Geometric modeling and applications of generalized blended trigonometric Bézier curves with shape parameters
A Bézier model with shape parameters is one of the momentous research topics in geometric modeling and computer-aided geometric design. In this study, a new recursive formula in explicit expression is constructed that produces the generalized blended trigonometric Bernstein (or GBT-Bernstein, for sh...
Uloženo v:
| Vydáno v: | Advances in difference equations Ročník 2020; číslo 1; s. 1 - 18 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Cham
Springer International Publishing
06.10.2020
SpringerOpen |
| Témata: | |
| ISSN: | 1687-1847, 1687-1847 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | A Bézier model with shape parameters is one of the momentous research topics in geometric modeling and computer-aided geometric design. In this study, a new recursive formula in explicit expression is constructed that produces the generalized blended trigonometric Bernstein (or GBT-Bernstein, for short) polynomial functions of degree
m
. Using these basis functions, generalized blended trigonometric Bézier (or GBT-Bézier, for short) curves with two shape parameters are also constructed, and their geometric features and applications to curve modeling are discussed. The newly created curves share all geometric properties of Bézier curves except the shape modification property, which is superior to the classical Bézier. The
C
3
and
G
2
continuity conditions of two pieces of GBT-Bézier curves are also part of this study. Moreover, in contrast with Bézier curves, our generalization gives more shape adjustability in curve designing. Several examples are presented to show that the proposed method has high applied values in geometric modeling. |
|---|---|
| AbstractList | A Bézier model with shape parameters is one of the momentous research topics in geometric modeling and computer-aided geometric design. In this study, a new recursive formula in explicit expression is constructed that produces the generalized blended trigonometric Bernstein (or GBT-Bernstein, for short) polynomial functions of degree
m
. Using these basis functions, generalized blended trigonometric Bézier (or GBT-Bézier, for short) curves with two shape parameters are also constructed, and their geometric features and applications to curve modeling are discussed. The newly created curves share all geometric properties of Bézier curves except the shape modification property, which is superior to the classical Bézier. The
$C^{3}$
C
3
and
$G^{2}$
G
2
continuity conditions of two pieces of GBT-Bézier curves are also part of this study. Moreover, in contrast with Bézier curves, our generalization gives more shape adjustability in curve designing. Several examples are presented to show that the proposed method has high applied values in geometric modeling. Abstract A Bézier model with shape parameters is one of the momentous research topics in geometric modeling and computer-aided geometric design. In this study, a new recursive formula in explicit expression is constructed that produces the generalized blended trigonometric Bernstein (or GBT-Bernstein, for short) polynomial functions of degree m. Using these basis functions, generalized blended trigonometric Bézier (or GBT-Bézier, for short) curves with two shape parameters are also constructed, and their geometric features and applications to curve modeling