Prediction of effluent total nitrogen and energy consumption in wastewater treatment plants: Bayesian optimization machine learning methods

[Display omitted] •The same input features enables prediction of effluent TN and TEC in the WWTPs.•The moving average method and Bayesian optimization to improve model prediction performance.•The impact of different random seeds on model generalization ability and robustness. The control of effluent...

Full description

Saved in:
Bibliographic Details
Published in:Bioresource technology Vol. 395; p. 130361
Main Authors: Ye, Gang, Wan, Jinquan, Deng, Zhicheng, Wang, Yan, Chen, Jian, Zhu, Bin, Ji, Shiming
Format: Journal Article
Language:English
Published: England Elsevier Ltd 01.03.2024
Subjects:
ISSN:0960-8524, 1873-2976, 1873-2976
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract [Display omitted] •The same input features enables prediction of effluent TN and TEC in the WWTPs.•The moving average method and Bayesian optimization to improve model prediction performance.•The impact of different random seeds on model generalization ability and robustness. The control of effluent total nitrogen (TN) and total energy consumption (TEC) is a key issue in managing wastewater treatment plants. In this study, effluent TN and TEC predictive models were established by selecting influent water quality and process control indicators as input features. The prediction performance of machine learning methods under different random seeds was explored, the moving average method was used for data amplification, and the Bayesian algorithm was used for hyperparameter optimization. The results showed that compared with the traditional hyperparameter optimization method for effluent TN prediction, the coefficient of determination (R2) increased by 0.092 and 0.067, reaching 0.725, and the root mean square error (RMSE) decreased by 0.262 and 0.215 mg/L, reaching 1.673 mg/L, respectively, after Bayesian optimization and data amplification. During TEC prediction, R2 increased by 0.068 and 0.042, reaching 0.884, and the RMSE decreased by 232.444 and 197.065 kWh, reaching 1305.829 kWh, respectively.
AbstractList The control of effluent total nitrogen (TN) and total energy consumption (TEC) is a key issue in managing wastewater treatment plants (WWTPs). In this study, effluent TN and TEC predictive models were established by selecting influent water quality and process control indicators as input features. The prediction performance of machine learning methods under different random seeds was explored, the moving average method was used for data amplification, and the Bayesian algorithm was used for hyperparameter optimization. The results showed that compared with the traditional hyperparameter optimization method for effluent TN prediction, the coefficient of determination (R ) increased by 0.092 and 0.067, reaching 0.725, and the root mean square error (RMSE) decreased by 0.262 and 0.215 mg/L, reaching 1.673 mg/L, respectively, after Bayesian optimization and data amplification. During TEC prediction, R increased by 0.068 and 0.042, reaching 0.884, and the RMSE decreased by 232.444 and 197.065 kWh, reaching 1305.829 kWh, respectively.
The control of effluent total nitrogen (TN) and total energy consumption (TEC) is a key issue in managing wastewater treatment plants. In this study, effluent TN and TEC predictive models were established by selecting influent water quality and process control indicators as input features. The prediction performance of machine learning methods under different random seeds was explored, the moving average method was used for data amplification, and the Bayesian algorithm was used for hyperparameter optimization. The results showed that compared with the traditional hyperparameter optimization method for effluent TN prediction, the coefficient of determination (R²) increased by 0.092 and 0.067, reaching 0.725, and the root mean square error (RMSE) decreased by 0.262 and 0.215 mg/L, reaching 1.673 mg/L, respectively, after Bayesian optimization and data amplification. During TEC prediction, R² increased by 0.068 and 0.042, reaching 0.884, and the RMSE decreased by 232.444 and 197.065 kWh, reaching 1305.829 kWh, respectively.
The control of effluent total nitrogen (TN) and total energy consumption (TEC) is a key issue in managing wastewater treatment plants. In this study, effluent TN and TEC predictive models were established by selecting influent water quality and process control indicators as input features. The prediction performance of machine learning methods under different random seeds was explored, the moving average method was used for data amplification, and the Bayesian algorithm was used for hyperparameter optimization. The results showed that compared with the traditional hyperparameter optimization method for effluent TN prediction, the coefficient of determination (R2) increased by 0.092 and 0.067, reaching 0.725, and the root mean square error (RMSE) decreased by 0.262 and 0.215 mg/L, reaching 1.673 mg/L, respectively, after Bayesian optimization and data amplification. During TEC prediction, R2 increased by 0.068 and 0.042, reaching 0.884, and the RMSE decreased by 232.444 and 197.065 kWh, reaching 1305.829 kWh, respectively.The control of effluent total nitrogen (TN) and total energy consumption (TEC) is a key issue in managing wastewater treatment plants. In this study, effluent TN and TEC predictive models were established by selecting influent water quality and process control indicators as input features. The prediction performance of machine learning methods under different random seeds was explored, the moving average method was used for data amplification, and the Bayesian algorithm was used for hyperparameter optimization. The results showed that compared with the traditional hyperparameter optimization method for effluent TN prediction, the coefficient of determination (R2) increased by 0.092 and 0.067, reaching 0.725, and the root mean square error (RMSE) decreased by 0.262 and 0.215 mg/L, reaching 1.673 mg/L, respectively, after Bayesian optimization and data amplification. During TEC prediction, R2 increased by 0.068 and 0.042, reaching 0.884, and the RMSE decreased by 232.444 and 197.065 kWh, reaching 1305.829 kWh, respectively.
