Prediction of effluent total nitrogen and energy consumption in wastewater treatment plants: Bayesian optimization machine learning methods
[Display omitted] •The same input features enables prediction of effluent TN and TEC in the WWTPs.•The moving average method and Bayesian optimization to improve model prediction performance.•The impact of different random seeds on model generalization ability and robustness. The control of effluent...
Uloženo v:
| Vydáno v: | Bioresource technology Ročník 395; s. 130361 |
|---|---|
| Hlavní autoři: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
England
Elsevier Ltd
01.03.2024
|
| Témata: | |
| ISSN: | 0960-8524, 1873-2976, 1873-2976 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | [Display omitted]
•The same input features enables prediction of effluent TN and TEC in the WWTPs.•The moving average method and Bayesian optimization to improve model prediction performance.•The impact of different random seeds on model generalization ability and robustness.
The control of effluent total nitrogen (TN) and total energy consumption (TEC) is a key issue in managing wastewater treatment plants. In this study, effluent TN and TEC predictive models were established by selecting influent water quality and process control indicators as input features. The prediction performance of machine learning methods under different random seeds was explored, the moving average method was used for data amplification, and the Bayesian algorithm was used for hyperparameter optimization. The results showed that compared with the traditional hyperparameter optimization method for effluent TN prediction, the coefficient of determination (R2) increased by 0.092 and 0.067, reaching 0.725, and the root mean square error (RMSE) decreased by 0.262 and 0.215 mg/L, reaching 1.673 mg/L, respectively, after Bayesian optimization and data amplification. During TEC prediction, R2 increased by 0.068 and 0.042, reaching 0.884, and the RMSE decreased by 232.444 and 197.065 kWh, reaching 1305.829 kWh, respectively. |
|---|---|
| AbstractList | The control of effluent total nitrogen (TN) and total energy consumption (TEC) is a key issue in managing wastewater treatment plants (WWTPs). In this study, effluent TN and TEC predictive models were established by selecting influent water quality and process control indicators as input features. The prediction performance of machine learning methods under different random seeds was explored, the moving average method was used for data amplification, and the Bayesian algorithm was used for hyperparameter optimization. The results showed that compared with the traditional hyperparameter optimization method for effluent TN prediction, the coefficient of determination (R
) increased by 0.092 and 0.067, reaching 0.725, and the root mean square error (RMSE) decreased by 0.262 and 0.215 mg/L, reaching 1.673 mg/L, respectively, after Bayesian optimization and data amplification. During TEC prediction, R
increased by 0.068 and 0.042, reaching 0.884, and the RMSE decreased by 232.444 and 197.065 kWh, reaching 1305.829 kWh, respectively. The control of effluent total nitrogen (TN) and total energy consumption (TEC) is a key issue in managing wastewater treatment plants. In this study, effluent TN and TEC predictive models were established by selecting influent water quality and process control indicators as input features. The prediction performance of machine learning methods under different random seeds was explored, the moving average method was used for data amplification, and the Bayesian algorithm was used for hyperparameter optimization. The results showed that compared with the traditional hyperparameter optimization method for effluent TN prediction, the coefficient of determination (R²) increased by 0.092 and 0.067, reaching 0.725, and the root mean square error (RMSE) decreased by 0.262 and 0.215 mg/L, reaching 1.673 mg/L, respectively, after Bayesian optimization and data amplification. During TEC prediction, R² increased by 0.068 and 0.042, reaching 0.884, and the RMSE decreased by 232.444 and 197.065 kWh, reaching 1305.829 kWh, respectively. The control of effluent total nitrogen (TN) and total energy consumption (TEC) is a key issue in managing wastewater treatment plants. In this study, effluent TN and TEC predictive models were established by selecting influent water quality and process control indicators as input features. The prediction performance of machine learning methods under different random seeds was explored, the moving average method was used for data amplification, and the Bayesian algorithm was used for hyperparameter optimization. The results showed that compared with the traditional hyperparameter optimization method for effluent TN prediction, the coefficient of determination (R2) increased by 0.092 and 0.067, reaching 0.725, and the root mean square error (RMSE) decreased by 0.262 and 0.215 mg/L, reaching 1.673 mg/L, respectively, after Bayesian optimization and data amplification. During TEC prediction, R2 increased by 0.068 and 0.042, reaching 0.884, and the RMSE