Geometric modeling and applications of generalized blended trigonometric Bézier curves with shape parameters

A Bézier model with shape parameters is one of the momentous research topics in geometric modeling and computer-aided geometric design. In this study, a new recursive formula in explicit expression is constructed that produces the generalized blended trigonometric Bernstein (or GBT-Bernstein, for sh...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Advances in difference equations Ročník 2020; číslo 1; s. 1 - 18
Hlavní autori: Maqsood, Sidra, Abbas, Muhammad, Miura, Kenjiro T., Majeed, Abdul, Iqbal, Azhar
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Cham Springer International Publishing 06.10.2020
SpringerOpen
Predmet:
ISSN:1687-1847, 1687-1847
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract A Bézier model with shape parameters is one of the momentous research topics in geometric modeling and computer-aided geometric design. In this study, a new recursive formula in explicit expression is constructed that produces the generalized blended trigonometric Bernstein (or GBT-Bernstein, for short) polynomial functions of degree m . Using these basis functions, generalized blended trigonometric Bézier (or GBT-Bézier, for short) curves with two shape parameters are also constructed, and their geometric features and applications to curve modeling are discussed. The newly created curves share all geometric properties of Bézier curves except the shape modification property, which is superior to the classical Bézier. The C 3 and G 2 continuity conditions of two pieces of GBT-Bézier curves are also part of this study. Moreover, in contrast with Bézier curves, our generalization gives more shape adjustability in curve designing. Several examples are presented to show that the proposed method has high applied values in geometric modeling.
AbstractList A Bézier model with shape parameters is one of the momentous research topics in geometric modeling and computer-aided geometric design. In this study, a new recursive formula in explicit expression is constructed that produces the generalized blended trigonometric Bernstein (or GBT-Bernstein, for short) polynomial functions of degree m . Using these basis functions, generalized blended trigonometric Bézier (or GBT-Bézier, for short) curves with two shape parameters are also constructed, and their geometric features and applications to curve modeling are discussed. The newly created curves share all geometric properties of Bézier curves except the shape modification property, which is superior to the classical Bézier. The $C^{3}$ C 3 and $G^{2}$ G 2 continuity conditions of two pieces of GBT-Bézier curves are also part of this study. Moreover, in contrast with Bézier curves, our generalization gives more shape adjustability in curve designing. Several examples are presented to show that the proposed method has high applied values in geometric modeling.
Abstract A Bézier model with shape parameters is one of the momentous research topics in geometric modeling and computer-aided geometric design. In this study, a new recursive formula in explicit expression is constructed that produces the generalized blended trigonometric Bernstein (or GBT-Bernstein, for short) polynomial functions of degree m. Using these basis functions, generalized blended trigonometric Bézier (or GBT-Bézier, for short) curves with two shape parameters are also constructed, and their geometric features and applications to curve modeling are discussed. The newly created curves share all geometric properties of Bézier curves except the shape modification property, which is superior to the classical Bézier. The C 3 $C^{3}$ and G 2 $G^{2}$ continuity conditions of two pieces of GBT-Bézier curves are also part of this study. Moreover, in contrast with Bézier curves, our generalization gives more shape adjustability in curve designing. Several examples are presented to show that the proposed method has high applied values in geometric modeling.
A Bézier model with shape parameters is one of the momentous research topics in geometric modeling and computer-aided geometric design. In this study, a new recursive formula in explicit expression is constructed that produces the generalized blended trigonometric Bernstein (or GBT-Bernstein, for short) polynomial functions of degree m . Using these basis functions, generalized blended trigonometric Bézier (or GBT-Bézier, for short) curves with two shape parameters are also constructed, and their geometric features and applications to curve modeling are discussed. The newly created curves share all geometric properties of Bézier curves except the shape modification property, which is superior to the classical Bézier. The C 3 and G 2 continuity conditions of two pieces of GBT-Bézier curves are also part of this study. Moreover, in contrast with Bézier curves, our generalization gives more shape adjustability in curve designing. Several examples are presented to show that the proposed method has high applied values in geometric modeling.
ArticleNumber 550
Author Maqsood, Sidra
Majeed, Abdul
Iqbal, Azhar
Miura, Kenjiro T.