[Display omitted] •The same input features enables prediction of effluent TN and TEC in the WWTPs.•The moving average method and Bayesian optimization to improve model prediction performance.•The impact of different random seeds on model generalization ability and robustness. The control of effluent total nitrogen (TN) and total energy consumption (TEC) is a key issue in managing wastewater treatment plants. In this study, effluent TN and TEC predictive models were established by selecting influent water quality and process control indicators as input features. The prediction performance of machine learning methods under different random seeds was explored, the moving average method was used for data amplification, and the Bayesian algorithm was used for hyperparameter optimization. The results showed that compared with the traditional hyperparameter optimization method for effluent TN prediction, the coefficient of determination (R2) increased by 0.092 and 0.067, reaching 0.725, and the root mean square error (RMSE) decreased by 0.262 and 0.215 mg/L, reaching 1.673 mg/L, respectively, after Bayesian optimization and data amplification. During TEC prediction, R2 increased by 0.068 and 0.042, reaching 0.884, and the RMSE decreased by 232.444 and 197.065 kWh, reaching 1305.829 kWh, respectively.
ArticleNumber 130361
Author Wan, Jinquan
Ye, Gang
Deng, Zhicheng
Zhu, Bin
Chen, Jian
Ji, Shiming
Wang, Yan
Author_xml – sequence: 1
  givenname: Gang
  surname: Ye
  fullname: Ye, Gang
  organization: College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
– sequence: 2
  givenname: Jinquan
  surname: Wan
  fullname: Wan, Jinquan
  email: ppjqwan@scut.edu.cn
  organization: College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
– sequence: 3
  givenname: Zhicheng
  surname: Deng
  fullname: Deng, Zhicheng
  organization: College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
– sequence: 4
  givenname: Yan
  surname: Wang
  fullname: Wang, Yan
  organization: College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
– sequence: 5
  givenname: Jian
  surname: Chen
  fullname: Chen, Jian
  organization: College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
– sequence: 6
  givenname: Bin
  surname: Zhu
  fullname: Zhu, Bin
  organization: Guangdong Shunkong Zihua Technology Co, Ltd, Foshan 528300, China
– sequence: 7
  givenname: Shiming
  surname: Ji
  fullname: Ji, Shiming
  organization: Guangdong Shunkong Zihua Technology Co, Ltd, Foshan 528300, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38286171$$D View this record in MEDLINE/PubMed
BookMark eNqFkb1u2zAUhYkiReOkfYWAYxe5_BElqujQNugfECAZ2pm4oq5sGhLpklQD5xXy0pXtpEMXT7zD9x0Q51yQMx88EnLF2ZIzXr3bLFsXYka7XgomyiWXTFb8BVlwXctCNHV1RhasqVihlSjPyUVKG8aY5LV4Rc6lFrriNV-Qx7uInbPZBU9DT7Hvhwl9pjlkGKh3OYYVegq-o-gxrnbUBp-mcXswnKf3kDLeQ8ZIc0TI497eDuBzek8_ww6Tgzl65kf3AAdrBLt2HumAEL3zKzpiXocuvSYvexgSvnl6L8mvr19-Xn8vbm6__bj-dFPYkvFcWM0l7wEaBXXdY4taqrZhGppSdaWa70rxrkdoUAqlwMqOt0oAa9ta6hLlJXl7zN3G8HvClM3oksVh_jSGKRnJlawrrVh1EhWNYFzrstyjV0_o1I7YmW10I8Sdee56BqojYGNIKWL_D-HM7Ec1G_M8qtmPao6jzuKH_0Tr8qHKHMENp_WPRx3nTv84jCZZh97Ou0e02XTBnYr4C4BwxU4
CitedBy_id crossref_primary_10_1016_j_biortech_2024_131217
crossref_primary_10_1016_j_eesus_2025_100029
crossref_primary_10_1007_s10098_024_03097_2
crossref_primary_10_1016_j_watres_2025_123976
crossref_primary_10_1016_j_est_2025_115891
crossref_primary_10_1016_j_ecoinf_2025_103126
crossref_primary_10_1016_j_jclepro_2024_144621
crossref_primary_10_3390_app14125185
crossref_primary_10_1016_j_biortech_2025_133183
crossref_primary_10_1007_s11269_024_04027_z
crossref_primary_10_1016_j_seppur_2025_133925
crossref_primary_10_3389_fmed_2025_1580345
crossref_primary_10_1007_s10661_025_14521_5
crossref_primary_10_1007_s44246_025_00213_9
crossref_primary_10_1016_j_biortech_2025_132970
crossref_primary_10_1016_j_biortech_2024_131362
crossref_primary_10_1016_j_biortech_2025_132793
crossref_primary_10_1371_journal_pone_0305216
crossref_primary_10_1016_j_jwpe_2025_107513
crossref_primary_10_1016_j_jece_2024_113152
crossref_primary_10_1016_j_egyai_2025_100518
crossref_primary_10_1016_j_jwpe_2025_107352
crossref_primary_10_1016_j_rineng_2025_106879
crossref_primary_10_1016_j_ecoinf_2025_103337
crossref_primary_10_1007_s12145_024_01549_3
crossref_primary_10_1016_j_watres_2025_124559
crossref_primary_10_1016_j_apsusc_2025_164326
crossref_primary_10_1016_j_jwpe_2025_108224
crossref_primary_10_1016_j_jenvman_2025_126386
crossref_primary_10_1016_j_asoc_2024_111975
crossref_primary_10_1093_jigpal_jzae108
crossref_primary_10_1016_j_wasman_2024_07_032
crossref_primary_10_1016_j_psep_2025_106816
crossref_primary_10_3390_pr13072301
crossref_primary_10_1016_j_jenvman_2024_123173
Cites_doi 10.1016/j.engappai.2016.12.024