decreased by 232.444 and 197.065 kWh, reaching 1305.829 kWh, respectively.The control of effluent total nitrogen (TN) and total energy consumption (TEC) is a key issue in managing wastewater treatment plants. In this study, effluent TN and TEC predictive models were established by selecting influent water quality and process control indicators as input features. The prediction performance of machine learning methods under different random seeds was explored, the moving average method was used for data amplification, and the Bayesian algorithm was used for hyperparameter optimization. The results showed that compared with the traditional hyperparameter optimization method for effluent TN prediction, the coefficient of determination (R2) increased by 0.092 and 0.067, reaching 0.725, and the root mean square error (RMSE) decreased by 0.262 and 0.215 mg/L, reaching 1.673 mg/L, respectively, after Bayesian optimization and data amplification. During TEC prediction, R2 increased by 0.068 and 0.042, reaching 0.884, and the RMSE decreased by 232.444 and 197.065 kWh, reaching 1305.829 kWh, respectively. [Display omitted] •The same input features enables prediction of effluent TN and TEC in the WWTPs.•The moving average method and Bayesian optimization to improve model prediction performance.•The impact of different random seeds on model generalization ability and robustness. The control of effluent total nitrogen (TN) and total energy consumption (TEC) is a key issue in managing wastewater treatment plants. In this study, effluent TN and TEC predictive models were established by selecting influent water quality and process control indicators as input features. The prediction performance of machine learning methods under different random seeds was explored, the moving average method was used for data amplification, and the Bayesian algorithm was used for hyperparameter optimization. The results showed that compared with the traditional hyperparameter optimization method for effluent TN prediction, the coefficient of determination (R2) increased by 0.092 and 0.067, reaching 0.725, and the root mean square error (RMSE) decreased by 0.262 and 0.215 mg/L, reaching 1.673 mg/L, respectively, after Bayesian optimization and data amplification. During TEC prediction, R2 increased by 0.068 and 0.042, reaching 0.884, and the RMSE decreased by 232.444 and 197.065 kWh, reaching 1305.829 kWh, respectively. |
| ArticleNumber | 130361 |
| Author | Wan, Jinquan Ye, Gang Deng, Zhicheng Zhu, Bin Chen, Jian Ji, Shiming Wang, Yan |
| Author_xml | – sequence: 1 givenname: Gang surname: Ye fullname: Ye, Gang organization: College of Environment and Energy, South China University of Technology, Guangzhou 510006, China – sequence: 2 givenname: Jinquan surname: Wan fullname: Wan, Jinquan email: ppjqwan@scut.edu.cn organization: College of Environment and Energy, South China University of Technology, Guangzhou 510006, China – sequence: 3 givenname: Zhicheng surname: Deng fullname: Deng, Zhicheng organization: College of Environment and Energy, South China University of Technology, Guangzhou 510006, China – sequence: 4 givenname: Yan surname: Wang fullname: Wang, Yan organization: College of Environment and Energy, South China University of Technology, Guangzhou 510006, China – sequence: 5 givenname: Jian surname: Chen fullname: Chen, Jian organization: College of Environment and Energy, South China University of Technology, Guangzhou 510006, China – sequence: 6 givenname: Bin surname: Zhu fullname: Zhu, Bin organization: Guangdong Shunkong Zihua Technology Co, Ltd, Foshan 528300, China – sequence: 7 givenname: Shiming surname: Ji fullname: Ji, Shiming organization: Guangdong Shunkong Zihua Technology Co, Ltd, Foshan 528300, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38286171$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkb1u2zAUhYkiReOkfYWAYxe5_BElqujQNugfECAZ2pm4oq5sGhLpklQD5xXy0pXtpEMXT7zD9x0Q51yQMx88EnLF2ZIzXr3bLFsXYka7XgomyiWXTFb8BVlwXctCNHV1RhasqVihlSjPyUVKG8aY5LV4Rc6lFrriNV-Qx7uInbPZBU9DT7Hvhwl9pjlkGKh3OYYVegq-o-gxrnbUBp-mcXswnKf3kDLeQ8ZIc0TI497eDuBzek8_ww6Tgzl65kf3AAdrBLt2HumAEL3zKzpiXocuvSYvexgSvnl6L8mvr19-Xn8vbm6__bj-dFPYkvFcWM0l7wEaBXXdY4taqrZhGppSdaWa70rxrkdoUAqlwMqOt0oAa9ta6hLlJXl7zN3G8HvClM3oksVh_jSGKRnJlawrrVh1EhWNYFzrstyjV0_o1I7YmW10I8Sdee56BqojYGNIKWL_D-HM7Ec1G_M8qtmPao6jzuKH_0Tr8qHKHMENp_WPRx3nTv84jCZZh97Ou0e02XTBnYr4C4BwxU4 |
