719_68 – volume: 410 start-page: 727 issue: 8–10 year: 2009 ident: 151_CR21 publication-title: Theor. Comput. Sci. doi: 10.1016/j.tcs.2008.10.023 – volume-title: Pearls in Graph Theory year: 1994 ident: 151_CR12 – ident: 151_CR11 – volume: 26 start-page: 607 issue: 5 year: 2005 ident: 151_CR6 publication-title: Eur. J. Comb. doi: 10.1016/j.ejc.2004.04.008 – volume: 308 start-page: 6441 issue: 24 year: 2008 ident: 151_CR9 publication-title: Discrete Math. doi: 10.1016/j.disc.2007.12.032 – volume: 117 start-page: 125 year: 2000 ident: 151_CR2 publication-title: Isr. J. Math. doi: 10.1007/BF02773567 – volume: 47 start-page: 297 issue: 4 year: 2004 ident: 151_CR3 publication-title: J. Graph Theory doi: 10.1002/jgt.20027 – volume: 192 start-page: 143 year: 2012 ident: 151_CR15 publication-title: Isr. J. Math. doi: 10.1007/s11856-012-0020-5 – ident: 151_CR18 doi: 10.1007/978-3-642-19222-7_31 – volume-title: Antimagic Labeling of Complete m-Ary Trees, Number Theory and Discrete Mathematics, Trends in Mathematics year: 2002 ident: 151_CR7 – volume: 310 start-page: 838 year: 2010 ident: 151_CR16 publication-title: Discrete Math. doi: 10.1016/j.disc.2009.09.021 – volume: 374 start-page: 66 issue: 1–3 year: 2007 ident: 151_CR8 publication-title: Theor. Comput. Sci. doi: 10.1016/j.tcs.2006.12.003 – ident: 151_CR4 – volume-title: Super Edge-Antimagic Graphs: A Wealth of Problems and Some Solutions year: 2008 ident: 151_CR5 – volume: 28 start-page: 305 year: 2003 ident: 151_CR17 publication-title: Australas. J. Comb. |
| SSID | ssj0010030 |
| Score | 2.0883048 |
| Snippet | A simple graph
G
=
(
V
,
E
)
is said to be antimagic if there exists a bijection
f
:
E
→
[
1
,
|
E
|
]
such that the sum of the values of
f
on edges incident... A simple graph G = ( V , E ) is said to be antimagic if there exists a bijection f : E → [ 1 , | E | ] such that the sum of the values of f on edges incident... The final publication is available at Springer via https://doi.org/10.1007/s10998-016-0151-2] A simple graph G=(V,E) is said to be antimagic if there exists a... |
| SourceID | csuc proquest crossref springer |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 11 |
| SubjectTerms | 05 Combinatorics 05C Graph theory 11 Number theory 11C Polynomials and matrices Classificació AMS Combinatòria Decision trees Grafs, Teoria de Graph labeling Graph theory Leaves Matemàtica discreta Matemàtiques i estadística Mathematics Mathematics and Statistics Polinomis Polynomial method Polynomials Teoria de nombres Trees (mathematics) Àlgebra Àrees temàtiques de la UPC |
| Title | Approximate results for rainbow labelings |
| URI | https://link.springer.com/article/10.1007/s10998-016-0151-2 https://www.proquest.com/docview/1880785154 https://recercat.cat/handle/2072/303066 |