10.1016/j.scitotenv.2023.166662
10.1016/j.biortech.2022.128486
10.1016/j.atmosres.2022.106238
10.1016/j.eswa.2022.118912
10.1021/acs.est.1c04373
10.1016/j.cej.2023.144671
10.1016/j.scitotenv.2021.147356
10.1016/j.watres.2022.118908
10.1016/j.seppur.2022.121129
10.1016/j.biortech.2015.10.074
10.1021/acsestwater.1c00283
10.1109/GLOCOM.2018.8647714
10.1038/s41467-023-39022-2
10.1016/j.biortech.2023.130008
10.1016/j.chemosphere.2022.136116
10.1021/acsestengg.2c00306
10.1016/j.jwpe.2021.102033
10.1016/j.nima.2023.168192
10.1016/j.biortech.2022.126812
10.1016/j.jenvman.2018.06.092
10.1016/j.envint.2016.03.024
10.1016/j.jclepro.2020.125772
10.1016/j.jenvman.2021.113941
10.1016/j.ijar.2013.01.006
10.1007/978-3-642-41947-8_4
10.1016/j.watres.2020.116103
10.1016/j.watres.2021.117666
10.1016/j.jclepro.2019.118955
10.1016/j.watres.2019.03.030
10.1016/j.jes.2015.01.007
10.1016/j.neucom.2020.07.061
10.1145/2939672.2939785
10.1016/j.engappai.2021.104315
10.1016/j.chemosphere.2020.126169
10.1016/j.watres.2015.02.013
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright © 2024 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2024 Elsevier Ltd
– notice: Copyright © 2024 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1016/j.biortech.2024.130361
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList PubMed
AGRICOLA
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Agriculture
EISSN 1873-2976
ExternalDocumentID 38286171
10_1016_j_biortech_2024_130361
S0960852424000634
Genre Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
9JN
AAAJQ
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AARKO
AATLK
AAXUO
ABFNM
ABFYP
ABGRD
ABGSF
ABJNI
ABLST
ABMAC
ABNUV
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADQTV
ADUVX
AEBSH
AEHWI
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGEKW
AGHFR
AGRDE
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLECG
BLXMC
CBWCG
CJTIS
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMC
HVGLF
HZ~
IHE
J1W
JARJE
KCYFY
KOM
LUGTX
LW9
LY6
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SAC
SDF
SDG
SDP
SEN
SES
SEW
SPC
SPCBC
SSA
SSG
SSI
SSJ
SSR
SSU
SSZ
T5K
VH1
WUQ
Y6R
~02
~G-
~KM
9DU
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AGCQF
AGRNS
BNPGV
NPM
SSH
7X8
7S9
L.6
ID FETCH-LOGICAL-c401t-c8131faa95a77febe835b908a945d455b9651dfea9e3255ac3d1b52a0bb7384e3
ISICitedReferencesCount 38
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001175965000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0960-8524
1873-2976
IngestDate Sat Sep 27 16:49:44 EDT 2025
Sat Sep 27 22:28:37 EDT 2025
Mon Jul 21 06:07:46 EDT 2025
Sat Nov 29 07:11:53 EST 2025
Tue Nov 18 21:01:54 EST 2025
Sat Feb 24 15:49:45 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Model prediction
Random seed
Bayesian algorithm
WWTPs
Language English
License Copyright © 2024 Elsevier Ltd. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c401t-c8131faa95a77febe835b908a945d455b9651dfea9e3255ac3d1b52a0bb7384e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 38286171
PQID 2920188446
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3153768506
proquest_miscellaneous_2920188446
pubmed_primary_38286171
crossref_primary_10_1016_j_biortech_2024_130361
crossref_citationtrail_10_1016_j_biortech_2024_130361
elsevier_sciencedirect_doi_10_1016_j_biortech_2024_130361
PublicationCentury 2000
PublicationDate 2024-03-01
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Bioresource technology
PublicationTitleAlternate Bioresour Technol
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Singh, Yadav, Singh, Padhiyar, Kumar, Bhatia, Show (b0130) 2023; 369
Boeschoten, Catal, Tekinerdogan, Lommen, Blokland (b0010) 2023; 213
Gao, Zhong, Zhang, Igou, Berger, Reid, Zhao, Lambeth, Gan, Afolabi, Tong, Lan, Chen (b0035) 2022; 56
Lu, Ma (b0080) 2020; 249
Zhang, Wang, Keller (b0185) 2021
Chen, T., Guestrin, C., 2016. Xgboost: A scalable tree boosting system, in: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining. pp. 785–794.
Schaubroeck, De Clippeleir, Weissenbacher, Dewulf, Boeckx, Vlaeminck, Wett (b0125) 2015; 74
Zhang, Chen, Jiang (b0180) 2022; 222
Zhu, Jiang, Feng (b0195) 2022; 308
Yang, Shami (b0175) 2020; 415
Torregrossa, Leopold, Hernández-Sancho, Hansen (b0140) 2018; 223
Bouchard, Jousselme, Doré (b0015) 2013; 54
Lu, Leemann, Sun, Ehrlichman, Nishimura, Venturini, Hellert (b0075) 2023; 1050
Raudys, A., Lenčiauskas, V., Malčius, E., 2013. Moving averages for financial data smoothing, in: Information and Software Technologies: 19th International Conference, ICIST 2013, Kaunas, Lithuania, October 2013. Proceedings 19. Springer, pp. 34–45.
Snoek, J., Larochelle, H., Adams, R.P., 2012. Practical bayesian optimization of machine learning algorithms. Advances in neural information processing systems 25.