| CitedBy_id | crossref_primary_10_1016_j_biortech_2024_131217 crossref_primary_10_1016_j_eesus_2025_100029 crossref_primary_10_1007_s10098_024_03097_2 crossref_primary_10_1016_j_watres_2025_123976 crossref_primary_10_1016_j_est_2025_115891 crossref_primary_10_1016_j_ecoinf_2025_103126 crossref_primary_10_1016_j_jclepro_2024_144621 crossref_primary_10_3390_app14125185 crossref_primary_10_1016_j_biortech_2025_133183 crossref_primary_10_1007_s11269_024_04027_z crossref_primary_10_1016_j_seppur_2025_133925 crossref_primary_10_3389_fmed_2025_1580345 crossref_primary_10_1007_s10661_025_14521_5 crossref_primary_10_1007_s44246_025_00213_9 crossref_primary_10_1016_j_biortech_2025_132970 crossref_primary_10_1016_j_biortech_2024_131362 crossref_primary_10_1016_j_biortech_2025_132793 crossref_primary_10_1371_journal_pone_0305216 crossref_primary_10_1016_j_jwpe_2025_107513 crossref_primary_10_1016_j_jece_2024_113152 crossref_primary_10_1016_j_egyai_2025_100518 crossref_primary_10_1016_j_jwpe_2025_107352 crossref_primary_10_1016_j_rineng_2025_106879 crossref_primary_10_1016_j_ecoinf_2025_103337 crossref_primary_10_1007_s12145_024_01549_3 crossref_primary_10_1016_j_watres_2025_124559 crossref_primary_10_1016_j_apsusc_2025_164326 crossref_primary_10_1016_j_jwpe_2025_108224 crossref_primary_10_1016_j_jenvman_2025_126386 crossref_primary_10_1016_j_asoc_2024_111975 crossref_primary_10_1093_jigpal_jzae108 crossref_primary_10_1016_j_wasman_2024_07_032 crossref_primary_10_1016_j_psep_2025_106816 crossref_primary_10_3390_pr13072301 crossref_primary_10_1016_j_jenvman_2024_123173 |
| Cites_doi | 10.1016/j.engappai.2016.12.024 10.1016/j.scitotenv.2023.166662 10.1016/j.biortech.2022.128486 10.1016/j.atmosres.2022.106238 10.1016/j.eswa.2022.118912 10.1021/acs.est.1c04373 10.1016/j.cej.2023.144671 10.1016/j.scitotenv.2021.147356 10.1016/j.watres.2022.118908 10.1016/j.seppur.2022.121129 10.1016/j.biortech.2015.10.074 10.1021/acsestwater.1c00283 10.1109/GLOCOM.2018.8647714 10.1038/s41467-023-39022-2 10.1016/j.biortech.2023.130008 10.1016/j.chemosphere.2022.136116 10.1021/acsestengg.2c00306 10.1016/j.jwpe.2021.102033 10.1016/j.nima.2023.168192 10.1016/j.biortech.2022.126812 10.1016/j.jenvman.2018.06.092 10.1016/j.envint.2016.03.024 10.1016/j.jclepro.2020.125772 10.1016/j.jenvman.2021.113941 10.1016/j.ijar.2013.01.006 10.1007/978-3-642-41947-8_4 10.1016/j.watres.2020.116103 10.1016/j.watres.2021.117666 10.1016/j.jclepro.2019.118955 10.1016/j.watres.2019.03.030 10.1016/j.jes.2015.01.007 10.1016/j.neucom.2020.07.061 10.1145/2939672.2939785 10.1016/j.engappai.2021.104315 10.1016/j.chemosphere.2020.126169 10.1016/j.watres.2015.02.013 |
| ContentType | Journal Article |
| Copyright | 2024 Elsevier Ltd Copyright © 2024 Elsevier Ltd. All rights reserved. |
| Copyright_xml | – notice: 2024 Elsevier Ltd – notice: Copyright © 2024 Elsevier Ltd. All rights reserved. |
| DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
| DOI | 10.1016/j.biortech.2024.130361 |
| DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | PubMed AGRICOLA MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Chemistry Agriculture |
| EISSN | 1873-2976 |
| ExternalDocumentID | 38286171 10_1016_j_biortech_2024_130361 S0960852424000634 |
| Genre | Journal Article |
| GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JN AAAJQ AABNK AABVA AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AARJD AARKO AATLK AAXUO ABFNM ABFYP ABGRD ABGSF ABJNI ABLST ABMAC ABNUV ABUDA ABXDB ABYKQ ACDAQ ACGFS ACIUM ACRLP ADBBV ADEWK ADEZE ADMUD ADQTV ADUVX AEBSH AEHWI AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGEKW AGHFR AGRDE AGUBO AGYEJ AHEUO AHHHB AHIDL AHPOS AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BKOJK BLECG BLXMC CBWCG CJTIS CS3 DOVZS DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMC HVGLF HZ~ IHE J1W JARJE KCYFY KOM LUGTX LW9 LY6 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- RIG ROL RPZ SAB SAC SDF SDG SDP SEN SES SEW SPC SPCBC SSA SSG SSI SSJ SSR SSU SSZ T5K VH1 WUQ Y6R ~02 ~G- ~KM 9DU AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD AGCQF AGRNS BNPGV NPM SSH 7X8 7S9 L.6 |
| ID | FETCH-LOGICAL-c401t-c8131faa95a77febe835b908a945d455b9651dfea9e3255ac3d1b52a0bb7384e3 |
| ISICitedReferencesCount | 38 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001175965000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0960-8524 1873-2976 |
| IngestDate | Sat Sep 27 16:49:44 EDT 2025 Sat Sep 27 22:28:37 EDT 2025 Mon Jul 21 06:07:46 EDT 2025 Sat Nov 29 07:11:53 EST 2025 Tue Nov 18 21:01:54 EST 2025 Sat Feb 24 15:49:45 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Model prediction Random seed Bayesian algorithm WWTPs |
| Language | English |
| License | Copyright © 2024 Elsevier Ltd. All rights reserved. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c401t-c8131faa95a77febe835b908a945d455b9651dfea9e3255ac3d1b52a0bb7384e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 38286171 |
| PQID | 2920188446 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_3153768506 proquest_miscellaneous_2920188446 pubmed_primary_38286171 crossref_primary_10_1016_j_biortech_2024_130361 crossref_citationtrail_10_1016_j_biortech_2024_130361 elsevier_sciencedirect_doi_10_1016_j_biortech_2024_130361 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-03-01 |
| PublicationDateYYYYMMDD | 2024-03-01 |
| PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Bioresource technology |
| PublicationTitleAlternate | Bioresour Technol |
