Torus Knot Polynomials and Susy Wilson Loops

We give, using an explicit expression obtained in (Jones V, Ann Math 126:335, 1987 ), a basic hypergeometric representation of the HOMFLY polynomial of ( n , m ) torus knots, and present a number of equivalent expressions, all related by Heine’s transformations. Using this result, the ( m , n ) ↔ (...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Letters in mathematical physics Ročník 104; číslo 12; s. 1535 - 1556
Hlavní autoři: Giasemidis, Georgios, Tierz, Miguel
Médium: Journal Article
Jazyk:angličtina
Vydáno: Dordrecht Springer Netherlands 01.12.2014
Témata:
ISSN:0377-9017, 1573-0530
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract We give, using an explicit expression obtained in (Jones V, Ann Math 126:335, 1987 ), a basic hypergeometric representation of the HOMFLY polynomial of ( n , m ) torus knots, and present a number of equivalent expressions, all related by Heine’s transformations. Using this result, the ( m , n ) ↔ ( n , m ) symmetry and the leading polynomial at large N are explicit. We show the latter to be the Wilson loop of 2d Yang–Mills theory on the plane. In addition, after taking one winding to infinity, it becomes the Wilson loop in the zero instanton sector of the 2d Yang–Mills theory, which is known to give averages of Wilson loops in N = 4 SYM theory. We also give, using matrix models, an interpretation of the HOMFLY polynomial and the corresponding Jones–Rosso representation in terms of q -harmonic oscillators.
AbstractList We give, using an explicit expression obtained in (Jones V, Ann Math 126:335, 1987 ), a basic hypergeometric representation of the HOMFLY polynomial of ( n , m ) torus knots, and present a number of equivalent expressions, all related by Heine’s transformations. Using this result, the ( m , n ) ↔ ( n , m ) symmetry and the leading polynomial at large N are explicit. We show the latter to be the Wilson loop of 2d Yang–Mills theory on the plane. In addition, after taking one winding to infinity, it becomes the Wilson loop in the zero instanton sector of the 2d Yang–Mills theory, which is known to give averages of Wilson loops in N = 4 SYM theory. We also give, using matrix models, an interpretation of the HOMFLY polynomial and the corresponding Jones–Rosso representation in terms of q -harmonic oscillators.
Author Giasemidis, Georgios
Tierz, Miguel
Author_xml – sequence: 1
  givenname: Georgios
  surname: Giasemidis
  fullname: Giasemidis, Georgios
  organization: Rudolf Peierls Centre for Theoretical Physics, University of Oxford
– sequence: 2
  givenname: Miguel
  surname: Tierz
  fullname: Tierz, Miguel
  email: tierz@mat.ucm.es
  organization: Departamento de Análisis Matemático, Facultad de Ciencias Matemáticas, Universidad Complutense de Madrid
BookMark eNp9z8FKAzEQgOEgFWyrD-BtH8DoTHbTbI9S1IoFBSseQ5JNZMs2Kcn20D69KevJQ09zmPkG_gkZ-eAtIbcI9wggHhLmwSlgRUGwih4vyBi5KCnwEkZkDKUQdA4orsgkpQ1kwziMyd06xH0q3nzoi4_QHXzYtqpLhfJN8blPh-K77VLwxSqEXbomly4v7c3fnJKv56f1YklX7y-vi8cVNRVgT5XiMw2azytruGVWG6ucQgHM1dqospqha5w2xiFjoFmttbCmdrxprGgaLKdEDH9NDClF66Rpe9W3wfdRtZ1EkKdoOUTLHC1P0fKYJf6Tu9huVTycNWwwKd_6HxvlJuyjz4Fn0C9tLm1u
CitedBy_id crossref_primary_10_1088_1742_5468_2016_01_013103