Abbas, Muhammad
Author_xml – sequence: 1
  givenname: Sidra
  surname: Maqsood
  fullname: Maqsood, Sidra
  organization: Department of Mathematics, University of Sargodha
– sequence: 2
  givenname: Muhammad
  orcidid: 0000-0002-0491-1528
  surname: Abbas
  fullname: Abbas, Muhammad
  email: muhammad.abbas@uos.edu.pk
  organization: Department of Mathematics, University of Sargodha
– sequence: 3
  givenname: Kenjiro T.
  surname: Miura
  fullname: Miura, Kenjiro T.
  organization: Department of Mechanical Engineering, Shizuoka University
– sequence: 4
  givenname: Abdul
  surname: Majeed
  fullname: Majeed, Abdul
  organization: Department of Mathematics, University of Education
– sequence: 5
  givenname: Azhar
  surname: Iqbal
  fullname: Iqbal, Azhar
  organization: Department of Mathematics and Natural Sciences, Prince Mohammad Bin Fahd University
BookMark eNp9kU1KBDEQhYMoOP5cwFUu0Jp0p5PMUsWfAcGNrkN1Ut2ToSdpklbRG3kOL2Y7oyAuXFVRvO9RvHdAdkMMSMgJZ6eca3mWeSVlWbCSFaxijBdih8y41KrgWqjdX_s-Och5xVg5F1rPyPoG4xrH5C1dR4e9Dx2F4CgMQ-8tjD6GTGNLOwyYoPdv6GjTY3DTnKguhh_84uP9zWOi9ik9Y6YvflzSvIQB6QAJJhGmfET2WugzHn_PQ_J4ffVweVvc3d8sLs_vCisYHwsAZErIum6U5lZBpbVyyspStpyjsti0uhWVdXXLSgRsKlSynrsawNUOXHVIFltfF2FlhuTXkF5NBG82h5g6A2n0tkcj58xKa50usRFcMc2bWghhsS1rbudfXnrrZVPMOWFrrB83wYwJfG84M18VmG0FZqrAbCowYkLLP-jPK_9C1RbKkzh0mMwqPqUwxfUf9QnU5Z8_
CitedBy_id crossref_primary_10_3390_mi14122210
crossref_primary_10_1007_s00371_022_02631_x
crossref_primary_10_1016_j_ifacol_2023_10_578
crossref_primary_10_1007_s40314_022_01813_6
crossref_primary_10_1016_j_energy_2023_128793
crossref_primary_10_1016_j_apor_2025_104601
crossref_primary_10_1186_s13662_021_03614_3
crossref_primary_10_1080_19942060_2024_2325494
crossref_primary_10_1155_jama_5676548
crossref_primary_10_1016_j_eswa_2023_120942
crossref_primary_10_32604_cmc_2024_047852
crossref_primary_10_1016_j_eswa_2023_121278
crossref_primary_10_3390_electronics11111709
crossref_primary_10_1007_s00371_022_02605_z
crossref_primary_10_1007_s00170_025_16256_6
crossref_primary_10_1007_s40314_024_02832_1
crossref_primary_10_1007_s40314_022_02032_9
crossref_primary_10_1016_j_matcom_2024_10_029
crossref_primary_10_3390_math10030376
crossref_primary_10_1155_2021_3151501
crossref_primary_10_1007_s00371_022_02707_8
crossref_primary_10_1016_j_eswa_2022_119285
crossref_primary_10_1080_19942060_2024_2436087
crossref_primary_10_3390_electronics11213568
crossref_primary_10_3390_sym17020219
crossref_primary_10_1186_s42492_021_00095_9
crossref_primary_10_1186_s13662_021_03643_y
crossref_primary_10_1109_TIM_2022_3232171
crossref_primary_10_1016_j_renene_2021_04_103
crossref_primary_10_32604_cmes_2022_017616
crossref_primary_10_1016_j_advengsoft_2022_103334
crossref_primary_10_3390_math12203175
crossref_primary_10_1016_j_matcom_2021_12_011
Cites_doi 10.3390/math8081246
10.1186/s13662-020-02871-y
10.1080/00207160701821715
10.1016/j.cam.2007.06.027
10.3390/sym10110545
10.1016/j.aml.2008.03.015
10.1109/ACCESS.2019.2953496