| PublicationYear | 2024 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Singh, Yadav, Singh, Padhiyar, Kumar, Bhatia, Show (b0130) 2023; 369 Boeschoten, Catal, Tekinerdogan, Lommen, Blokland (b0010) 2023; 213 Gao, Zhong, Zhang, Igou, Berger, Reid, Zhao, Lambeth, Gan, Afolabi, Tong, Lan, Chen (b0035) 2022; 56 Lu, Ma (b0080) 2020; 249 Zhang, Wang, Keller (b0185) 2021 Chen, T., Guestrin, C., 2016. Xgboost: A scalable tree boosting system, in: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining. pp. 785–794. Schaubroeck, De Clippeleir, Weissenbacher, Dewulf, Boeckx, Vlaeminck, Wett (b0125) 2015; 74 Zhang, Chen, Jiang (b0180) 2022; 222 Zhu, Jiang, Feng (b0195) 2022; 308 Yang, Shami (b0175) 2020; 415 Torregrossa, Leopold, Hernández-Sancho, Hansen (b0140) 2018; 223 Bouchard, Jousselme, Doré (b0015) 2013; 54 Lu, Leemann, Sun, Ehrlichman, Nishimura, Venturini, Hellert (b0075) 2023; 1050 Raudys, A., Lenčiauskas, V., Malčius, E., 2013. Moving averages for financial data smoothing, in: Information and Software Technologies: 19th International Conference, ICIST 2013, Kaunas, Lithuania, October 2013. Proceedings 19. Springer, pp. 34–45. Snoek, J., Larochelle, H., Adams, R.P., 2012. Practical bayesian optimization of machine learning algorithms. Advances in neural information processing systems 25. Niu, Lu, Zhang, Zhang, Wu, Saidy, Liu, Shu (b0105) 2023; 904 Guo, Jeong, Lim, Jo, Kim, Park, Kim, Cho (b0045) 2015; 32 Yang, Jia, Wang, Zhou, Zheng (b0170) 2022; 295 Lv, Du, Lin, Wang, Yin, Song, Chen, Yang, Wang, Wang (b0085) 2024; 393 Ma, Ding, Cheng, Jiang, Tan, Gan, Wan (b0090) 2020; 244 Chen, Zhu, He, Yu (b0030) 2017; 59 Chen, Wu, Liu (b0025) 2021; 104 Huang, Ma, Ma, Huangfu, He (b0050) 2021; 205 Li, Gupta, Spaeth, Shing, Jaimes, Engelhart, Lopez, Caceres, Bepler, Walsh (b0070) 2023; 14 Newhart, Holloway, Hering, Cath (b0100) 2019; 157 Gao, Zhou, Liu, Guan, Gao, Hui (b0040) 2022; 348 Zhang, Yang, Ngo, Guo, Jin, Dzakpasu, Yang, Wang, Wang, Ao (b0190) 2016; 92–93 Nourani, Asghari, Sharghi (b0110) 2021; 291 Sadoune, Rihani, Marra (b0120) 2023; 471 Xu, Cao, Wu, Wang, Luo, Chen, Fang (b0155) 2020; 184 Xu, Cao, Fang, Feng, Yang, Luo (b0160) 2021; 785 Li, An, Li, Wang, Yu, Zhou, Geng (b0065) 2022; 276 Injadat, M., Salo, F., Nassif, A.B., Essex, A., Shami, A., 2018. Bayesian optimization with machine learning algorithms towards anomaly detection, in: 2018 IEEE Global Communications Conference (GLOBECOM). IEEE, pp. 1–6. Zhu, Yang, Ren (b0200) 2023; acs.est.3c00026 Wang, Thunéll, Lindberg, Jiang, Trygg, Tysklind (b0150) 2022; 301 Bagherzadeh, Mehrani, Basirifard, Roostaei (b0005) 2021; 41 Ma, Wang, Cao, Miao, Jia, Du, Peng (b0095) 2016; 200 Lateh, Muda, Yusof, Muda, Azmi (b0060) 2017; 892 Wang, Bi, Jia, Qiao, Wang (b0145) 2022; 1–1 Xu, Li, Luo, Fang, Feng, Cao, Luo (b0165) 2023; 3 10.1016/j.biortech.2024.130361_b0020 Huang (10.1016/j.biortech.2024.130361_b0050) 2021; 205 Xu (10.1016/j.biortech.2024.130361_b0165) 2023; 3 Newhart (10.1016/j.biortech.2024.130361_b0100) 2019; 157 Xu (10.1016/j.biortech.2024.130361_b0160) 2021; 785 Lu (10.1016/j.biortech.2024.130361_b0075) 2023; 1050 Li (10.1016/j.biortech.2024.130361_b0070) 2023; 14 Gao (10.1016/j.biortech.2024.130361_b0035) 2022; 56 Singh (10.1016/j.biortech.2024.130361_b0130) 2023; 369 Chen (10.1016/j.biortech.2024.130361_b0030) 2017; 59 Xu (10.1016/j.biortech.2024.130361_b0155) 2020; 184 Chen (10.1016/j.biortech.2024.130361_b0025) 2021; 104 Zhang (10.1016/j.biortech.2024.130361_b0185) 2021 Lu (10.1016/j.biortech.2024.130361_b0080) 2020; 249 Lv (10.1016/j.biortech.2024.130361_b0085) 2024; 393 Niu (10.1016/j.biortech.2024.130361_b0105) 2023; 904 Ma (10.1016/j.biortech.2024.130361_b0095) 2016; 200 Boeschoten (10.1016/j.biortech.2024.130361_b0010) 2023; 213 10.1016/j.biortech.2024.130361_b0055 Bagherzadeh (10.1016/j.biortech.2024.130361_b0005) 2021; 41 Li (10.1016/j.biortech.2024.130361_b0065) 2022; 276 Sadoune (10.1016/j.biortech.2024.130361_b0120) 2023; 471 10.1016/j.biortech.2024.130361_b0135 Bouchard (10.1016/j.biortech.2024.130361_b0015) 2013; 54 10.1016/j.biortech.2024.130361_b0115 Schaubroeck (10.1016/j.biortech.2024.130361_b0125) 2015; 74 Gao (10.1016/j.biortech.2024.130361_b0040) 2022; 348 Guo (10.1016/j.biortech.2024.130361_b0045) 2015; 32 Wang (10.1016/j.biortech.2024.130361_b0150) 2022; 301 Yang (10.1016/j.biortech.2024.130361_b0170) 2022; 295 Zhang (10.1016/j.biortech.2024.130361_b0180) 2022; 222 Zhang (10.1016/j.biortech.2024.130361_b0190) 2016; 92–93 Nourani (10.1016/j.biortech.2024.130361_b0110) 2021; 291 Lateh (10.1016/j.biortech.2024.130361_b0060) 2017; 892 Ma (10.1016/j.biortech.2024.130361_b0090) 2020; 244 Zhu (10.1016/j.biortech.2024.130361_b0200) 2023; acs.est.3c00026 Torregrossa (10.1016/j.biortech.2024.130361_b0140) 2018; 223 Yang (10.1016/j.biortech.2024.130361_b0175) 2020; 415 Zhu (10.1016/j.biortech.2024.130361_b0195) 2022; 308 Wang (10.1016/j.biortech.2024.130361_b0145) 2022; 1–1 |