Niu, Lu, Zhang, Zhang, Wu, Saidy, Liu, Shu (b0105) 2023; 904
Guo, Jeong, Lim, Jo, Kim, Park, Kim, Cho (b0045) 2015; 32
Yang, Jia, Wang, Zhou, Zheng (b0170) 2022; 295
Lv, Du, Lin, Wang, Yin, Song, Chen, Yang, Wang, Wang (b0085) 2024; 393
Ma, Ding, Cheng, Jiang, Tan, Gan, Wan (b0090) 2020; 244
Chen, Zhu, He, Yu (b0030) 2017; 59
Chen, Wu, Liu (b0025) 2021; 104
Huang, Ma, Ma, Huangfu, He (b0050) 2021; 205
Li, Gupta, Spaeth, Shing, Jaimes, Engelhart, Lopez, Caceres, Bepler, Walsh (b0070) 2023; 14
Newhart, Holloway, Hering, Cath (b0100) 2019; 157
Gao, Zhou, Liu, Guan, Gao, Hui (b0040) 2022; 348
Zhang, Yang, Ngo, Guo, Jin, Dzakpasu, Yang, Wang, Wang, Ao (b0190) 2016; 92–93
Nourani, Asghari, Sharghi (b0110) 2021; 291
Sadoune, Rihani, Marra (b0120) 2023; 471
Xu, Cao, Wu, Wang, Luo, Chen, Fang (b0155) 2020; 184
Xu, Cao, Fang, Feng, Yang, Luo (b0160) 2021; 785
Li, An, Li, Wang, Yu, Zhou, Geng (b0065) 2022; 276
Injadat, M., Salo, F., Nassif, A.B., Essex, A., Shami, A., 2018. Bayesian optimization with machine learning algorithms towards anomaly detection, in: 2018 IEEE Global Communications Conference (GLOBECOM). IEEE, pp. 1–6.
Zhu, Yang, Ren (b0200) 2023; acs.est.3c00026
Wang, Thunéll, Lindberg, Jiang, Trygg, Tysklind (b0150) 2022; 301
Bagherzadeh, Mehrani, Basirifard, Roostaei (b0005) 2021; 41
Ma, Wang, Cao, Miao, Jia, Du, Peng (b0095) 2016; 200
Lateh, Muda, Yusof, Muda, Azmi (b0060) 2017; 892
Wang, Bi, Jia, Qiao, Wang (b0145) 2022; 1–1
Xu, Li, Luo, Fang, Feng, Cao, Luo (b0165) 2023; 3
10.1016/j.biortech.2024.130361_b0020
Huang (10.1016/j.biortech.2024.130361_b0050) 2021; 205
Xu (10.1016/j.biortech.2024.130361_b0165) 2023; 3
Newhart (10.1016/j.biortech.2024.130361_b0100) 2019; 157
Xu (10.1016/j.biortech.2024.130361_b0160) 2021; 785
Lu (10.1016/j.biortech.2024.130361_b0075) 2023; 1050
Li (10.1016/j.biortech.2024.130361_b0070) 2023; 14
Gao (10.1016/j.biortech.2024.130361_b0035) 2022; 56
Singh (10.1016/j.biortech.2024.130361_b0130) 2023; 369
Chen (10.1016/j.biortech.2024.130361_b0030) 2017; 59
Xu (10.1016/j.biortech.2024.130361_b0155) 2020; 184
Chen (10.1016/j.biortech.2024.130361_b0025) 2021; 104
Zhang (10.1016/j.biortech.2024.130361_b0185) 2021
Lu (10.1016/j.biortech.2024.130361_b0080) 2020; 249
Lv (10.1016/j.biortech.2024.130361_b0085) 2024; 393
Niu (10.1016/j.biortech.2024.130361_b0105) 2023; 904
Ma (10.1016/j.biortech.2024.130361_b0095) 2016; 200
Boeschoten (10.1016/j.biortech.2024.130361_b0010) 2023; 213
10.1016/j.biortech.2024.130361_b0055
Bagherzadeh (10.1016/j.biortech.2024.130361_b0005) 2021; 41
Li (10.1016/j.biortech.2024.130361_b0065) 2022; 276
Sadoune (10.1016/j.biortech.2024.130361_b0120) 2023; 471
10.1016/j.biortech.2024.130361_b0135
Bouchard (10.1016/j.biortech.2024.130361_b0015) 2013; 54
10.1016/j.biortech.2024.130361_b0115
Schaubroeck (10.1016/j.biortech.2024.130361_b0125) 2015; 74
Gao (10.1016/j.biortech.2024.130361_b0040) 2022; 348
Guo (10.1016/j.biortech.2024.130361_b0045) 2015; 32
Wang (10.1016/j.biortech.2024.130361_b0150) 2022; 301
Yang (10.1016/j.biortech.2024.130361_b0170) 2022; 295
Zhang (10.1016/j.biortech.2024.130361_b0180) 2022; 222
Zhang (10.1016/j.biortech.2024.130361_b0190) 2016; 92–93
Nourani (10.1016/j.biortech.2024.130361_b0110) 2021; 291
Lateh (10.1016/j.biortech.2024.130361_b0060) 2017; 892
Ma (10.1016/j.biortech.2024.130361_b0090) 2020; 244
Zhu (10.1016/j.biortech.2024.130361_b0200) 2023; acs.est.3c00026
Torregrossa (10.1016/j.biortech.2024.130361_b0140) 2018; 223
Yang (10.1016/j.biortech.2024.130361_b0175) 2020; 415
Zhu (10.1016/j.biortech.2024.130361_b0195) 2022; 308
Wang (10.1016/j.biortech.2024.130361_b0145) 2022; 1–1
References_xml – volume: 276
  year: 2022
  ident: b0065
  article-title: Application of XGBoost algorithm in the optimization of pollutant concentration
  publication-title: Atmos. Res.