crossref_primary_10_1007_JHEP08_2019_165
crossref_primary_10_1016_j_nuclphysb_2021_115582
crossref_primary_10_1088_1751_8121_ad421b
crossref_primary_10_1364_OL_546177
Cites_doi 10.1080/10586458.2006.10128956
10.1142/9789812798329_0012
10.1016/0040-9383(87)90025-5
10.1090/S0002-9939-1987-0894448-2
10.1142/S0218216593000064
10.1016/0003-4916(81)90075-0
10.1016/0550-3213(80)90072-3
10.1016/S1385-7258(89)80020-4
10.1088/0305-4470/22/21/020
10.1007/BF01243905
10.1016/0040-9383(90)90021-B
10.1007/BF01217730
10.1090/S0273-0979-1985-15361-3
10.1063/1.3377965
10.1016/0370-2693(94)91447-8
10.2307/1971403
10.1007/BF02102094
10.1142/S0217732390000780
10.1007/BF01445208
10.1016/0001-8708(76)90186-9
10.1016/0550-3213(81)90239-X
10.1103/PhysRevD.77.047901
10.1007/978-3-642-05014-5
10.1007/s00023-010-0058-z
10.1016/0550-3213(93)90402-B
10.1103/PhysRevD.86.045027
10.1088/1126-6708/2005/03/047
10.1016/S0550-3213(00)00300-X
10.1063/1.4758795
10.1088/1126-6708/2008/05/017
10.1088/1126-6708/2008/05/077
10.1142/S0217732304014100
10.1007/978-94-010-9787-1_4
10.1088/1126-6708/2008/06/083
10.1007/JHEP06(2012)048
10.1016/S0550-3213(99)00474-5
10.1007/JHEP07(2010)088
10.1007/s00023-012-0171-2
10.1103/PhysRevD.76.107703
ContentType Journal Article
Copyright Springer Science+Business Media Dordrecht 2014
Copyright_xml – notice: Springer Science+Business Media Dordrecht 2014
DBID AAYXX
CITATION
DOI 10.1007/s11005-014-0724-z
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
Physics
EISSN 1573-0530
EndPage 1556
ExternalDocumentID 10_1007_s11005_014_0724_z
GroupedDBID -54
-5F
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29L
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GPTSA
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9T
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDH
SDM
SGB
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
YLTOR
YQT
Z45
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
ID FETCH-LOGICAL-c401t-aa56b0b594ec5e2ebceafa1702f8bca3461fdfbccf1220b28bb7ec8f5dde7dd13
IEDL.DBID RSV
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000344743400004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0377-9017
IngestDate Sat Nov 29 05:45:00 EST 2025
Tue Nov 18 22:13:27 EST 2025
Fri Feb 21 02:28:59 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords 15B52
HOMFLY polynomial
Random matrix models
Basic hypergeometric functions
57M27
33D15
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c401t-aa56b0b594ec5e2ebceafa1702f8bca3461fdfbccf1220b28bb7ec8f5dde7dd13
OpenAccessLink http://eprints.ucm.es/29196/1/1401.8171v2.pdf
PageCount 22
ParticipantIDs crossref_citationtrail_10_1007_s11005_014_0724_z
crossref_primary_10_1007_s11005_014_0724_z
springer_journals_10_1007_s11005_014_0724_z
PublicationCentury 2000
PublicationDate 2014-12-01
PublicationDateYYYYMMDD 2014-12-01
PublicationDate_xml – month: 12
  year: 2014
  text: 2014-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationSubtitle A Journal for the Rapid Dissemination of Short Contributions in the Field of Mathematical Physics
PublicationTitle Letters in mathematical physics
PublicationTitleAbbrev Lett Math Phys
PublicationYear 2014
Publisher Springer Netherlands