| References_xml | – volume: 276 year: 2022 ident: b0065 article-title: Application of XGBoost algorithm in the optimization of pollutant concentration publication-title: Atmos. Res. – volume: 56 start-page: 2572 year: 2022 end-page: 2581 ident: b0035 article-title: Revolutionizing Membrane Design Using Machine Learning-Bayesian Optimization publication-title: Environ. Sci. Tech. – volume: 157 start-page: 498 year: 2019 end-page: 513 ident: b0100 article-title: Data-driven performance analyses of wastewater treatment plants: A review publication-title: Water Res. – volume: 249 year: 2020 ident: b0080 article-title: Hybrid decision tree-based machine learning models for short-term water quality prediction publication-title: Chemosphere – volume: 32 start-page: 90 year: 2015 end-page: 101 ident: b0045 article-title: Prediction of effluent concentration in a wastewater treatment plant using machine learning models publication-title: J. Environ. Sci. – volume: 393 year: 2024 ident: b0085 article-title: Enhancing effluent quality prediction in wastewater treatment plants through the integration of factor analysis and machine learning publication-title: Bioresour. Technol. – volume: acs.est.3c00026 year: 2023 ident: b0200 article-title: Machine Learning in Environmental Research: Common Pitfalls and Best Practices publication-title: Environ. Sci. Tech. – volume: 301 year: 2022 ident: b0150 article-title: Towards better process management in wastewater treatment plants: Process analytics based on SHAP values for tree-based machine learning methods publication-title: J. Environ. Manage. – volume: 213 year: 2023 ident: b0010 article-title: The automation of the development of classification models and improvement of model quality using feature engineering techniques publication-title: Expert Syst. Appl. – volume: 14 start-page: 3454 year: 2023 ident: b0070 article-title: Machine learning optimization of candidate antibody yields highly diverse sub-nanomolar affinity antibody libraries publication-title: Nat. Commun. – volume: 41 year: 2021 ident: b0005 article-title: Comparative study on total nitrogen prediction in wastewater treatment plant and effect of various feature selection methods on machine learning algorithms performance publication-title: J. Water Process Eng. – volume: 785 year: 2021 ident: b0160 article-title: Integrated data-driven strategy to optimize the processes configuration for full-scale wastewater treatment plant predesign publication-title: Sci. Total Environ. – volume: 200 start-page: 981 year: 2016 end-page: 990 ident: b0095 article-title: Biological nitrogen removal from sewage via anammox: Recent advances publication-title: Bioresour. Technol. – volume: 904 year: 2023 ident: b0105 article-title: Hysteresis response of groundwater depth on the influencing factors using an explainable learning model framework with Shapley values publication-title: Sci. Total Environ. – volume: 222 year: 2022 ident: b0180 article-title: A back propagation neural network model for accurately predicting the removal efficiency of ammonia nitrogen in wastewater treatment plants using different biological processes publication-title: Water Res. – volume: 291 year: 2021 ident: b0110 article-title: Artificial intelligence based ensemble modeling of wastewater treatment plant using jittered data publication-title: J. Clean. Prod. – volume: 54 start-page: 615 year: 2013 end-page: 626 ident: b0015 article-title: A proof for the positive definiteness of the Jaccard index matrix publication-title: Int. J. Approx. Reason. – volume: 59 start-page: 236 year: 2017 end-page: 243 ident: b0030 article-title: A PSO based virtual sample generation method for small sample sets: Applications to regression datasets publication-title: Eng. Appl. Artif. Intel. – volume: 74 start-page: 166 year: 2015 end-page: 179 ident: b0125 article-title: Environmental sustainability of an energy self-sufficient sewage treatment plant: Improvements through DEMON and co-digestion publication-title: Water Res. – volume: 1050 year: 2023 ident: b0075 article-title: Demonstration of machine learning-enhanced multi-objective optimization of ultrahigh-brightness lattices for 4th-generation synchrotron light sources publication-title: Nucl. Instrum. Methods Phys. Res., Sect. A – volume: 205 year: 2021 ident: b0050 article-title: Machine learning in natural and engineered water systems publication-title: Water Res. – volume: 92–93 start-page: 11 year: 2016 end-page: 22 ident: b0190 article-title: Current status of urban wastewater treatment plants in China publication-title: Environ. Int. – volume: 415 start-page: 295 year: 2020 end-page: 316 ident: b0175 article-title: On hyperparameter optimization of machine learning algorithms: Theory and practice publication-title: Neurocomputing – volume: 471 year: 2023 ident: b0120 article-title: DNN model development of biogas production from an anaerobic wastewater treatment plant using Bayesian hyperparameter optimization publication-title: Chem. Eng. J. – volume: 369 year: 2023 ident: b0130 article-title: Artificial intelligence and machine learning-based monitoring and design of biological wastewater treatment systems publication-title: Bioresour. Technol. – volume: 223 start-page: 1061 year: 2018 end-page: 1067 ident: b0140 article-title: Machine learning for energy cost modelling in wastewater treatment plants publication-title: J. Environ. Manage. – volume: 1–1 year: 2022 ident: b0145 article-title: Event-Driven Model Predictive Control with Deep Learning for Wastewater Treatment Process publication-title: IEEE Trans. Ind. Inf. – volume: 3 start-page: 360 year: 2023 end-page: 372 ident: b0165 