10.12733/jics20150009
10.1016/j.cagd.2004.03.001
10.1155/2020/4036434
10.1016/j.cagd.2011.02.001
10.3390/math8060924
10.3934/math.2020244
10.1299/jamdsm.2020jamdsm0048
10.1016/j.cagd.2003.10.002
10.3390/math8020159
10.1016/S0167-8396(03)00003-7
10.1016/j.amc.2011.08.030
10.2306/scienceasia1513-1874.2013.39S.011
10.3390/math7111045
10.1016/S0377-0427(02)00733-1
10.1016/j.amc.2013.07.073
10.1007/s10543-012-0386-0
10.1016/j.amc.2013.03.110
10.1016/j.cam.2016.12.016
10.1016/j.amc.2015.04.090
ContentType Journal Article
Copyright The Author(s) 2020
Copyright_xml – notice: The Author(s) 2020
DBID C6C
AAYXX
CITATION
DOA
DOI 10.1186/s13662-020-03001-4
DatabaseName Springer Nature OA Free Journals
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1687-1847
EndPage 18
ExternalDocumentID oai_doaj_org_article_690c6ccd82eb417081b5444cef251c9d
10_1186_s13662_020_03001_4
GrantInformation_xml – fundername: Japan Society for the Promotion of Science
  grantid: 19H02048
  funderid: http://dx.doi.org/10.13039/501100001691
GroupedDBID -A0
23M
2WC
3V.
4.4
40G
5GY
5VS
6J9
8FE
8FG
8R4
8R5
AAFWJ
AAYZJ
ABDBF
ABJCF
ABUWG
ACGFO
ACGFS
ACIPV
ACIWK
ACUHS
ADBBV
ADINQ
AEGXH
AENEX
AFKRA
AFPKN
AHBYD
AHYZX
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
ARAPS
AZQEC
BAPOH
BCNDV
BENPR
BGLVJ
BPHCQ
C24
C6C
CCPQU
CS3
DWQXO
EBS
ESX
GNUQQ
GROUPED_DOAJ
HCIFZ
J9A
K6V
K7-
KQ8
L6V
M0N
M7S
M~E
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PTHSS
Q2X
REM
RHU
RNS
RSV
SMT
SOJ
TUS
U2A
UPT
~8M
AAYXX
CITATION
OVT
ID FETCH-LOGICAL-c401t-aae074655b781c7a3887d7c626f11e7cebf8f43cd5f02eaeb3e7659d5aad5dad3
IEDL.DBID DOA
ISICitedReferencesCount 32
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000578499500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1687-1847
IngestDate Tue Oct 14 19:03:52 EDT 2025
Tue Nov 18 22:49:35 EST 2025
Sat Nov 29 01:43:48 EST 2025
Fri Feb 21 02:36:14 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords GBT-Bernstein-like polynomial functions
Properties of GBT-Bézier curves
Continuities of GBT-Bézier curves
GBT-Bézier curve
Shape parameters
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c401t-aae074655b781c7a3887d7c626f11e7cebf8f43cd5f02eaeb3e7659d5aad5dad3
ORCID 0000-0002-0491-1528
OpenAccessLink https://doaj.org/article/690c6ccd82eb417081b5444cef251c9d
PageCount 18
ParticipantIDs doaj_primary_oai_doaj_org_article_690c6ccd82eb417081b5444cef251c9d
crossref_citationtrail_10_1186_s13662_020_03001_4
crossref_primary_10_1186_s13662_020_03001_4
springer_journals_10_1186_s13662_020_03001_4
PublicationCentury 2000
PublicationDate 2020-10-06
PublicationDateYYYYMMDD 2020-10-06
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-06
  day: 06
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
PublicationTitle Advances in difference equations
PublicationTitleAbbrev Adv Differ Equ
PublicationYear 2020
Publisher Springer International Publishing
SpringerOpen
Publisher_xml – name: Springer International Publishing