Publisher_xml – name: Springer Netherlands
References Jones (CR1) 1987; 126
Masuda, Mimachi, Nakagami, Noumi, Ueno (CR51) 1991; 99
CR39
CR38
CR37
CR36
CR35
CR34
CR33
CR32
Migdal (CR43) 1975; 42
Tierz (CR31) 2010; 51
Koornwinder (CR52) 1989; 92
Kazakov, Kostov (CR48) 1980; 176
Freyd, Yetter, Hoste, Lickorish, Millett, Ocneanu (CR2) 1985; 12
Correale, Guadagnini (CR23) 1994; 337
CR4
Kostant (CR28) 1976; 20
CR5
Macfarlane (CR30) 1989; 22
CR9
CR46
Rusakov (CR44) 1990; 5
CR45
CR42
CR41
CR40
Lickorish, Millett (CR22) 1987; 26
Traczyk (CR24) 1991; 106
CR19
CR18
CR17
CR16
CR15
CR59
CR14
CR58
CR13
CR57
CR12
CR56
CR11
CR55
CR10
CR54
Atiyah (CR7) 1990; 29
Kirillov, Reshetikhin (CR53) 1990; 11
Dunfield, Gukov, Rasmussen (CR20) 2006; 15
Witten (CR6) 1989; 121
CR29
Yokota (CR25) 1991; 291
CR27
CR26
Przytycki, Traczyk (CR3) 1987; 100
Rosso, Jones (CR8) 1993; 2
CR21
CR64
CR63
CR62
Kazakov (CR49) 1981; 179
CR61
CR60
Rossi (CR47) 1981; 132
Itzykson, Zuber (CR50) 1990; 134
M. Tierz (724_CR31) 2010; 51
A.A. Migdal (724_CR43) 1975; 42
B. Rusakov (724_CR44) 1990; 5
T. Masuda (724_CR51) 1991; 99
J.H. Przytycki (724_CR3) 1987; 100
E. Witten (724_CR6) 1989; 121
R. Correale (724_CR23) 1994; 337
724_CR45
724_CR46
724_CR41
724_CR42
724_CR40
N.M. Dunfield (724_CR20) 2006; 15
V.A. Kazakov (724_CR49) 1981; 179
V. Jones (724_CR1) 1987; 126
724_CR38
724_CR39
724_CR36
724_CR37
724_CR34
724_CR35
724_CR32
724_CR33
P. Freyd (724_CR2) 1985; 12
P. Traczyk (724_CR24) 1991; 106
M. Atiyah (724_CR7) 1990; 29
724_CR60
A.N. Kirillov (724_CR53) 1990; 11
M. Rosso (724_CR8) 1993; 2
724_CR4
V.A. Kazakov (724_CR48) 1980; 176
724_CR29
724_CR27
724_CR26
724_CR21
724_CR63
724_CR64
T.H. Koornwinder (724_CR52) 1989; 92
724_CR61
724_CR62
A.J. Macfarlane (724_CR30) 1989; 22
B. Kostant (724_CR28) 1976; 20
P. Rossi (724_CR47) 1981; 132
724_CR5
724_CR18
724_CR19
724_CR16
724_CR17
724_CR9
724_CR14
724_CR58
724_CR15
C. Itzykson (724_CR50) 1990; 134
724_CR59
724_CR12
724_CR56
724_CR13
724_CR57
724_CR10
724_CR54
724_CR11
W.B.R. Lickorish (724_CR22) 1987; 26
724_CR55
Y. Yokota (724_CR25) 1991; 291
References_xml – volume: 15
  start-page: 129
  issue: 2
  year: 2006
  end-page: 159
  ident: CR20
  article-title: The superpolynomial for knot homologies
  publication-title: Exp. Math.
  doi: 10.1080/10586458.2006.10128956
– ident: CR45
– ident: CR4
– ident: CR39
– ident: CR16
– volume: 11
  start-page: 202
  year: 1990
  end-page: 256
  ident: CR53
  article-title: Representations of the algebra ( (2)), -orthogonal polynomials and invariants of links
  publication-title: Adv. Ser. Math. Phys. New Dev. Theory Knots
  doi: 10.1142/9789812798329_0012
– ident: CR12
– volume: 26
  start-page: 107
  year: 1987
  end-page: 141
  ident: CR22
  article-title: A polynomial invariant of oriented links
  publication-title: Topology
  doi: 10.1016/0040-9383(87)90025-5
– volume: 100
  start-page: 744
  year: 1987
  end-page: 748
  ident: CR3
  article-title: Conway algebras and skein equivalence of links
  publication-title: Proc. Am. Math. Soc.
  doi: 10.1090/S0002-9939-1987-0894448-2
– volume: 2
  start-page: 97
  year: 1993
  ident: CR8
  article-title: On the invariants of torus knots derived from quantum groups
  publication-title: J. Knot Theory Ramif.