are discussed. The newly created curves share all geometric properties of Bézier curves except the shape modification property, which is superior to the classical Bézier. The C 3 $C^{3}$ and G 2 $G^{2}$ continuity conditions of two pieces of GBT-Bézier curves are also part of this study. Moreover, in contrast with Bézier curves, our generalization gives more shape adjustability in curve designing. Several examples are presented to show that the proposed method has high applied values in geometric modeling. A Bézier model with shape parameters is one of the momentous research topics in geometric modeling and computer-aided geometric design. In this study, a new recursive formula in explicit expression is constructed that produces the generalized blended trigonometric Bernstein (or GBT-Bernstein, for short) polynomial functions of degree m . Using these basis functions, generalized blended trigonometric Bézier (or GBT-Bézier, for short) curves with two shape parameters are also constructed, and their geometric features and applications to curve modeling are discussed. The newly created curves share all geometric properties of Bézier curves except the shape modification property, which is superior to the classical Bézier. The C 3 and G 2 continuity conditions of two pieces of GBT-Bézier curves are also part of this study. Moreover, in contrast with Bézier curves, our generalization gives more shape adjustability in curve designing. Several examples are presented to show that the proposed method has high applied values in geometric modeling. |
| ArticleNumber | 550 |
| Author | Maqsood, Sidra Majeed, Abdul Iqbal, Azhar Miura, Kenjiro T. Abbas, Muhammad |
| Author_xml | – sequence: 1 givenname: Sidra surname: Maqsood fullname: Maqsood, Sidra organization: Department of Mathematics, University of Sargodha – sequence: 2 givenname: Muhammad orcidid: 0000-0002-0491-1528 surname: Abbas fullname: Abbas, Muhammad email: muhammad.abbas@uos.edu.pk organization: Department of Mathematics, University of Sargodha – sequence: 3 givenname: Kenjiro T. surname: Miura fullname: Miura, Kenjiro T. organization: Department of Mechanical Engineering, Shizuoka University – sequence: 4 givenname: Abdul surname: Majeed fullname: Majeed, Abdul organization: Department of Mathematics, University of Education – sequence: 5 givenname: Azhar surname: Iqbal fullname: Iqbal, Azhar organization: Department of Mathematics and Natural Sciences, Prince Mohammad Bin Fahd University |
| BookMark | eNp9kU1KBDEQhYMoOP5cwFUu0Jp0p5PMUsWfAcGNrkN1Ut2ToSdpklbRG3kOL2Y7oyAuXFVRvO9RvHdAdkMMSMgJZ6eca3mWeSVlWbCSFaxijBdih8y41KrgWqjdX_s-Och5xVg5F1rPyPoG4xrH5C1dR4e9Dx2F4CgMQ-8tjD6GTGNLOwyYoPdv6GjTY3DTnKguhh_84uP9zWOi9ik9Y6YvflzSvIQB6QAJJhGmfET2WugzHn_PQ_J4ffVweVvc3d8sLs_vCisYHwsAZErIum6U5lZBpbVyyspStpyjsti0uhWVdXXLSgRsKlSynrsawNUOXHVIFltfF2FlhuTXkF5NBG82h5g6A2n0tkcj58xKa50usRFcMc2bWghhsS1rbudfXnrrZVPMOWFrrB83wYwJfG84M18VmG0FZqrAbCowYkLLP-jPK_9C1RbKkzh0mMwqPqUwxfUf9QnU5Z8_ |