– name: SpringerOpen
References Yan (CR21) 2015; 12
Han, Ma, Huang (CR18) 2009; 22
Oruc, Phillips (CR2) 2003; 151
BiBi, Abbas, Misro, Hu (CR15) 2019; 7
Bashir, Abbas, Awang, Ali (CR27) 2013; 39S
Hoschek, Lasser (CR11) 1993
Han (CR8) 2011; 28
Harim, Karim, Othman, Saaban, Ghaffar, Nisar, Baleanu (CR24) 2020; 5
Liu, Chen, Jiang (CR7) 2010; 22
Hu, Li, Abbas, Miura, Wei (CR29) 2020; 8
Ahmad, Amat, Ali (CR10) 2014; 1
Zulkifli, Karim, Sarfraz, Ghaffar, Nisar (CR26) 2019; 7
Usman, Abbas, Miura (CR28) 2020; 14
Chen, Wang (CR1) 2003; 20
Khan, Lobiyal (CR33) 2017; 317
Qin, Hu, Zhang, Shen, Yang (CR9) 2013; 223
Yan (CR22) 2016; 2016
Mursaleen, Ansari, Khan (CR35) 2015; 266
Hu, Bo, Wu, Wei, Hou (CR14) 2018; 10
Han (CR17) 2004; 21
Yan, Liang (CR13) 2011; 218
Yang, Zeng (CR5) 2009; 86
Hu, Wu, Lv (CR23) 2018
Lupaş (CR34) 1987; 9
Bashir, Abbas, Ali (CR20) 2013; 219
Ali, Abdul Karim, Saaban, Hasan, Ghaffar, Nisar, Baleanu (CR25) 2020; 8
Maqsood, Abbas, Hu, Ramli, Miura (CR16) 2020; 2020
Majeed, Abbas, Miura, Kamran, Nazir (CR31) 2020; 8
Han, Ma, Huang (CR4) 2008; 217
Wang, Chen, Zhou (CR12) 2004; 21
Han, Zhu (CR19) 2012; 52
Farin (CR3) 2002
Xiang, Liu, Wang, Jiang (CR6) 2010; 7
Li, Hu, Abbas, Miura (CR32) 2020; 8
Hu, Hu, Abbas, Misro (CR30) 2020; 2020
J. Hoschek (3001_CR11) 1993
G.E. Farin (3001_CR3) 2002
U. Bashir (3001_CR20) 2013; 219
L.L. Yan (3001_CR13) 2011; 218
S. BiBi (3001_CR15) 2019; 7
X.A. Han (3001_CR18) 2009; 22
X. Han (3001_CR8) 2011; 28
G. Wang (3001_CR12) 2004; 21
L.L. Yan (3001_CR22) 2016; 2016
G. Hu (3001_CR23) 2018
X. Han (3001_CR4) 2008; 217
X. Hu (3001_CR30) 2020; 2020
K. Khan (3001_CR33) 2017; 317
H. Oruc (3001_CR2) 2003; 151
T. Xiang (3001_CR6) 2010; 7
X. Qin (3001_CR9) 2013; 223
N.A.B. Zulkifli (3001_CR26) 2019; 7
N.A. Harim (3001_CR24) 2020; 5
L.Q. Yang (3001_CR5) 2009; 86
S. Maqsood (3001_CR16) 2020; 2020
G. Hu (3001_CR14) 2018; 10
X.L. Han (3001_CR19) 2012; 52
Z. Liu (3001_CR7) 2010; 22
M. Mursaleen (3001_CR35) 2015; 266
Q. Chen (3001_CR1) 2003; 20
M. Usman (3001_CR28) 2020; 14
A. Ahmad (3001_CR10) 2014; 1
F.A.M. Ali (3001_CR25) 2020; 8
L.L. Yan (3001_CR21) 2015; 12
G. Hu (3001_CR29) 2020; 8
A. Lupaş (3001_CR34) 1987; 9
A. Majeed (3001_CR31) 2020; 8
F. Li (3001_CR32) 2020; 8
X.L. Han (3001_CR17) 2004; 21
U. Bashir (3001_CR27) 2013; 39S
References_xml – volume: 8
  issue: 8
  year: 2020
  ident: CR31
  article-title: Surface modeling from 2D contours with an application to craniofacial fracture construction
  publication-title: Mathematics
  doi: 10.3390/math8081246
– volume: 2020
  issue: 1
  year: 2020
  ident: CR30
  article-title: Approximate multi-degree reduction of Q-Bézier curves via generalized Bernstein polynomial functions
  publication-title: Adv. Differ. Equ.
  doi: 10.1186/s13662-020-02871-y
– volume: 266
  start-page: 874
  year: 2015
  end-page: 882
  ident: CR35
  article-title: On -analogue of Bernstein operators
  publication-title: Appl. Math. Comput.