  doi: 10.1142/S0218216593000064
– volume: 132
  start-page: 463
  year: 1981
  end-page: 481
  ident: CR47
  article-title: Continuum from a fixed point lattice action
  publication-title: Ann. Phys.
  doi: 10.1016/0003-4916(81)90075-0
– volume: 176
  start-page: 199
  year: 1980
  end-page: 215
  ident: CR48
  article-title: Non-linear strings in two-dimensional gauge theory
  publication-title: Nucl. Phys. B
  doi: 10.1016/0550-3213(80)90072-3
– ident: CR35
– ident: CR29
– ident: CR54
– ident: CR61
– ident: CR58
– volume: 92
  start-page: 97
  year: 1989
  end-page: 117
  ident: CR52
  article-title: Representations of the twisted (2) quantum group and some -hypergeometric orthogonal polynomials
  publication-title: Indagationes Mathematicae (Proceedings)
  doi: 10.1016/S1385-7258(89)80020-4
– ident: CR42
– volume: 22
  start-page: 4581
  year: 1989
  ident: CR30
  article-title: On q-analogs of the quantum harmonic oscillator and the quantum group SU(2)-q
  publication-title: J. Phys. A
  doi: 10.1088/0305-4470/22/21/020
– ident: CR21
– ident: CR46
– ident: CR19
– volume: 106
  start-page: 73
  year: 1991
  end-page: 84
  ident: CR24
  article-title: Periodic knots and the skein polynomial
  publication-title: Invent. Math.
  doi: 10.1007/BF01243905
– ident: CR15
– volume: 29
  start-page: 1
  year: 1990
  end-page: 8
  ident: CR7
  article-title: On framings of 3-manifolds
  publication-title: Topology
  doi: 10.1016/0040-9383(90)90021-B
– ident: CR11
– ident: CR9
– ident: CR57
– ident: CR32
– ident: CR60
– ident: CR36
– ident: CR5
– volume: 99
  start-page: 357
  year: 1991
  end-page: 386
  ident: CR51
  article-title: Representations of the quantum group (2) and the little -jacobi polynomials.
  publication-title: Indagationes Mathematicae (Proceedings)
– ident: CR64
– ident: CR26
– volume: 121
  start-page: 351
  year: 1989
  end-page: 399
  ident: CR6
  article-title: Quantum field theory and the Jones polynomial
  publication-title: Commun. Math. Phys.
  doi: 10.1007/BF01217730
– ident: CR18
– volume: 12
  start-page: 239
  year: 1985
  end-page: 246
  ident: CR2
  article-title: A new polynomial invariant of knots and links
  publication-title: Bull. Am. Math. Soc.
  doi: 10.1090/S0273-0979-1985-15361-3
– ident: CR14
– ident: CR37
– ident: CR10
– volume: 51
  start-page: 063509
  year: 2010
  ident: CR31
  article-title: Schur polynomials and biorthogonal random matrix ensembles
  publication-title: J. Math. Phys.
  doi: 10.1063/1.3377965
– ident: CR33
– volume: 337
  start-page: 80
  year: 1994
  end-page: 85
  ident: CR23
  article-title: Large N Chern–Simons field theory
  publication-title: Phys. Lett. B
  doi: 10.1016/0370-2693(94)91447-8
– ident: CR56
– ident: CR40
– ident: CR63
– ident: CR27
– volume: 126
  start-page: 335
  year: 1987
  end-page: 388
  ident: CR1
  article-title: Hecke algebra representations of braid groups and link polynomials
  publication-title: Ann. Math.
  doi: 10.2307/1971403
– ident: CR38
– volume: 134
  start-page: 197
  year: 1990
  ident: CR50
  article-title: Matrix integration and combinatorics of modular groups
  publication-title: Commun. Math. Phys.
  doi: 10.1007/BF02102094
– ident: CR17
– ident: CR13
– volume: 42
  start-page: 413
  year: 1975
  end-page: 418
  ident: CR43
  article-title: Recursion equations in gauge field theories
  publication-title: Sov. Phys. JETP
– volume: 5
  start-page: 693
  year: 1990
  end-page: 703
  ident: CR44
  article-title: Loop averages and partition functions in U(N) gauge theory on two-dimensional manifolds
  publication-title: Mod. Phys. Lett. A
  doi: 10.1142/S0217732390000780
– volume: 291
  start-page: 281
  year: 1991
  end-page: 291
  ident: CR25
  article-title: The skein polynomial of periodic knots
  publication-title: Math. Ann.