article-title: Prediction and Evaluation of Indirect Carbon Emission from Electrical Consumption in Multiple Full-Scale Wastewater Treatment Plants via Automated Machine Learning-Based Analysis publication-title: ACS EST Eng. – volume: 104 year: 2021 ident: b0025 article-title: EMORL: Effective multi-objective reinforcement learning method for hyperparameter optimization publication-title: Eng. Appl. Artif. Intel. – reference: Chen, T., Guestrin, C., 2016. Xgboost: A scalable tree boosting system, in: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining. pp. 785–794. – reference: Raudys, A., Lenčiauskas, V., Malčius, E., 2013. Moving averages for financial data smoothing, in: Information and Software Technologies: 19th International Conference, ICIST 2013, Kaunas, Lithuania, October 2013. Proceedings 19. Springer, pp. 34–45. – reference: Snoek, J., Larochelle, H., Adams, R.P., 2012. Practical bayesian optimization of machine learning algorithms. Advances in neural information processing systems 25. – year: 2021 ident: b0185 article-title: Novel Machine Learning-Based Energy Consumption Model of Wastewater Treatment Plants publication-title: ACS ES&T Water – volume: 308 year: 2022 ident: b0195 article-title: Improved neural network with least square support vector machine for wastewater treatment process publication-title: Chemosphere – volume: 244 year: 2020 ident: b0090 article-title: Identification of high impact factors of air quality on a national scale using big data and machine learning techniques publication-title: J. Clean. Prod. – volume: 348 year: 2022 ident: b0040 article-title: Machine learning prediction of lignin content in poplar with Raman spectroscopy publication-title: Bioresour. Technol. – volume: 295 year: 2022 ident: b0170 article-title: Multivariate optimization of the electrochemical degradation for COD and TN removal from wastewater: An inverse computation machine learning approach publication-title: Sep. Purif. Technol. – volume: 892 year: 2017 ident: b0060 article-title: Handling a Small Dataset Problem in Prediction Model by employ Artificial Data Generation Approach: A Review publication-title: J. Phys. Conf. Ser. – volume: 184 year: 2020 ident: b0155 article-title: An integrated approach based on virtual data augmentation and deep neural networks modeling for VFA production prediction in anaerobic fermentation process publication-title: Water Res. – reference: Injadat, M., Salo, F., Nassif, A.B., Essex, A., Shami, A., 2018. Bayesian optimization with machine learning algorithms towards anomaly detection, in: 2018 IEEE Global Communications Conference (GLOBECOM). IEEE, pp. 1–6. – volume: 59 start-page: 236 year: 2017 ident: 10.1016/j.biortech.2024.130361_b0030 article-title: A PSO based virtual sample generation method for small sample sets: Applications to regression datasets publication-title: Eng. Appl. Artif. Intel. doi: 10.1016/j.engappai.2016.12.024 – volume: 904 year: 2023 ident: 10.1016/j.biortech.2024.130361_b0105 article-title: Hysteresis response of groundwater depth on the influencing factors using an explainable learning model framework with Shapley values publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2023.166662 – volume: 369 year: 2023 ident: 10.1016/j.biortech.2024.130361_b0130 article-title: Artificial intelligence and machine learning-based monitoring and design of biological wastewater treatment systems publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2022.128486 – volume: 276 year: 2022 ident: 10.1016/j.biortech.2024.130361_b0065 article-title: Application of XGBoost algorithm in the optimization of pollutant concentration publication-title: Atmos. Res. doi: 10.1016/j.atmosres.2022.106238 – volume: 213 year: 2023 ident: 10.1016/j.biortech.2024.130361_b0010 article-title: The automation of the development of classification models and improvement of model quality using feature engineering techniques publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2022.118912 – volume: 892 year: 2017 ident: 10.1016/j.biortech.2024.130361_b0060 article-title: Handling a Small Dataset Problem in Prediction Model by employ Artificial Data Generation Approach: A Review publication-title: J. Phys. Conf. Ser. – volume: 56 start-page: 2572 year: 2022 ident: 10.1016/j.biortech.2024.130361_b0035 article-title: Revolutionizing Membrane Design Using Machine Learning-Bayesian Optimization publication-title: Environ. Sci. Tech. doi: 10.1021/acs.est.1c04373 – volume: 471 year: 2023 ident: 10.1016/j.biortech.2024.130361_b0120 article-title: DNN model development of biogas production from an anaerobic wastewater treatment plant using Bayesian hyperparameter optimization publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2023.144671 – volume: 785 year: 2021 ident: 10.1016/j.biortech.2024.130361_b0160 article-title: Integrated data-driven strategy to optimize the processes configuration for full-scale wastewater treatment plant predesign publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2021.147356 – volume: 222 year: 2022 ident: 10.1016/j.biortech.2024.130361_b0180 article-title: A back