– volume: 86
  start-page: 1253
  year: 2009
  end-page: 1263
  ident: CR5
  article-title: Bézier curves and surfaces with shape parameters
  publication-title: Int. J. Comput. Math.
  doi: 10.1080/00207160701821715
– year: 1993
  ident: CR11
  publication-title: Fundamentals of Computer Aided Geometric Design. Schumaker, L.L., Translator
– volume: 217
  start-page: 180
  year: 2008
  end-page: 193
  ident: CR4
  article-title: A novel generalization of Bézier curve and surface
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2007.06.027
– volume: 10
  year: 2018
  ident: CR14
  article-title: Modeling of free-form complex curves using SG-Bézier curves with constraints of geometric continuities
  publication-title: Symmetry
  doi: 10.3390/sym10110545
– volume: 22
  start-page: 226
  year: 2009
  end-page: 231
  ident: CR18
  article-title: The cubic trigonometric Bézier curve with two shape parameters
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2008.03.015
– volume: 317
  start-page: 458
  year: 2017
  end-page: 477
  ident: CR33
  article-title: Bézier curves based on Lupaş -analogue of Bernstein functions in CAGD
  publication-title: J. Comput. Appl. Math.
– volume: 7
  start-page: 165779
  year: 2019
  end-page: 165792
  ident: CR15
  article-title: A novel approach of hybrid trigonometric Bézier curve to the modeling of symmetric revolutionary curves and symmetric rotation surfaces
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2953496
– volume: 219
  start-page: 10183
  year: 2013
  end-page: 10197
  ident: CR20
  article-title: The and rational quadratic trigonometric Bézier curve with two shape parameters with applications
  publication-title: J. Appl. Math. Comput.
– volume: 12
  start-page: 6491
  year: 2015
  end-page: 6501
  ident: CR21
  article-title: An algebraic-trigonometric blended piecewise curve
  publication-title: J. Inf. Comput. Sci.
  doi: 10.12733/jics20150009
– volume: 1
  start-page: 56
  year: 2014
  end-page: 68
  ident: CR10
  article-title: A generalization of Bézier-like curve
  publication-title: EDUCATUM
– volume: 21
  start-page: 535
  year: 2004
  end-page: 548
  ident: CR17
  article-title: Cubic trigonometric polynomial curves with a shape parameter
  publication-title: Comput. Aided Geom. Des.
  doi: 10.1016/j.cagd.2004.03.001
– volume: 2020
  year: 2020
  ident: CR16
  article-title: A novel generalization of trigonometric Bézier curve and surface with shape parameters and its applications
  publication-title: Math. Probl. Eng.
  doi: 10.1155/2020/4036434
– start-page: 706
  year: 2018
  end-page: 710
  ident: CR23
  article-title: Geometric continuity conditions for H-Bézier curves of degree
  publication-title: 3rd IEEE International Conference on Image, Vision and Computing
– volume: 28
  start-page: 151
  year: 2011
  end-page: 163
  ident: CR8
  article-title: A class of general quartic spline curves with shape parameters
  publication-title: Comput. Aided Geom. Des.
  doi: 10.1016/j.cagd.2011.02.001
– volume: 8
  issue: 6
  year: 2020
  ident: CR32
  article-title: The generalized H-Bézier model: geometric continuity conditions and applications to curve and surface modeling
  publication-title: Mathematics
  doi: 10.3390/math8060924
– volume: 7
  start-page: 2080
  year: 2010
  end-page: 2089
  ident: CR6
  article-title: A novel extension of Bézier curves and surfaces of the same degree
  publication-title: J. Inf. Comput. Sci.
– volume: 2016
  start-page: 1
  year: 2016
  end-page: 9
  ident: CR22
  article-title: Cubic trigonometric nonuniform spline curves and surfaces
  publication-title: Math. Probl. Eng.