| CitedBy_id | crossref_primary_10_3390_mi14122210 crossref_primary_10_1007_s00371_022_02631_x crossref_primary_10_1016_j_ifacol_2023_10_578 crossref_primary_10_1007_s40314_022_01813_6 crossref_primary_10_1016_j_energy_2023_128793 crossref_primary_10_1016_j_apor_2025_104601 crossref_primary_10_1186_s13662_021_03614_3 crossref_primary_10_1080_19942060_2024_2325494 crossref_primary_10_1155_jama_5676548 crossref_primary_10_1016_j_eswa_2023_120942 crossref_primary_10_32604_cmc_2024_047852 crossref_primary_10_1016_j_eswa_2023_121278 crossref_primary_10_3390_electronics11111709 crossref_primary_10_1007_s00371_022_02605_z crossref_primary_10_1007_s00170_025_16256_6 crossref_primary_10_1007_s40314_024_02832_1 crossref_primary_10_1007_s40314_022_02032_9 crossref_primary_10_1016_j_matcom_2024_10_029 crossref_primary_10_3390_math10030376 crossref_primary_10_1155_2021_3151501 crossref_primary_10_1007_s00371_022_02707_8 crossref_primary_10_1016_j_eswa_2022_119285 crossref_primary_10_1080_19942060_2024_2436087 crossref_primary_10_3390_electronics11213568 crossref_primary_10_3390_sym17020219 crossref_primary_10_1186_s42492_021_00095_9 crossref_primary_10_1186_s13662_021_03643_y crossref_primary_10_1109_TIM_2022_3232171 crossref_primary_10_1016_j_renene_2021_04_103 crossref_primary_10_32604_cmes_2022_017616 crossref_primary_10_1016_j_advengsoft_2022_103334 crossref_primary_10_3390_math12203175 crossref_primary_10_1016_j_matcom_2021_12_011 |
| Cites_doi | 10.3390/math8081246 10.1186/s13662-020-02871-y 10.1080/00207160701821715 10.1016/j.cam.2007.06.027 10.3390/sym10110545 10.1016/j.aml.2008.03.015 10.1109/ACCESS.2019.2953496 10.12733/jics20150009 10.1016/j.cagd.2004.03.001 10.1155/2020/4036434 10.1016/j.cagd.2011.02.001 10.3390/math8060924 10.3934/math.2020244 10.1299/jamdsm.2020jamdsm0048 10.1016/j.cagd.2003.10.002 10.3390/math8020159 10.1016/S0167-8396(03)00003-7 10.1016/j.amc.2011.08.030 10.2306/scienceasia1513-1874.2013.39S.011 10.3390/math7111045 10.1016/S0377-0427(02)00733-1 10.1016/j.amc.2013.07.073 10.1007/s10543-012-0386-0 10.1016/j.amc.2013.03.110 10.1016/j.cam.2016.12.016 10.1016/j.amc.2015.04.090 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2020 |
| Copyright_xml | – notice: The Author(s) 2020 |
| DBID | C6C AAYXX CITATION DOA |
| DOI | 10.1186/s13662-020-03001-4 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Mathematics |
| EISSN | 1687-1847 |
| EndPage | 18 |
| ExternalDocumentID | oai_doaj_org_article_690c6ccd82eb417081b5444cef251c9d 10_1186_s13662_020_03001_4 |
| GrantInformation_xml | – fundername: Japan Society for the Promotion of Science grantid: 19H02048 funderid: http://dx.doi.org/10.13039/501100001691 |
| GroupedDBID | -A0 23M 2WC 3V. 4.4 40G 5GY 5VS 6J9 8FE 8FG 8R4 8R5 AAFWJ AAYZJ ABDBF ABJCF ABUWG ACGFO ACGFS ACIPV ACIWK ACUHS ADBBV ADINQ AEGXH AENEX AFKRA AFPKN AHBYD AHYZX AIAGR ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH ARAPS AZQEC BAPOH BCNDV BENPR BGLVJ BPHCQ C24 C6C CCPQU CS3 DWQXO EBS ESX GNUQQ GROUPED_DOAJ HCIFZ J9A K6V K7- KQ8 L6V M0N M7S M~E OK1 P2P P62 PIMPY PQQKQ PROAC PTHSS Q2X REM RHU RNS RSV SMT SOJ TUS U2A UPT ~8M AAYXX CITATION OVT |
| ID | FETCH-LOGICAL-c401t-aae074655b781c7a3887d7c626f11e7cebf8f43cd5f02eaeb3e7659d5aad5dad3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 32 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000578499500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1687-1847 |
| IngestDate | Tue Oct 14 19:03:52 EDT 2025 Tue Nov 18 22:49:35 EST 2025 Sat Nov 29 01:43:48 EST 2025 Fri Feb 21 02:36:14 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | GBT-Bernstein-like polynomial functions Properties of GBT-Bézier curves Continuities of GBT-Bézier curves GBT-Bézier curve Shape parameters |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c401t-aae074655b781c7a3887d7c626f11e7cebf8f43cd5f02eaeb3e7659d5aad5dad3 |
| ORCID | 0000-0002-0491-1528 |