propagation neural network model for accurately predicting the removal efficiency of ammonia nitrogen in wastewater treatment plants using different biological processes publication-title: Water Res. doi: 10.1016/j.watres.2022.118908 – volume: 295 year: 2022 ident: 10.1016/j.biortech.2024.130361_b0170 article-title: Multivariate optimization of the electrochemical degradation for COD and TN removal from wastewater: An inverse computation machine learning approach publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2022.121129 – volume: 200 start-page: 981 year: 2016 ident: 10.1016/j.biortech.2024.130361_b0095 article-title: Biological nitrogen removal from sewage via anammox: Recent advances publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2015.10.074 – volume: acs.est.3c00026 year: 2023 ident: 10.1016/j.biortech.2024.130361_b0200 article-title: Machine Learning in Environmental Research: Common Pitfalls and Best Practices publication-title: Environ. Sci. Tech. – year: 2021 ident: 10.1016/j.biortech.2024.130361_b0185 article-title: Novel Machine Learning-Based Energy Consumption Model of Wastewater Treatment Plants publication-title: ACS ES&T Water doi: 10.1021/acsestwater.1c00283 – ident: 10.1016/j.biortech.2024.130361_b0055 doi: 10.1109/GLOCOM.2018.8647714 – volume: 14 start-page: 3454 year: 2023 ident: 10.1016/j.biortech.2024.130361_b0070 article-title: Machine learning optimization of candidate antibody yields highly diverse sub-nanomolar affinity antibody libraries publication-title: Nat. Commun. doi: 10.1038/s41467-023-39022-2 – volume: 393 year: 2024 ident: 10.1016/j.biortech.2024.130361_b0085 article-title: Enhancing effluent quality prediction in wastewater treatment plants through the integration of factor analysis and machine learning publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2023.130008 – volume: 308 year: 2022 ident: 10.1016/j.biortech.2024.130361_b0195 article-title: Improved neural network with least square support vector machine for wastewater treatment process publication-title: Chemosphere doi: 10.1016/j.chemosphere.2022.136116 – volume: 3 start-page: 360 year: 2023 ident: 10.1016/j.biortech.2024.130361_b0165 article-title: Prediction and Evaluation of Indirect Carbon Emission from Electrical Consumption in Multiple Full-Scale Wastewater Treatment Plants via Automated Machine Learning-Based Analysis publication-title: ACS EST Eng. doi: 10.1021/acsestengg.2c00306 – volume: 41 year: 2021 ident: 10.1016/j.biortech.2024.130361_b0005 article-title: Comparative study on total nitrogen prediction in wastewater treatment plant and effect of various feature selection methods on machine learning algorithms performance publication-title: J. Water Process Eng. doi: 10.1016/j.jwpe.2021.102033 – volume: 1050 year: 2023 ident: 10.1016/j.biortech.2024.130361_b0075 article-title: Demonstration of machine learning-enhanced multi-objective optimization of ultrahigh-brightness lattices for 4th-generation synchrotron light sources publication-title: Nucl. Instrum. Methods Phys. Res., Sect. A doi: 10.1016/j.nima.2023.168192 – volume: 348 year: 2022 ident: 10.1016/j.biortech.2024.130361_b0040 article-title: Machine learning prediction of lignin content in poplar with Raman spectroscopy publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2022.126812 – volume: 223 start-page: 1061 year: 2018 ident: 10.1016/j.biortech.2024.130361_b0140 article-title: Machine learning for energy cost modelling in wastewater treatment plants publication-title: J. Environ. Manage. doi: 10.1016/j.jenvman.2018.06.092 – volume: 92–93 start-page: 11 year: 2016 ident: 10.1016/j.biortech.2024.130361_b0190 article-title: Current status of urban wastewater treatment plants in China publication-title: Environ. Int. doi: 10.1016/j.envint.2016.03.024 – ident: 10.1016/j.biortech.2024.130361_b0135 – volume: 291 year: 2021 ident: 10.1016/j.biortech.2024.130361_b0110 article-title: Artificial intelligence based ensemble modeling of wastewater treatment plant using jittered data publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2020.125772 – volume: 301 year: 2022 ident: 10.1016/j.biortech.2024.130361_b0150 article-title: Towards better process management in wastewater treatment plants: Process analytics based on SHAP values for tree-based machine learning methods publication-title: J. Environ. Manage. doi: 10.1016/j.jenvman.2021.113941 – volume: 54 start-page: 615 year: 2013 ident: 10.1016/j.biortech.2024.130361_b0015 article-title: A proof for the positive definiteness of the Jaccard index matrix publication-title: Int. J. Approx. Reason. doi: 10.1016/j.ijar.2013.01.006 – ident: 10.1016/j.biortech.2024.130361_b0115 doi: 10.1007/978-3-642-41947-8_4 – volume: 184 year: 2020 ident: 10.1016/j.biortech.2024.130361_b0155 article-title: An integrated approach based on virtual data augmentation and deep neural networks modeling for VFA production prediction in anaerobic fermentation process publication-title: Water Res. doi: 10.1016/j.watres.2020.116103 – volume: 205 year: 2021 ident: 10.1016/j.biortech.2024.130361_b0050 article-title: Machine