– volume: 5
  start-page: 3762
  issue: 4
  year: 2020
  end-page: 3782
  ident: CR24
  article-title: Positivity preserving interpolation by using rational quartic spline
  publication-title: AIMS Math.
  doi: 10.3934/math.2020244
– volume: 14
  issue: 4
  year: 2020
  ident: CR28
  article-title: Some engineering applications of new trigonometric cubic Bezier-like curves to free-form complex curve modeling
  publication-title: J. Adv. Mech. Des. Syst. Manuf.
  doi: 10.1299/jamdsm.2020jamdsm0048
– volume: 8
  issue: 8
  year: 2020
  ident: CR29
  article-title: Explicit continuity conditions for connection of curves and surfaces
  publication-title: Mathematics
– year: 2002
  ident: CR3
  publication-title: Curves and Surfaces for Computer-Aided Geometric Design: A Practical Guide
– volume: 21
  start-page: 193
  year: 2004
  end-page: 205
  ident: CR12
  article-title: NUAT B-spline curves
  publication-title: Comput. Aided Geom. Des.
  doi: 10.1016/j.cagd.2003.10.002
– volume: 8
  issue: 2
  year: 2020
  ident: CR25
  article-title: Construction of cubic timmer triangular patches and its application in scattered data interpolation
  publication-title: Mathematics
  doi: 10.3390/math8020159
– volume: 20
  start-page: 29
  year: 2003
  end-page: 39
  ident: CR1
  article-title: A class of Bézier-like curves
  publication-title: Comput. Aided Geom. Des.
  doi: 10.1016/S0167-8396(03)00003-7
– volume: 218
  start-page: 2863
  year: 2011
  end-page: 2879
  ident: CR13
  article-title: An extension of the Bézier model
  publication-title: J. Appl. Math. Comput.
  doi: 10.1016/j.amc.2011.08.030
– volume: 39S
  start-page: 11
  issue: 2
  year: 2013
  end-page: 15
  ident: CR27
  article-title: A class of quasi-quintic trigonometric Bezier curve with two shape parameters
  publication-title: Sci. Asia
  doi: 10.2306/scienceasia1513-1874.2013.39S.011
– volume: 9
  start-page: 85
  year: 1987
  end-page: 92
  ident: CR34
  article-title: A -analogue of the Bernstein operator
  publication-title: Seminar on Numerical and Statistical Calculus, University of Cluj-Napoca
– volume: 7
  issue: 11
  year: 2019
  ident: CR26
  article-title: Image interpolation using a rational bi-cubic ball
  publication-title: Mathematics
  doi: 10.3390/math7111045
– volume: 151
  start-page: 1
  year: 2003
  end-page: 12
  ident: CR2
  article-title: Q-Bernstein polynomials and Bézier curves
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/S0377-0427(02)00733-1
– volume: 223
  start-page: 1
  year: 2013
  end-page: 16
  ident: CR9
  article-title: A novel extension to the polynomial basis functions describing Bézier curves and surfaces of degree with multiple shape parameters
  publication-title: J. Appl. Math. Comput.
  doi: 10.1016/j.amc.2013.07.073
– volume: 52
  start-page: 953
  year: 2012
  end-page: 979
  ident: CR19
  article-title: Curve construction based on five trigonometric blending functions
  publication-title: BIT
  doi: 10.1007/s10543-012-0386-0
– volume: 22
  start-page: 838
  year: 2010
  end-page: 844
  ident: CR7
  article-title: A class of generalized Bézier curves and surfaces with multiple shape parameters
  publication-title: J. Comput.-Aided Des. Comput. Graph.