| OpenAccessLink | https://doaj.org/article/690c6ccd82eb417081b5444cef251c9d |
| PageCount | 18 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_690c6ccd82eb417081b5444cef251c9d crossref_citationtrail_10_1186_s13662_020_03001_4 crossref_primary_10_1186_s13662_020_03001_4 springer_journals_10_1186_s13662_020_03001_4 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-10-06 |
| PublicationDateYYYYMMDD | 2020-10-06 |
| PublicationDate_xml | – month: 10 year: 2020 text: 2020-10-06 day: 06 |
| PublicationDecade | 2020 |
| PublicationPlace | Cham |
| PublicationPlace_xml | – name: Cham |
| PublicationTitle | Advances in difference equations |
| PublicationTitleAbbrev | Adv Differ Equ |
| PublicationYear | 2020 |
| Publisher | Springer International Publishing SpringerOpen |
| Publisher_xml | – name: Springer International Publishing – name: SpringerOpen |
| References | Yan (CR21) 2015; 12 Han, Ma, Huang (CR18) 2009; 22 Oruc, Phillips (CR2) 2003; 151 BiBi, Abbas, Misro, Hu (CR15) 2019; 7 Bashir, Abbas, Awang, Ali (CR27) 2013; 39S Hoschek, Lasser (CR11) 1993 Han (CR8) 2011; 28 Harim, Karim, Othman, Saaban, Ghaffar, Nisar, Baleanu (CR24) 2020; 5 Liu, Chen, Jiang (CR7) 2010; 22 Hu, Li, Abbas, Miura, Wei (CR29) 2020; 8 Ahmad, Amat, Ali (CR10) 2014; 1 Zulkifli, Karim, Sarfraz, Ghaffar, Nisar (CR26) 2019; 7 Usman, Abbas, Miura (CR28) 2020; 14 Chen, Wang (CR1) 2003; 20 Khan, Lobiyal (CR33) 2017; 317 Qin, Hu, Zhang, Shen, Yang (CR9) 2013; 223 Yan (CR22) 2016; 2016 Mursaleen, Ansari, Khan (CR35) 2015; 266 Hu, Bo, Wu, Wei, Hou (CR14) 2018; 10 Han (CR17) 2004; 21 Yan, Liang (CR13) 2011; 218 Yang, Zeng (CR5) 2009; 86 Hu, Wu, Lv (CR23) 2018 Lupaş (CR34) 1987; 9 Bashir, Abbas, Ali (CR20) 2013; 219 Ali, Abdul Karim, Saaban, Hasan, Ghaffar, Nisar, Baleanu (CR25) 2020; 8 Maqsood, Abbas, Hu, Ramli, Miura (CR16) 2020; 2020 Majeed, Abbas, Miura, Kamran, Nazir (CR31) 2020; 8 Han, Ma, Huang (CR4) 2008; 217 Wang, Chen, Zhou (CR12) 2004; 21 Han, Zhu (CR19) 2012; 52 Farin (CR3) 2002 Xiang, Liu, Wang, Jiang (CR6) 2010; 7 Li, Hu, Abbas, Miura (CR32) 2020; 8 Hu, Hu, Abbas, Misro (CR30) 2020; 2020 J. Hoschek (3001_CR11) 1993 G.E. Farin (3001_CR3) 2002 U. Bashir (3001_CR20) 2013; 219 L.L. Yan (3001_CR13) 2011; 218 S. BiBi (3001_CR15) 2019; 7 X.A. Han (3001_CR18) 2009; 22 X. Han (3001_CR8) 2011; 28 G. Wang (3001_CR12) 2004; 21 L.L. Yan (3001_CR22) 2016; 2016 G. Hu (3001_CR23) 2018 X. Han (3001_CR4) 2008; 217 X. Hu (3001_CR30) 2020; 2020 K. Khan (3001_CR33) 2017; 317 H. Oruc (3001_CR2) 2003; 151 T. Xiang (3001_CR6) 2010; 7 X. Qin (3001_CR9) 2013; 223 N.A.B. Zulkifli (3001_CR26) 2019; 7 N.A. Harim (3001_CR24) 2020; 5 L.Q. Yang (3001_CR5) 2009; 86 S. Maqsood (3001_CR16) 2020; 2020 G. Hu (3001_CR14) 2018; 10 X.L. Han (3001_CR19) 2012; 52 Z. Liu (3001_CR7) 2010; 22 M. Mursaleen (3001_CR35) 2015; 266 Q. Chen (3001_CR1) 2003; 20 M. Usman (3001_CR28) 2020; 14 A. Ahmad (3001_CR10) 2014; 1 F.A.M. Ali (3001_CR25) 2020; 8 L.L. Yan (3001_CR21) 2015; 12 G. Hu (3001_CR29) 2020; 8 A. Lupaş (3001_CR34) 1987; 9 A. Majeed (3001_CR31) 2020; 8 F. Li (3001_CR32) 2020; 8 X.L. Han (3001_CR17) 2004; 21 U. Bashir (3001_CR27) 2013; 39S |