learning in natural and engineered water systems publication-title: Water Res. doi: 10.1016/j.watres.2021.117666 – volume: 1–1 year: 2022 ident: 10.1016/j.biortech.2024.130361_b0145 article-title: Event-Driven Model Predictive Control with Deep Learning for Wastewater Treatment Process publication-title: IEEE Trans. Ind. Inf. – volume: 244 year: 2020 ident: 10.1016/j.biortech.2024.130361_b0090 article-title: Identification of high impact factors of air quality on a national scale using big data and machine learning techniques publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2019.118955 – volume: 157 start-page: 498 year: 2019 ident: 10.1016/j.biortech.2024.130361_b0100 article-title: Data-driven performance analyses of wastewater treatment plants: A review publication-title: Water Res. doi: 10.1016/j.watres.2019.03.030 – volume: 32 start-page: 90 year: 2015 ident: 10.1016/j.biortech.2024.130361_b0045 article-title: Prediction of effluent concentration in a wastewater treatment plant using machine learning models publication-title: J. Environ. Sci. doi: 10.1016/j.jes.2015.01.007 – volume: 415 start-page: 295 year: 2020 ident: 10.1016/j.biortech.2024.130361_b0175 article-title: On hyperparameter optimization of machine learning algorithms: Theory and practice publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.07.061 – ident: 10.1016/j.biortech.2024.130361_b0020 doi: 10.1145/2939672.2939785 – volume: 104 year: 2021 ident: 10.1016/j.biortech.2024.130361_b0025 article-title: EMORL: Effective multi-objective reinforcement learning method for hyperparameter optimization publication-title: Eng. Appl. Artif. Intel. doi: 10.1016/j.engappai.2021.104315 – volume: 249 year: 2020 ident: 10.1016/j.biortech.2024.130361_b0080 article-title: Hybrid decision tree-based machine learning models for short-term water quality prediction publication-title: Chemosphere doi: 10.1016/j.chemosphere.2020.126169 – volume: 74 start-page: 166 year: 2015 ident: 10.1016/j.biortech.2024.130361_b0125 article-title: Environmental sustainability of an energy self-sufficient sewage treatment plant: Improvements through DEMON and co-digestion publication-title: Water Res. doi: 10.1016/j.watres.2015.02.013 |
| SSID | ssj0003172 |
| Score | 2.5851903 |
| Snippet | [Display omitted]
•The same input features enables prediction of effluent TN and TEC in the WWTPs.•The moving average method and Bayesian optimization to... The control of effluent total nitrogen (TN) and total energy consumption (TEC) is a key issue in managing wastewater treatment plants (WWTPs). In this study,... The control of effluent total nitrogen (TN) and total energy consumption (TEC) is a key issue in managing wastewater treatment plants. In this study, effluent... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 130361 |
| SubjectTerms | algorithms Bayesian algorithm Bayesian theory energy Model prediction prediction process control Random seed system optimization total nitrogen wastewater treatment water quality WWTPs |
| Title | Prediction of effluent total nitrogen and energy consumption in wastewater treatment plants: Bayesian optimization machine learning methods |
| URI | https://dx.doi.org/10.1016/j.biortech.2024.130361 https://www.ncbi.nlm.nih.gov/pubmed/38286171 https://www.proquest.com/docview/2920188446 https://www.proquest.com/docview/3153768506 |
| Volume | 395 |
| WOSCitedRecordID | wos001175965000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-2976 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003172 issn: 0960-8524 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa6DsF4QDBu5TIZibcpW504ccxbGeMmNO1hoI6XyEmc0alNStqO8RMQf5rjW9JpqwYPvERRbCdVv8_28bki9JJSmlHGiBdEXJUwK3JPCOJ7nFMWRzLjuTa0f_nEDg7i4ZAfdjq_XCzM2ZiVZXx-zqf_FWp4BmCr0Nl_gLt5KTyAewAdrgA7XP8K-MNa2V6cICgLXYRkDjKmCnuECVxXMFTbDKSJ-8t0FObUeT3-EDOlUFPJE1sv9OlY-cso9cFr8VPqwMsKRkxsFOf2RPtkSleE4sRWpp5dsBmPqtoaC7bnlzT6x1qz-k7YnVTr-E3cyKj8vmg5_Eaa1enrN-XEeqG3fn5su1pNhk9bV64daVbfmKnCcmx5RdV7LLlysTd6h9OddKT8krVpyac7lwfAnzOdaLQDFTRPGGk3v8Yl0TWtoXWfhTzuovXBh_3hx2ZbB0HLXwoxv_qzG-ime9EqQWfVQUYLNEd30R17EsEDw6B7qCPLTXR7cFLbbCxyE93ac-UAoWUpc-V99LtlGa4K7FiGNcuwYxkGlmHDMrzEMjwqccsy3LAMG5a9wo5jeJlj2HIMO45hy7EH6PPb_aO9956t6-FlcJqfe1lMAlIIwUPBWAGrCJwCUt6PBadhTkO4j0KSF1JwGcCJV2RBTtLQF_00ZUFMZfAQdcuqlI8RlmERFBFPc5XIMSdRGhJYYgI_74u-LKKsh0IHQpLZpPeq9so4cd6Np4nDMVE4JgbHHtptxk1N2pdrR3CHcWKFVyOUJkDXa8e-cKRIAFVlshOlrBazRNWSI3FMabS6T0BUSiaVebKHHhlGNb_ZkfHJypanaKOdi89Qd14v5HN0Izubj2b1Flpjw3jLToU_P9Tenw |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+effluent+total+nitrogen+and+energy+consumption+in+wastewater+treatment+plants%3A+Bayesian+optimization+machine+learning+methods&rft.jtitle=Bioresource+technology&rft.au=Ye%2C+Gang&rft.au=Wan%2C+Jinquan&rft.au=Deng%2C+Zhicheng&rft.au=Wang%2C+Yan&rft.date=2024-03-01&rft.eissn=1873-2976&rft.spage=130361&rft_id=info:doi/10.1016%2Fj.biortech.2024.130361&rft_id=info%3Apmid%2F38286171&rft.externalDocID=38286171 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-8524&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-8524&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-8524&client=summon |