– volume: 151
  start-page: 1
  year: 2003
  ident: 3001_CR2
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/S0377-0427(02)00733-1
– volume: 9
  start-page: 85
  year: 1987
  ident: 3001_CR34
  publication-title: Seminar on Numerical and Statistical Calculus, University of Cluj-Napoca
– volume: 52
  start-page: 953
  year: 2012
  ident: 3001_CR19
  publication-title: BIT
  doi: 10.1007/s10543-012-0386-0
– volume-title: Fundamentals of Computer Aided Geometric Design. Schumaker, L.L., Translator
  year: 1993
  ident: 3001_CR11
– volume: 1
  start-page: 56
  year: 2014
  ident: 3001_CR10
  publication-title: EDUCATUM
– volume: 223
  start-page: 1
  year: 2013
  ident: 3001_CR9
  publication-title: J. Appl. Math. Comput.
  doi: 10.1016/j.amc.2013.07.073
– volume: 219
  start-page: 10183
  year: 2013
  ident: 3001_CR20
  publication-title: J. Appl. Math. Comput.
  doi: 10.1016/j.amc.2013.03.110
– volume: 12
  start-page: 6491
  year: 2015
  ident: 3001_CR21
  publication-title: J. Inf. Comput. Sci.
  doi: 10.12733/jics20150009
– volume: 2016
  start-page: 1
  year: 2016
  ident: 3001_CR22
  publication-title: Math. Probl. Eng.
– volume: 5
  start-page: 3762
  issue: 4
  year: 2020
  ident: 3001_CR24
  publication-title: AIMS Math.
  doi: 10.3934/math.2020244
– volume: 21
  start-page: 193
  year: 2004
  ident: 3001_CR12
  publication-title: Comput. Aided Geom. Des.
  doi: 10.1016/j.cagd.2003.10.002
– volume: 317
  start-page: 458
  year: 2017
  ident: 3001_CR33
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2016.12.016
– volume: 22
  start-page: 226
  year: 2009
  ident: 3001_CR18
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2008.03.015
– volume: 20
  start-page: 29
  year: 2003
  ident: 3001_CR1
  publication-title: Comput. Aided Geom. Des.
  doi: 10.1016/S0167-8396(03)00003-7
– volume: 86
  start-page: 1253
  year: 2009
  ident: 3001_CR5
  publication-title: Int. J. Comput. Math.
  doi: 10.1080/00207160701821715
– volume: 10
  year: 2018
  ident: 3001_CR14
  publication-title: Symmetry
  doi: 10.3390/sym10110545
– volume: 266
  start-page: 874
  year: 2015
  ident: 3001_CR35
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2015.04.090
– volume: 7
  start-page: 2080
  year: 2010
  ident: 3001_CR6
  publication-title: J. Inf. Comput. Sci.
– volume: 28
  start-page: 151
  year: 2011
  ident: 3001_CR8
  publication-title: Comput. Aided Geom. Des.
  doi: 10.1016/j.cagd.2011.02.001
– volume: 14
  issue: 4
  year: 2020
  ident: 3001_CR28
  publication-title: J. Adv. Mech. Des. Syst. Manuf.
  doi: 10.1299/jamdsm.2020jamdsm0048
– volume: 218
  start-page: 2863
  year: 2011
  ident: 3001_CR13
  publication-title: J. Appl. Math. Comput.
  doi: 10.1016/j.amc.2011.08.030
– volume: 7
  issue: 11
  year: 2019
  ident: 3001_CR26
  publication-title: Mathematics
  doi: 10.3390/math7111045
– start-page: 706
  volume-title: 3rd IEEE International Conference on Image, Vision and Computing
  year: 2018
  ident: 3001_CR23
– volume: 7
  start-page: 165779
  year: 2019
  ident: 3001_CR15
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2953496
– volume: 2020
  year: 2020
  ident: 3001_CR16
  publication-title: Math. Probl. Eng.
  doi: 10.1155/2020/4036434
– volume: 8
  issue: 8
  year: 2020
  ident: 3001_CR31
  publication-title: Mathematics
  doi: 10.3390/math8081246
– volume: 22
  start-page: 838
  year: 2010
  ident: 3001_CR7
  publication-title: J. Comput.-Aided Des. Comput. Graph.