  doi: 10.1007/BF01445208
– ident: CR34
– volume: 20
  start-page: 179
  year: 1976
  end-page: 212
  ident: CR28
  article-title: On MacDonald’s -function formula, the Laplacian and generalized exponents
  publication-title: Adv. Math.
  doi: 10.1016/0001-8708(76)90186-9
– ident: CR55
– ident: CR59
– ident: CR41
– ident: CR62
– volume: 179
  start-page: 283
  year: 1981
  end-page: 292
  ident: CR49
  article-title: Wilson loop average for an arbitrary contour in two-dimensional ( ) gauge theory
  publication-title: Nucl. Phys. B
  doi: 10.1016/0550-3213(81)90239-X
– ident: 724_CR36
  doi: 10.1103/PhysRevD.77.047901
– volume: 26
  start-page: 107
  year: 1987
  ident: 724_CR22
  publication-title: Topology
  doi: 10.1016/0040-9383(87)90025-5
– volume: 106
  start-page: 73
  year: 1991
  ident: 724_CR24
  publication-title: Invent. Math.
  doi: 10.1007/BF01243905
– ident: 724_CR42
– ident: 724_CR61
– volume: 92
  start-page: 97
  year: 1989
  ident: 724_CR52
  publication-title: Indagationes Mathematicae (Proceedings)
  doi: 10.1016/S1385-7258(89)80020-4
– ident: 724_CR32
– ident: 724_CR46
– volume: 179
  start-page: 283
  year: 1981
  ident: 724_CR49
  publication-title: Nucl. Phys. B
  doi: 10.1016/0550-3213(81)90239-X
– volume: 126
  start-page: 335
  year: 1987
  ident: 724_CR1
  publication-title: Ann. Math.
  doi: 10.2307/1971403
– volume: 20
  start-page: 179
  year: 1976
  ident: 724_CR28
  publication-title: Adv. Math.
  doi: 10.1016/0001-8708(76)90186-9
– ident: 724_CR5
  doi: 10.1007/978-3-642-05014-5
– ident: 724_CR11
  doi: 10.1007/s00023-010-0058-z
– ident: 724_CR26
  doi: 10.1016/0550-3213(93)90402-B
– ident: 724_CR55
– ident: 724_CR15
  doi: 10.1103/PhysRevD.86.045027
– volume: 100
  start-page: 744
  year: 1987
  ident: 724_CR3
  publication-title: Proc. Am. Math. Soc.
  doi: 10.1090/S0002-9939-1987-0894448-2
– ident: 724_CR59
– volume: 22
  start-page: 4581
  year: 1989
  ident: 724_CR30
  publication-title: J. Phys. A
  doi: 10.1088/0305-4470/22/21/020
– volume: 15
  start-page: 129
  issue: 2
  year: 2006
  ident: 724_CR20
  publication-title: Exp. Math.
  doi: 10.1080/10586458.2006.10128956
– volume: 12
  start-page: 239
  year: 1985
  ident: 724_CR2
  publication-title: Bull. Am. Math. Soc.
  doi: 10.1090/S0273-0979-1985-15361-3
– ident: 724_CR14
  doi: 10.1088/1126-6708/2005/03/047
– volume: 176
  start-page: 199
  year: 1980
  ident: 724_CR48
  publication-title: Nucl. Phys. B
  doi: 10.1016/0550-3213(80)90072-3
– volume: 11
  start-page: 202
  year: 1990
  ident: 724_CR53
  publication-title: Adv. Ser. Math. Phys. New Dev. Theory Knots
  doi: 10.1142/9789812798329_0012
– ident: 724_CR41
  doi: 10.1016/S0550-3213(00)00300-X
– ident: 724_CR18
– ident: 724_CR10
– ident: 724_CR60
  doi: 10.1063/1.4758795
– ident: 724_CR35
  doi: 10.1088/1126-6708/2008/05/017
– volume: 51
  start-page: 063509
  year: 2010
  ident: 724_CR31
  publication-title: J. Math. Phys.