| References_xml | – volume: 8 issue: 8 year: 2020 ident: CR31 article-title: Surface modeling from 2D contours with an application to craniofacial fracture construction publication-title: Mathematics doi: 10.3390/math8081246 – volume: 2020 issue: 1 year: 2020 ident: CR30 article-title: Approximate multi-degree reduction of Q-Bézier curves via generalized Bernstein polynomial functions publication-title: Adv. Differ. Equ. doi: 10.1186/s13662-020-02871-y – volume: 266 start-page: 874 year: 2015 end-page: 882 ident: CR35 article-title: On -analogue of Bernstein operators publication-title: Appl. Math. Comput. – volume: 86 start-page: 1253 year: 2009 end-page: 1263 ident: CR5 article-title: Bézier curves and surfaces with shape parameters publication-title: Int. J. Comput. Math. doi: 10.1080/00207160701821715 – year: 1993 ident: CR11 publication-title: Fundamentals of Computer Aided Geometric Design. Schumaker, L.L., Translator – volume: 217 start-page: 180 year: 2008 end-page: 193 ident: CR4 article-title: A novel generalization of Bézier curve and surface publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2007.06.027 – volume: 10 year: 2018 ident: CR14 article-title: Modeling of free-form complex curves using SG-Bézier curves with constraints of geometric continuities publication-title: Symmetry doi: 10.3390/sym10110545 – volume: 22 start-page: 226 year: 2009 end-page: 231 ident: CR18 article-title: The cubic trigonometric Bézier curve with two shape parameters publication-title: Appl. Math. Lett. doi: 10.1016/j.aml.2008.03.015 – volume: 317 start-page: 458 year: 2017 end-page: 477 ident: CR33 article-title: Bézier curves based on Lupaş -analogue of Bernstein functions in CAGD publication-title: J. Comput. Appl. Math. – volume: 7 start-page: 165779 year: 2019 end-page: 165792 ident: CR15 article-title: A novel approach of hybrid trigonometric Bézier curve to the modeling of symmetric revolutionary curves and symmetric rotation surfaces publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2953496 – volume: 219 start-page: 10183 year: 2013 end-page: 10197 ident: CR20 article-title: The and rational quadratic trigonometric Bézier curve with two shape parameters with applications publication-title: J. Appl. Math. Comput. – volume: 12 start-page: 6491 year: 2015 end-page: 6501 ident: CR21 article-title: An algebraic-trigonometric blended piecewise curve publication-title: J. Inf. Comput. Sci. doi: 10.12733/jics20150009 – volume: 1 start-page: 56 year: 2014 end-page: 68 ident: CR10 article-title: A generalization of Bézier-like curve publication-title: EDUCATUM – volume: 21 start-page: 535 year: 2004 end-page: 548 ident: CR17 article-title: Cubic trigonometric polynomial curves with a shape parameter publication-title: Comput. Aided Geom. Des. doi: 10.1016/j.cagd.2004.03.001 – volume: 2020 year: 2020 ident: CR16 article-title: A novel generalization of trigonometric Bézier curve and surface with shape parameters and its applications publication-title: Math. Probl. Eng. doi: 10.1155/2020/4036434 – start-page: 706 year: 2018 end-page: 710 ident: CR23 article-title: Geometric continuity conditions for H-Bézier curves of degree publication-title: 3rd IEEE International Conference on Image, Vision and Computing – volume: 28 start-page: 151 year: 2011 end-page: 163 ident: CR8 article-title: A class of general quartic spline curves with shape parameters publication-title: Comput. Aided Geom. Des. doi: 10.1016/j.cagd.2011.02.001 – volume: 8 issue: 6 year: 2020 ident: CR32 article-title: The generalized H-Bézier model: geometric continuity conditions and applications to curve and surface modeling publication-title: Mathematics doi: 10.3390/math8060924 – volume: 7 start-page: 2080 year: 2010 end-page: 2089 ident: CR6 article-title: A novel extension of Bézier curves and surfaces of the same degree publication-title: J. Inf. Comput. Sci. – volume: 2016 start-page: 1 year: 2016 end-page: 9 ident: CR22 article-title: Cubic trigonometric nonuniform spline curves and surfaces publication-title: Math. Probl. Eng. – volume: 5 start-page: 3762 issue: 4 year: 2020 end-page: 3782 ident: CR24 article-title: Positivity preserving interpolation by using rational quartic spline publication-title: AIMS Math. doi: 10.3934/math.2020244 – volume: 14 issue: 4 year: 2020 ident: CR28 article-title: Some engineering applications of new trigonometric cubic Bezier-like curves to free-form complex curve modeling publication-title: J. Adv. Mech. Des. Syst. Manuf. doi: 10.1299/jamdsm.2020jamdsm0048 – volume: 8 issue: 8 year: 2020 ident: CR29 article-title: Explicit continuity conditions for connection of curves and surfaces publication-title: Mathematics – year: 2002 ident: CR3 publication-title: Curves and Surfaces for Computer-Aided Geometric Design: A Practical Guide – volume: 21 start-page: 193 year: 2004 end-page: 205 ident: CR12 article-title: NUAT B-spline curves publication-title: Comput. Aided Geom. Des. doi: 10.1016/j.cagd.2003.10.002 – volume: 8 issue: 2 year: 2020 ident: CR25 article-title: Construction of cubic timmer triangular patches and its application in scattered data interpolation publication-title: Mathematics doi: 10.3390/math8020159 – volume: 20 start-page: 29 year: 2003 end-page: 39 ident: CR1 article-title: A class of Bézier-like curves publication-title: Comput. Aided Geom. Des. doi: 10.1016/S0167-8396(03)00003-7 – volume: 218 start-page: 2863 year: 2011 end-page: 2879 ident: CR13 article-title: An extension of the Bézier model publication-title: J. Appl. Math. Comput. doi: 10.1016/j.amc.2011.08.030 – volume: 39S start-page: 11 issue: 2 year: 2013 end-page: 15 ident: CR27 article-title: A class of quasi-quintic trigonometric Bezier curve with two shape parameters publication-title: Sci. Asia doi: 10.2306/scienceasia1513-1874.2013.39S.011 – volume: 9 start-page: 85 year: 1987 end-page: 92 ident: CR34 article-title: A -analogue of the Bernstein operator publication-title: Seminar on Numerical and Statistical Calculus, University of Cluj-Napoca – volume: 7 issue: 11 year: 2019 ident: CR26 article-title: Image interpolation using a rational bi-cubic ball publication-title: Mathematics doi: 10.3390/math7111045 – volume: 151 start-page: 1 year: 2003 end-page: 12 ident: CR2 article-title: Q-Bernstein polynomials and Bézier curves publication-title: J. Comput. Appl. Math. doi: 10.1016/S0377-0427(02)00733-1 – volume: 223 start-page: 1 year: 2013 end-page: 16 ident: CR9 article-title: A novel extension to the polynomial basis functions describing Bézier curves and surfaces of degree with multiple shape parameters publication-title: J. Appl. Math. Comput. doi: 10.1016/j.amc.2013.07.073 – volume: 52 start-page: 953 year: 2012 end-page: 979 ident: CR19 article-title: Curve construction based on five trigonometric blending functions publication-title: BIT doi: 10.1007/s10543-012-0386-0 – volume: 22 start-page: 838 year: 2010 end-page: 844 ident: CR7 article-title: A class of generalized Bézier curves and surfaces with multiple shape parameters publication-title: J. Comput.