– volume: 8
  issue: 6
  year: 2020
  ident: 3001_CR32
  publication-title: Mathematics
  doi: 10.3390/math8060924
– volume: 217
  start-page: 180
  year: 2008
  ident: 3001_CR4
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2007.06.027
– volume: 21
  start-page: 535
  year: 2004
  ident: 3001_CR17
  publication-title: Comput. Aided Geom. Des.
  doi: 10.1016/j.cagd.2004.03.001
– volume: 39S
  start-page: 11
  issue: 2
  year: 2013
  ident: 3001_CR27
  publication-title: Sci. Asia
  doi: 10.2306/scienceasia1513-1874.2013.39S.011
– volume: 8
  issue: 2
  year: 2020
  ident: 3001_CR25
  publication-title: Mathematics
  doi: 10.3390/math8020159
– volume-title: Curves and Surfaces for Computer-Aided Geometric Design: A Practical Guide
  year: 2002
  ident: 3001_CR3
– volume: 8
  issue: 8
  year: 2020
  ident: 3001_CR29
  publication-title: Mathematics
– volume: 2020
  issue: 1
  year: 2020
  ident: 3001_CR30
  publication-title: Adv. Differ. Equ.
  doi: 10.1186/s13662-020-02871-y
SSID ssj0029488
Score 2.3610249
Snippet A Bézier model with shape parameters is one of the momentous research topics in geometric modeling and computer-aided geometric design. In this study, a new...
Abstract A Bézier model with shape parameters is one of the momentous research topics in geometric modeling and computer-aided geometric design. In this study,...
SourceID doaj
crossref
springer
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Analysis
Applications
Continuities of GBT-Bézier curves
Difference and Functional Equations
Functional Analysis
GBT-Bernstein-like polynomial functions
GBT-Bézier curve
Mathematics
Mathematics and Statistics
Methods
Ordinary Differential Equations
Partial Differential Equations
Properties of GBT-Bézier curves
Shape parameters
Topics in Special Functions and q-Special Functions: Theory
Title Geometric modeling and applications of generalized blended trigonometric Bézier curves with shape parameters
URI https://link.springer.com/article/10.1186/s13662-020-03001-4
https://doaj.org/article/690c6ccd82eb417081b5444cef251c9d
Volume 2020
WOSCitedRecordID wos000578499500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1687-1847
  dateEnd: 20221231
  omitProxy: false
  ssIdentifier: ssj0029488
  issn: 1687-1847
  databaseCode: DOA
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09TxwxELUiRBEKFEgQRwC5oEtW7IfXHyUgCAVCFESis-zxmCBxd-j2oOAf5XfkjzH27qGLkEiTbmXZ8mr87PGzx28YO1AmEkv2WCDoshAtfRkvZaEbmuWi8aGJeaQv1OWlvrkxV0upvlJMWC8P3BvukNgbSICga_SiUuTBfCuEAIzkmcGEtPqWyizI1EC1DOFy8URGy8OuaqSsi0SVCNREoMVfbiir9b-5Cs0e5uwTWx-2hvyo_6UN9gEnm2xtSTDwMxv_wOk45cACnlPYUCF3k8CXr6H5NPLbXkz67hkD9_f5lJtTq9v0gqFvfvzn9zN5RA6PsyfseDqO5d0v94A8iYGPU5BM94X9PDu9PjkvhoQJBRBNmhfOYUof0rZe6QqUa2gFCQqIs8SqQgXoo46igdDGskZHPBqVbE1onQttcKHZYiuT6QS3GYcSjIhVqR0i7enQNFCbKEVEoCUg-BGrFvazMKiJp6QW9zazCi1tb3NLNrfZ5laM2LfXNg-9lsa7tY_TsLzWTDrYuYDQYQd02H-hY8S-LwbVDpOze6fPnf_R51f2sU5IS1EGcpetzGePuMdW4Wl-1832M05fADp27dU
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Geometric+modeling+and+applications+of+generalized+blended+trigonometric+B%C3%A9zier+curves+with+shape+parameters&rft.jtitle=Advances+in+difference+equations&rft.au=Sidra+Maqsood&rft.au=Muhammad+Abbas&rft.au=Kenjiro+T.+Miura&rft.au=Abdul+Majeed&rft.date=2020-10-06&rft.pub=SpringerOpen&rft.eissn=1687-1847&rft.volume=2020&rft.issue=1&rft.spage=1&rft.epage=18&rft_id=info:doi/10.1186%2Fs13662-020-03001-4&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_690c6ccd82eb417081b5444cef251c9d
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-1847&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-1847&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-1847&client=summon