– volume: 56
  start-page: 2572
  year: 2022
  end-page: 2581
  ident: b0035
  article-title: Revolutionizing Membrane Design Using Machine Learning-Bayesian Optimization
  publication-title: Environ. Sci. Tech.
– volume: 157
  start-page: 498
  year: 2019
  end-page: 513
  ident: b0100
  article-title: Data-driven performance analyses of wastewater treatment plants: A review
  publication-title: Water Res.
– volume: 249
  year: 2020
  ident: b0080
  article-title: Hybrid decision tree-based machine learning models for short-term water quality prediction
  publication-title: Chemosphere
– volume: 32
  start-page: 90
  year: 2015
  end-page: 101
  ident: b0045
  article-title: Prediction of effluent concentration in a wastewater treatment plant using machine learning models
  publication-title: J. Environ. Sci.
– volume: 393
  year: 2024
  ident: b0085
  article-title: Enhancing effluent quality prediction in wastewater treatment plants through the integration of factor analysis and machine learning
  publication-title: Bioresour. Technol.
– volume: acs.est.3c00026
  year: 2023
  ident: b0200
  article-title: Machine Learning in Environmental Research: Common Pitfalls and Best Practices
  publication-title: Environ. Sci. Tech.
– volume: 301
  year: 2022
  ident: b0150
  article-title: Towards better process management in wastewater treatment plants: Process analytics based on SHAP values for tree-based machine learning methods
  publication-title: J. Environ. Manage.
– volume: 213
  year: 2023
  ident: b0010
  article-title: The automation of the development of classification models and improvement of model quality using feature engineering techniques
  publication-title: Expert Syst. Appl.
– volume: 14
  start-page: 3454
  year: 2023
  ident: b0070
  article-title: Machine learning optimization of candidate antibody yields highly diverse sub-nanomolar affinity antibody libraries
  publication-title: Nat. Commun.
– volume: 41
  year: 2021
  ident: b0005
  article-title: Comparative study on total nitrogen prediction in wastewater treatment plant and effect of various feature selection methods on machine learning algorithms performance
  publication-title: J. Water Process Eng.
– volume: 785
  year: 2021
  ident: b0160
  article-title: Integrated data-driven strategy to optimize the processes configuration for full-scale wastewater treatment plant predesign
  publication-title: Sci. Total Environ.
– volume: 200
  start-page: 981
  year: 2016
  end-page: 990
  ident: b0095
  article-title: Biological nitrogen removal from sewage via anammox: Recent advances
  publication-title: Bioresour. Technol.
– volume: 904
  year: 2023
  ident: b0105
  article-title: Hysteresis response of groundwater depth on the influencing factors using an explainable learning model framework with Shapley values
  publication-title: Sci. Total Environ.
– volume: 222
  year: 2022
  ident: b0180
  article-title: A back propagation neural network model for accurately predicting the removal efficiency of ammonia nitrogen in wastewater treatment plants using different biological processes
  publication-title: Water Res.
– volume: 291
  year: 2021
  ident: b0110
  article-title: Artificial intelligence based ensemble modeling of wastewater treatment plant using jittered data
  publication-title: J. Clean. Prod.
– volume: 54
  start-page: 615
  year: 2013
  end-page: 626
  ident: b0015
  article-title: A proof for the positive definiteness of the Jaccard index matrix
  publication-title: Int. J. Approx. Reason.
– volume: 59
  start-page: 236
  year: 2017
  end-page: 243
  ident: b0030
  article-title: A PSO based virtual sample generation method for small sample sets: Applications to regression datasets
  publication-title: Eng. Appl. Artif. Intel.
– volume: 74
  start-page: 166
  year: 2015
  end-page: 179
  ident: b0125
  article-title: Environmental sustainability of an energy self-sufficient sewage treatment plant: Improvements through DEMON and co-digestion
  publication-title: Water Res.
– volume: 1050
  year: 2023
  ident: b0075
  article-title: Demonstration of machine learning-enhanced multi-objective optimization of ultrahigh-brightness lattices for 4th-generation synchrotron light sources
  publication-title: Nucl. Instrum. Methods Phys. Res., Sect. A
– volume: 205
  year: 2021
  ident: b0050
  article-title: Machine learning in natural and engineered water systems
  publication-title: Water Res.
– volume: 92–93
  start-page: 11
  year: 2016
  end-page: 22
  ident: b0190
  article-title: Current status of urban wastewater treatment plants in China
  publication-title: Environ. Int.
– volume: 415
  start-page: 295
  year: 2020
  end-page: 316
  ident: b0175
  article-title: On hyperparameter optimization of machine learning algorithms: Theory and practice
  publication-title: Neurocomputing
– volume: 471
  year: 2023
  ident: b0120
  article-title: DNN model development of biogas production from an anaerobic wastewater treatment plant using Bayesian hyperparameter optimization
  publication-title: Chem. Eng. J.
– volume: 369
  year: 2023
  ident: b0130
  article-title: Artificial intelligence and machine learning-based monitoring and design of biological wastewater treatment systems
  publication-title: Bioresour. Technol.
– volume: 223
  start-page: 1061
  year: 2018
  end-page: 1067
  ident: b0140
  article-title: Machine learning for energy cost modelling in wastewater treatment plants
  publication-title: J. Environ. Manage.