-Aided Des. Comput. Graph. – volume: 151 start-page: 1 year: 2003 ident: 3001_CR2 publication-title: J. Comput. Appl. Math. doi: 10.1016/S0377-0427(02)00733-1 – volume: 9 start-page: 85 year: 1987 ident: 3001_CR34 publication-title: Seminar on Numerical and Statistical Calculus, University of Cluj-Napoca – volume: 52 start-page: 953 year: 2012 ident: 3001_CR19 publication-title: BIT doi: 10.1007/s10543-012-0386-0 – volume-title: Fundamentals of Computer Aided Geometric Design. Schumaker, L.L., Translator year: 1993 ident: 3001_CR11 – volume: 1 start-page: 56 year: 2014 ident: 3001_CR10 publication-title: EDUCATUM – volume: 223 start-page: 1 year: 2013 ident: 3001_CR9 publication-title: J. Appl. Math. Comput. doi: 10.1016/j.amc.2013.07.073 – volume: 219 start-page: 10183 year: 2013 ident: 3001_CR20 publication-title: J. Appl. Math. Comput. doi: 10.1016/j.amc.2013.03.110 – volume: 12 start-page: 6491 year: 2015 ident: 3001_CR21 publication-title: J. Inf. Comput. Sci. doi: 10.12733/jics20150009 – volume: 2016 start-page: 1 year: 2016 ident: 3001_CR22 publication-title: Math. Probl. Eng. – volume: 5 start-page: 3762 issue: 4 year: 2020 ident: 3001_CR24 publication-title: AIMS Math. doi: 10.3934/math.2020244 – volume: 21 start-page: 193 year: 2004 ident: 3001_CR12 publication-title: Comput. Aided Geom. Des. doi: 10.1016/j.cagd.2003.10.002 – volume: 317 start-page: 458 year: 2017 ident: 3001_CR33 publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2016.12.016 – volume: 22 start-page: 226 year: 2009 ident: 3001_CR18 publication-title: Appl. Math. Lett. doi: 10.1016/j.aml.2008.03.015 – volume: 20 start-page: 29 year: 2003 ident: 3001_CR1 publication-title: Comput. Aided Geom. Des. doi: 10.1016/S0167-8396(03)00003-7 – volume: 86 start-page: 1253 year: 2009 ident: 3001_CR5 publication-title: Int. J. Comput. Math. doi: 10.1080/00207160701821715 – volume: 10 year: 2018 ident: 3001_CR14 publication-title: Symmetry doi: 10.3390/sym10110545 – volume: 266 start-page: 874 year: 2015 ident: 3001_CR35 publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2015.04.090 – volume: 7 start-page: 2080 year: 2010 ident: 3001_CR6 publication-title: J. Inf. Comput. Sci. – volume: 28 start-page: 151 year: 2011 ident: 3001_CR8 publication-title: Comput. Aided Geom. Des. doi: 10.1016/j.cagd.2011.02.001 – volume: 14 issue: 4 year: 2020 ident: 3001_CR28 publication-title: J. Adv. Mech. Des. Syst. Manuf. doi: 10.1299/jamdsm.2020jamdsm0048 – volume: 218 start-page: 2863 year: 2011 ident: 3001_CR13 publication-title: J. Appl. Math. Comput. doi: 10.1016/j.amc.2011.08.030 – volume: 7 issue: 11 year: 2019 ident: 3001_CR26 publication-title: Mathematics doi: 10.3390/math7111045 – start-page: 706 volume-title: 3rd IEEE International Conference on Image, Vision and Computing year: 2018 ident: 3001_CR23 – volume: 7 start-page: 165779 year: 2019 ident: 3001_CR15 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2953496 – volume: 2020 year: 2020 ident: 3001_CR16 publication-title: Math. Probl. Eng. doi: 10.1155/2020/4036434 – volume: 8 issue: 8 year: 2020 ident: 3001_CR31 publication-title: Mathematics doi: 10.3390/math8081246 – volume: 22 start-page: 838 year: 2010 ident: 3001_CR7 publication-title: J. Comput.