Synthesis, characterization and properties of stir cast AA6351-aluminium nitride (AlN) composites

In the present investigation, AA6351 aluminum alloy matrix composites reinforced with various percentages of AlN particles were fabricated by stir casting technique. The percentage of AlN was varied from 0 to 20% in a step of 4%. The prepared AA6351-AlN composites were characterized using scanning e...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of materials research Ročník 31; číslo 24; s. 3824 - 3831
Hlavní autoři: Mohanavel, V., Rajan, K., Ravichandran, M.
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York, USA Cambridge University Press 28.12.2016
Springer International Publishing
Springer Nature B.V
Témata:
ISSN:0884-2914, 2044-5326
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In the present investigation, AA6351 aluminum alloy matrix composites reinforced with various percentages of AlN particles were fabricated by stir casting technique. The percentage of AlN was varied from 0 to 20% in a step of 4%. The prepared AA6351-AlN composites were characterized using scanning electron microscope (SEM) and x-ray diffraction (XRD). The mechanical properties such as micro-hardness, compression strength, flexural strength, and tensile strength of the proposed composite have been studied. X-ray diffraction patterns confirm the presence of AlN particles in the composites. SEM analysis reveals the homogeneous distribution of AlN particles in the AA6351 matrix. The mechanical properties of the composite were found to be noticeably higher than that of the plain matrix alloy due to augmented particle content. The produced composites exhibit superior mechanical properties when compared with unreinforced matrix alloy. Fracture surface analysis of tensile specimens show the ductile–brittle nature of failure in the composites.
Bibliografie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:0884-2914
2044-5326
DOI:10.1557/jmr.2016.460