– volume: 1–1
  year: 2022
  ident: b0145
  article-title: Event-Driven Model Predictive Control with Deep Learning for Wastewater Treatment Process
  publication-title: IEEE Trans. Ind. Inf.
– volume: 3
  start-page: 360
  year: 2023
  end-page: 372
  ident: b0165
  article-title: Prediction and Evaluation of Indirect Carbon Emission from Electrical Consumption in Multiple Full-Scale Wastewater Treatment Plants via Automated Machine Learning-Based Analysis
  publication-title: ACS EST Eng.
– volume: 104
  year: 2021
  ident: b0025
  article-title: EMORL: Effective multi-objective reinforcement learning method for hyperparameter optimization
  publication-title: Eng. Appl. Artif. Intel.
– reference: Chen, T., Guestrin, C., 2016. Xgboost: A scalable tree boosting system, in: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining. pp. 785–794.
– reference: Raudys, A., Lenčiauskas, V., Malčius, E., 2013. Moving averages for financial data smoothing, in: Information and Software Technologies: 19th International Conference, ICIST 2013, Kaunas, Lithuania, October 2013. Proceedings 19. Springer, pp. 34–45.
– reference: Snoek, J., Larochelle, H., Adams, R.P., 2012. Practical bayesian optimization of machine learning algorithms. Advances in neural information processing systems 25.
– year: 2021
  ident: b0185
  article-title: Novel Machine Learning-Based Energy Consumption Model of Wastewater Treatment Plants
  publication-title: ACS ES&T Water
– volume: 308
  year: 2022
  ident: b0195
  article-title: Improved neural network with least square support vector machine for wastewater treatment process
  publication-title: Chemosphere
– volume: 244
  year: 2020
  ident: b0090
  article-title: Identification of high impact factors of air quality on a national scale using big data and machine learning techniques
  publication-title: J. Clean. Prod.
– volume: 348
  year: 2022
  ident: b0040
  article-title: Machine learning prediction of lignin content in poplar with Raman spectroscopy
  publication-title: Bioresour. Technol.
– volume: 295
  year: 2022
  ident: b0170
  article-title: Multivariate optimization of the electrochemical degradation for COD and TN removal from wastewater: An inverse computation machine learning approach
  publication-title: Sep. Purif. Technol.
– volume: 892
  year: 2017
  ident: b0060
  article-title: Handling a Small Dataset Problem in Prediction Model by employ Artificial Data Generation Approach: A Review
  publication-title: J. Phys. Conf. Ser.
– volume: 184
  year: 2020
  ident: b0155
  article-title: An integrated approach based on virtual data augmentation and deep neural networks modeling for VFA production prediction in anaerobic fermentation process
  publication-title: Water Res.
– reference: Injadat, M., Salo, F., Nassif, A.B., Essex, A., Shami, A., 2018. Bayesian optimization with machine learning algorithms towards anomaly detection, in: 2018 IEEE Global Communications Conference (GLOBECOM). IEEE, pp. 1–6.
– volume: 59
  start-page: 236
  year: 2017
  ident: 10.1016/j.biortech.2024.130361_b0030
  article-title: A PSO based virtual sample generation method for small sample sets: Applications to regression datasets
  publication-title: Eng. Appl. Artif. Intel.
  doi: 10.1016/j.engappai.2016.12.024
– volume: 904
  year: 2023
  ident: 10.1016/j.biortech.2024.130361_b0105
  article-title: Hysteresis response of groundwater depth on the influencing factors using an explainable learning model framework with Shapley values
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2023.166662
– volume: 369
  year: 2023
  ident: 10.1016/j.biortech.2024.130361_b0130
  article-title: Artificial intelligence and machine learning-based monitoring and design of biological wastewater treatment systems
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2022.128486
– volume: 276
  year: 2022
  ident: 10.1016/j.biortech.2024.130361_b0065
  article-title: Application of XGBoost algorithm in the optimization of pollutant concentration
  publication-title: Atmos. Res.
  doi: 10.1016/j.atmosres.2022.106238
– volume: 213
  year: 2023
  ident: 10.1016/j.biortech.2024.130361_b0010
  article-title: The automation of the development of classification models and improvement of model quality using feature engineering techniques
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.118912
– volume: 892
  year: 2017
  ident: 10.1016/j.biortech.2024.130361_b0060
  article-title: Handling a Small Dataset Problem in Prediction Model by employ Artificial Data Generation Approach: A Review
  publication-title: J. Phys. Conf. Ser.
– volume: 56
  start-page: 2572
  year: 2022
  ident: 10.1016/j.biortech.2024.130361_b0035
  article-title: Revolutionizing Membrane Design Using Machine Learning-Bayesian Optimization
  publication-title: Environ. Sci. Tech.
  doi: 10.1021/acs.est.1c04373
– volume: 471
  year: 2023
  ident: 10.1016/j.biortech.2024.130361_b0120
  article-title: DNN model development of biogas production from an anaerobic wastewater treatment plant using Bayesian hyperparameter optimization
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2023.144671
– volume: 785
  year: 2021
  ident: 10.1016/j.biortech.2024.130361_b0160
  article-title: Integrated data-driven strategy to optimize the processes configuration for full-scale wastewater treatment plant predesign
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2021.147356
– volume: 222
  year: 2022
  ident: 10.1016/j.biortech.2024.130361_b0180
  article-title: A back propagation neural network model for accurately predicting the removal efficiency of ammonia nitrogen in wastewater treatment plants using different biological processes
  publication-title: Water Res.
  doi: 10.1016/j.watres.2022.118908
– volume: 295
  year: 2022
  ident: 10.1016/j.biortech.2024.130361_b0170
  article-title: Multivariate optimization of the electrochemical degradation for COD and TN removal from wastewater: An inverse computation machine learning approach
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2022.121129
– volume: 200
  start-page: 981
  year: 2016
  ident: 10.1016/j.biortech.2024.130361_b0095
  article-title: Biological nitrogen removal from sewage via anammox: Recent advances
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2015.10.074
– volume: acs.est.3c00026
  year: 2023
  ident: 10.1016/j.biortech.2024.130361_b0200
  article-title: Machine Learning in Environmental Research: Common Pitfalls and Best Practices
  publication-title: Environ. Sci. Tech.