-Aided Des. Comput. Graph. – volume: 8 issue: 6 year: 2020 ident: 3001_CR32 publication-title: Mathematics doi: 10.3390/math8060924 – volume: 217 start-page: 180 year: 2008 ident: 3001_CR4 publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2007.06.027 – volume: 21 start-page: 535 year: 2004 ident: 3001_CR17 publication-title: Comput. Aided Geom. Des. doi: 10.1016/j.cagd.2004.03.001 – volume: 39S start-page: 11 issue: 2 year: 2013 ident: 3001_CR27 publication-title: Sci. Asia doi: 10.2306/scienceasia1513-1874.2013.39S.011 – volume: 8 issue: 2 year: 2020 ident: 3001_CR25 publication-title: Mathematics doi: 10.3390/math8020159 – volume-title: Curves and Surfaces for Computer-Aided Geometric Design: A Practical Guide year: 2002 ident: 3001_CR3 – volume: 8 issue: 8 year: 2020 ident: 3001_CR29 publication-title: Mathematics – volume: 2020 issue: 1 year: 2020 ident: 3001_CR30 publication-title: Adv. Differ. Equ. doi: 10.1186/s13662-020-02871-y |
| SSID | ssj0029488 |
| Score | 2.3610249 |
| Snippet | A Bézier model with shape parameters is one of the momentous research topics in geometric modeling and computer-aided geometric design. In this study, a new... Abstract A Bézier model with shape parameters is one of the momentous research topics in geometric modeling and computer-aided geometric design. In this study,... |
| SourceID | doaj crossref springer |
| SourceType | Open Website Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Analysis Applications Continuities of GBT-Bézier curves Difference and Functional Equations Functional Analysis GBT-Bernstein-like polynomial functions GBT-Bézier curve Mathematics Mathematics and Statistics Methods Ordinary Differential Equations Partial Differential Equations Properties of GBT-Bézier curves Shape parameters Topics in Special Functions and q-Special Functions: Theory |
| Title | Geometric modeling and applications of generalized blended trigonometric Bézier curves with shape parameters |
| URI | https://link.springer.com/article/10.1186/s13662-020-03001-4 https://doaj.org/article/690c6ccd82eb417081b5444cef251c9d |
| Volume | 2020 |
| WOSCitedRecordID | wos000578499500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1687-1847 dateEnd: 20221231 omitProxy: false ssIdentifier: ssj0029488 issn: 1687-1847 databaseCode: DOA dateStart: 20040101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV27TsMwFLUQYoAB8RTlJQ9sEFGndpyMFFGYKgaQulnOtV2Q2rRq2g79I76DH-PaSasiJFhYLVuObo59ffw4h5ArwEU85l0WOcch4iblUQpGR4ZnuZS5jTPhgtmE7HbTXi97XrP68nfCKnngKnC3yN4gATBpbHPOJGawXHDOwTrMzJAZP_s2ZbYkUzXVyhCXyycyaXJbslaSxJGnSghqJND8WxoKav0_jkJDhunskd16aUjvqk_aJxu2OCA7a4KBh2T4aEdD74EFNFjYYCHVhaHrx9B05Gi_EpN-X1hD80HY5abYqu9fMFTN258fC8yIFGaTuS2p346l5ZseW-rFwIf-kkx5RF47Dy_3T1FtmBAB0qRppLX19iFC5DJlIHULZxAjATmLY8xKsLlLHW-BEa4ZW4082spEZEZobYTRpnVMNotRYU8IxTqc5Rhlr-gnMezAE2Y0DmCBFMs2G4Qt46egVhP3phYDFVhFmqgq5gpjrkLMFW-Q61WbcaWl8Wvttv8tq5peBzsUIDpUjQ71Fzoa5Gb5U1U9OMtf-jz9jz7PyHbskeZvGSTnZHM6mdkLsgXz6Xs5uQw4_QLo9-zw |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Geometric+modeling+and+applications+of+generalized+blended+trigonometric+B%C3%A9zier+curves+with+shape+parameters&rft.jtitle=Advances+in+difference+equations&rft.au=Maqsood%2C+Sidra&rft.au=Abbas%2C+Muhammad&rft.au=Miura%2C+Kenjiro+T.&rft.au=Majeed%2C+Abdul&rft.date=2020-10-06&rft.pub=Springer+International+Publishing&rft.eissn=1687-1847&rft.volume=2020&rft.issue=1&rft_id=info:doi/10.1186%2Fs13662-020-03001-4&rft.externalDocID=10_1186_s13662_020_03001_4 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-1847&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-1847&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-1847&client=summon |