| Volume | 74 |
| WOSCitedRecordID | wos000394215900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: Springer LINK customDbUrl: eissn: 1588-2829 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0010030 issn: 0031-5303 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8QwFA4yetCDu1gdpQcvKoUuSdMeB3Hw4iBuzC0kLykMDKO0HfHn-9LNGVFBDz2Epgt52_d4eV8IOYuNUgxkgsqruEdjxj2pmfS4BhVoalF6Uh02wUejZDxO75o-7qLd7d6WJCtPvdDsVrWDBTYDZoGHfncVo11irfH-4bkrHVi1rbkYA4-hg25Lmd-9YikY9aCYwxLQ_FIbrULOcOtfP7tNNhuE6Q5qldghK2a2SzZuO3rWYo-cDyyT-PsEx8bFfHs-LQsX0aub19UeF1Wj6lMv9snT8Prx6sZrzkzwADOl0gMZpXGWGsRBqeYyC4ACKBkbmmUhxJk0UeSbSAeZVuDzTGmW-rGWaMqKpwheDkhv9jIzh8SVMqMMMF-SoaJ-whUNjEH4Iv0IAFGmQ_x28QQ0hOL2XIup-KRCtqsg7CYyuwoidMhF98hrzabx-2SUiEDPb3KQpbBM2N3AXqHPQxHZrCd2SL-Vm2issBCWa44jpGTUIZetnBZu__Tloz_NPibroY311ca0PumV-dyckDV4KydFflop5wfSPtzn |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB6kCurBt1itmoMXlUAem2xzLGJRbItold6W3ckGCqVKkoo_39k0qa2ooIcclmwezM7OfMPMfAtwFmqlApRNUl7FbRYG3JZxIG0eo3JjZlB6szhsgvd6zcEgui_7uLOq2r1KSRaWeq7ZrWgHc00EHLg22d1lRg7L1PE9PD7PUgdGbadcjK4dkIGuUpnfvWLBGdUwm-AC0PySGy1cTnvzXz-7BRslwrRaU5XYhiU93oH17oyeNduF85ZhEn8f0lhbFG9PRnlmEXq10mm2xyLVKPrUsz14al_3r27s8swEGylSym2UfhQmkSYcFMVcJi4yRCVDzZLEwzCR2vcd7cduEit0eKLiIHLCWNJWVjwi8LIPtfHLWB-AJWXCAqR4SXqKOU2umKs1wRfp-IiEMuvgVMITWBKKm3MtRuKTCtlIQZgiMiMF4dXhYvbI65RN4_fJtCKCLL9OUebCMGHPBubyHO4J30Q9YR0a1bqJchdmwnDNcYKUAavDZbVOc7d_-vLhn2afwupNv9sRndve3RGsecbvF0VqDajl6UQfwwq-5cMsPSkU9QM11t_L |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZS8QwEB5kFdEHb3E9--CLSrFH2mwfRV0UdRE88C0kkwQWZJVtV_z5TnqsByqID30ITQ9mJsk3zMw3ALupUSpB2SHjVdxnacJ9qRPpc40q1Myh9E7ZbIL3ep2Hh-y67nOaN9nuTUiyqmlwLE2D4vBZ28MPhW9laVjovOEk9GkPnmSuZ5Bz12_ux2EEZ8IVL2PoJ7RZN2HN717x6WBqYT7CT6DzS5y0PH668__-8QWYq5Gnd1SZyiJMmMESzF6NaVvzZdg7cgzjr30aG4_88NFjkXuEar1hFQXyyGTK-vV8Be66p7fHZ37dS8FH8qAKH2WcpTYzhI8yzaUNkSEqmRpmbYSplSaOAxPr0GqFAbdKJ1mQaklLXPGMQM0qtAZPA7MGnpSWJUh-lIwUCzpcsdAYgjUyiBEJfbYhaAQpsCYad_0uHsU7RbKTgnDJZU4KImrD_viR54pl4_fJpB1BJ4IZoiyEY8geD9wVBTwSsfOG0jZsNjoU9erMheOg4wQ1E9aGg0ZnH27_9OX1P83egenrk664PO9dbMBM5OBAmbu2Ca1iODJbMIUvRT8fbpc2-walr-iv |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Approximate+results+for+rainbow+labelings&rft.jtitle=Periodica+mathematica+Hungarica&rft.au=Llad%C3%B3%2C+Anna&rft.au=Miller%2C+Mirka&rft.date=2017-03-01&rft.pub=Springer+Nature+B.V&rft.issn=0031-5303&rft.eissn=1588-2829&rft.volume=74&rft.issue=1&rft.spage=11&rft.epage=21&rft_id=info:doi/10.1007%2Fs10998-016-0151-2&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-5303&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-5303&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-5303&client=summon |