– year: 2021
  ident: 10.1016/j.biortech.2024.130361_b0185
  article-title: Novel Machine Learning-Based Energy Consumption Model of Wastewater Treatment Plants
  publication-title: ACS ES&T Water
  doi: 10.1021/acsestwater.1c00283
– ident: 10.1016/j.biortech.2024.130361_b0055
  doi: 10.1109/GLOCOM.2018.8647714
– volume: 14
  start-page: 3454
  year: 2023
  ident: 10.1016/j.biortech.2024.130361_b0070
  article-title: Machine learning optimization of candidate antibody yields highly diverse sub-nanomolar affinity antibody libraries
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-39022-2
– volume: 393
  year: 2024
  ident: 10.1016/j.biortech.2024.130361_b0085
  article-title: Enhancing effluent quality prediction in wastewater treatment plants through the integration of factor analysis and machine learning
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2023.130008
– volume: 308
  year: 2022
  ident: 10.1016/j.biortech.2024.130361_b0195
  article-title: Improved neural network with least square support vector machine for wastewater treatment process
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2022.136116
– volume: 3
  start-page: 360
  year: 2023
  ident: 10.1016/j.biortech.2024.130361_b0165
  article-title: Prediction and Evaluation of Indirect Carbon Emission from Electrical Consumption in Multiple Full-Scale Wastewater Treatment Plants via Automated Machine Learning-Based Analysis
  publication-title: ACS EST Eng.
  doi: 10.1021/acsestengg.2c00306
– volume: 41
  year: 2021
  ident: 10.1016/j.biortech.2024.130361_b0005
  article-title: Comparative study on total nitrogen prediction in wastewater treatment plant and effect of various feature selection methods on machine learning algorithms performance
  publication-title: J. Water Process Eng.
  doi: 10.1016/j.jwpe.2021.102033
– volume: 1050
  year: 2023
  ident: 10.1016/j.biortech.2024.130361_b0075
  article-title: Demonstration of machine learning-enhanced multi-objective optimization of ultrahigh-brightness lattices for 4th-generation synchrotron light sources
  publication-title: Nucl. Instrum. Methods Phys. Res., Sect. A
  doi: 10.1016/j.nima.2023.168192
– volume: 348
  year: 2022
  ident: 10.1016/j.biortech.2024.130361_b0040
  article-title: Machine learning prediction of lignin content in poplar with Raman spectroscopy
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2022.126812
– volume: 223
  start-page: 1061
  year: 2018
  ident: 10.1016/j.biortech.2024.130361_b0140
  article-title: Machine learning for energy cost modelling in wastewater treatment plants
  publication-title: J. Environ. Manage.
  doi: 10.1016/j.jenvman.2018.06.092
– volume: 92–93
  start-page: 11
  year: 2016
  ident: 10.1016/j.biortech.2024.130361_b0190
  article-title: Current status of urban wastewater treatment plants in China
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2016.03.024
– ident: 10.1016/j.biortech.2024.130361_b0135
– volume: 291
  year: 2021
  ident: 10.1016/j.biortech.2024.130361_b0110
  article-title: Artificial intelligence based ensemble modeling of wastewater treatment plant using jittered data
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2020.125772
– volume: 301
  year: 2022
  ident: 10.1016/j.biortech.2024.130361_b0150
  article-title: Towards better process management in wastewater treatment plants: Process analytics based on SHAP values for tree-based machine learning methods
  publication-title: J. Environ. Manage.
  doi: 10.1016/j.jenvman.2021.113941
– volume: 54
  start-page: 615
  year: 2013
  ident: 10.1016/j.biortech.2024.130361_b0015
  article-title: A proof for the positive definiteness of the Jaccard index matrix
  publication-title: Int. J. Approx. Reason.
  doi: 10.1016/j.ijar.2013.01.006
– ident: 10.1016/j.biortech.2024.130361_b0115
  doi: 10.1007/978-3-642-41947-8_4
– volume: 184
  year: 2020
  ident: 10.1016/j.biortech.2024.130361_b0155
  article-title: An integrated approach based on virtual data augmentation and deep neural networks modeling for VFA production prediction in anaerobic fermentation process
  publication-title: Water Res.
  doi: 10.1016/j.watres.2020.116103
– volume: 205
  year: 2021
  ident: 10.1016/j.biortech.2024.130361_b0050
  article-title: Machine learning in natural and engineered water systems
  publication-title: Water Res.
  doi: 10.1016/j.watres.2021.117666
– volume: 1–1
  year: 2022
  ident: 10.1016/j.biortech.2024.130361_b0145
  article-title: Event-Driven Model Predictive Control with Deep Learning for Wastewater Treatment Process
  publication-title: IEEE Trans. Ind. Inf.
– volume: 244
  year: 2020
  ident: 10.1016/j.biortech.2024.130361_b0090
  article-title: Identification of high impact factors of air quality on a national scale using big data and machine learning techniques
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2019.118955
– volume: 157
  start-page: 498
  year: 2019
  ident: 10.1016/j.biortech.2024.130361_b0100
  article-title: Data-driven performance analyses of wastewater treatment plants: A review
  publication-title: Water Res.
  doi: 10.1016/j.watres.2019.03.030
– volume: 32
  start-page: 90
  year: 2015
  ident: 10.1016/j.biortech.2024.130361_b0045
  article-title: Prediction of effluent concentration in a wastewater treatment plant using machine learning models
  publication-title: J. Environ. Sci.
  doi: 10.1016/j.jes.2015.01.007
– volume: 415
  start-page: 295
  year: 2020
  ident: 10.1016/j.biortech.2024.130361_b0175
  article-title: On hyperparameter optimization of machine learning algorithms: Theory and practice
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.07.061
– ident: 10.1016/j.biortech.2024.130361_b0020
  doi: 10.1145/2939672.2939785
– volume: 104
  year: 2021
  ident: 10.1016/j.biortech.2024.130361_b0025
  article-title: EMORL: Effective multi-objective reinforcement learning method for hyperparameter optimization
  publication-title: Eng. Appl. Artif. Intel.
  doi: 10.1016/j.engappai.2021.104315
– volume: 249
  year: 2020
  ident: 10.1016/j.biortech.2024.130361_b0080
  article-title: Hybrid decision tree-based machine learning models for short-term water quality prediction
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2020.126169
– volume: 74
  start-page: 166
  year: 2015
  ident: 10.1016/j.biortech.2024.130361_b0125
  article-title: Environmental sustainability of an energy self-sufficient sewage treatment plant: Improvements through DEMON and co-digestion
  publication-title: Water Res.
  doi: 10.1016/j.watres.2015.02.013
SSID ssj0003172
Score 2.5851903
Snippet [Display omitted] •The same input features enables prediction of effluent TN and TEC in the WWTPs.•The moving average method and Bayesian optimization to...
The control of effluent total nitrogen (TN) and total energy consumption (TEC) is a key issue in managing wastewater treatment plants (WWTPs). In this study,...
The control of effluent total nitrogen (TN) and total energy consumption (TEC) is a key issue in managing wastewater treatment plants. In this study, effluent...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 130361
SubjectTerms algorithms
Bayesian algorithm
Bayesian theory
energy
Model prediction
prediction
process control
Random seed
system optimization
total nitrogen
wastewater treatment
water quality
WWTPs
Title Prediction of effluent total nitrogen and energy consumption in wastewater treatment plants: Bayesian optimization machine learning methods
URI https://dx.doi.org/10.1016/j.biortech.2024.130361
https://www.ncbi.nlm.nih.gov/pubmed/38286171
https://www.proquest.com/docview/2920188446
https://www.proquest.com/docview/3153768506
Volume 395
WOSCitedRecordID wos001175965000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-2976
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003172
  issn: 0960-8524
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa6DsF4QDBu5TIZibcpXRM7dcJbGeP2MO1hSB0vkZ04I1OblLQd4ycg_jTHt6TTVg0eeImi2E6qfp_tc47PBaHXw3TAckoyLw783KPDbOAJ0DM8loYhiEfAsFToYhPs8DAaj-OjTueXi4U5n7CyjC4u4tl_hRqeAdgqdPYf4G5eCg_gHkCHK8AO178C_qhWZy9OEJS5LkKyABlThT3CBK4rGKrPDKSJ-0t1FObMeT3-4HNlUFPJE1sv9NlE-cso88Fb_lPqwMsKRkxtFOfuVPtkSleE4tRWpp5fOjMuqtoeFuwurlj0T7Rl9QO3O6m28Zu4kaL8vmw5_E6a1enrN-XEeqm3fn5iu1pLRkBbV66-NKtvxFRhOba6ouo91r92sTd2h7O-KJRfsj5aCmj_6gD4c2ZTjTZRQfM-89vNr3FJdE0baDNgYRx10ebo08H4c7Otg6AVrISYX__ZLXTbvWidoLNOkdECzfF9dM9qInhkGPQAdWS5je6OTmubjUVuozv7rhwgtKxkrnyIfrcsw1WOHcuwZhl2LMPAMmxYhldYhosStyzDDcuwYdkb7DiGVzmGLcew4xi2HHuEvrw_ON7_6Nm6Hl4K2vzCSyOf-DnnccgZy2EVAS1AxIOIxzTMaAj3w9DPcsljSUDj5SnJfBEGfCAEIxGV5DHqllUpnyIsQLoUQhJOCaUgrXKqKrEFoMPToQhS0kOhAyFJbdJ7VXtlkjjvxrPE4ZgoHBODYw_tNeNmJu3LjSNih3FihVcjlCZA1xvHvnKkSABVdWTHS1kt54mqJedHEaXD9X2Ir1IyqcyTPfTEMKr5zY6Mz9a2PEdb7Vx8gbqLeilfolvp-aKY1ztog42jHTsV_gA0cN34
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+effluent+total+nitrogen+and+energy+consumption+in+wastewater+treatment+plants%3A+Bayesian+optimization+machine+learning+methods&rft.jtitle=Bioresource+technology&rft.au=Ye%2C+Gang&rft.au=Wan%2C+Jinquan&rft.au=Deng%2C+Zhicheng&rft.au=Wang%2C+Yan&rft.date=2024-03-01&rft.eissn=1873-2976&rft.spage=130361&rft_id=info:doi/10.1016%2Fj.biortech.2024.130361&rft_id=info%3Apmid%2F38286171&rft.externalDocID=38286171
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-8524&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-8524&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-8524&client=summon