  doi: 10.1063/1.3377965
– ident: 724_CR29
– volume: 42
  start-page: 413
  year: 1975
  ident: 724_CR43
  publication-title: Sov. Phys. JETP
– volume: 2
  start-page: 97
  year: 1993
  ident: 724_CR8
  publication-title: J. Knot Theory Ramif.
  doi: 10.1142/S0218216593000064
– ident: 724_CR21
– ident: 724_CR40
  doi: 10.1088/1126-6708/2008/05/077
– ident: 724_CR56
– volume: 29
  start-page: 1
  year: 1990
  ident: 724_CR7
  publication-title: Topology
  doi: 10.1016/0040-9383(90)90021-B
– ident: 724_CR13
  doi: 10.1142/S0217732304014100
– volume: 291
  start-page: 281
  year: 1991
  ident: 724_CR25
  publication-title: Math. Ann.
  doi: 10.1007/BF01445208
– volume: 337
  start-page: 80
  year: 1994
  ident: 724_CR23
  publication-title: Phys. Lett. B
  doi: 10.1016/0370-2693(94)91447-8
– ident: 724_CR63
– ident: 724_CR17
  doi: 10.1007/978-94-010-9787-1_4
– ident: 724_CR19
– ident: 724_CR34
– volume: 132
  start-page: 463
  year: 1981
  ident: 724_CR47
  publication-title: Ann. Phys.
  doi: 10.1016/0003-4916(81)90075-0
– ident: 724_CR39
  doi: 10.1088/1126-6708/2008/06/083
– volume: 121
  start-page: 351
  year: 1989
  ident: 724_CR6
  publication-title: Commun. Math. Phys.
  doi: 10.1007/BF01217730
– ident: 724_CR4
– volume: 134
  start-page: 197
  year: 1990
  ident: 724_CR50
  publication-title: Commun. Math. Phys.
  doi: 10.1007/BF02102094
– volume: 5
  start-page: 693
  year: 1990
  ident: 724_CR44
  publication-title: Mod. Phys. Lett. A
  doi: 10.1142/S0217732390000780
– ident: 724_CR57
– ident: 724_CR62
  doi: 10.1007/JHEP06(2012)048
– ident: 724_CR64
– ident: 724_CR12
– ident: 724_CR45
  doi: 10.1016/S0550-3213(99)00474-5
– ident: 724_CR16
– ident: 724_CR33
– volume: 99
  start-page: 357
  year: 1991
  ident: 724_CR51
  publication-title: Indagationes Mathematicae (Proceedings)
– ident: 724_CR38
  doi: 10.1007/JHEP07(2010)088
– ident: 724_CR54
– ident: 724_CR9
  doi: 10.1007/s00023-012-0171-2
– ident: 724_CR27
– ident: 724_CR37
  doi: 10.1103/PhysRevD.76.107703
– ident: 724_CR58
SSID ssj0007250
Score 2.0800886
Snippet We give, using an explicit expression obtained in (Jones V, Ann Math 126:335, 1987 ), a basic hypergeometric representation of the HOMFLY polynomial of ( n , m...
SourceID crossref
springer
SourceType Enrichment Source
Index Database
Publisher
StartPage 1535
SubjectTerms Complex Systems
Geometry
Group Theory and Generalizations
Mathematical and Computational Physics
Physics
Physics and Astronomy
Theoretical
Title Torus Knot Polynomials and Susy Wilson Loops
URI https://link.springer.com/article/10.1007/s11005-014-0724-z
Volume 104
WOSCitedRecordID wos000344743400004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer Nature - Connect here FIRST to enable access
  customDbUrl:
  eissn: 1573-0530
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007250
  issn: 0377-9017
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA86FfTB6VScX-TBJ7WQph9pH0UUwTmGTtlbSa4JCKMdaydsf71J1m4MVNDHwiWUX--r3N3vELqMVBqkCnyHRWBItQPmcD8OHeGFxJdESVdYyvwO63ajwSDuVXPcRd3tXpckradeDru5xDaa-Q5h1Hdm62hDR7vIWOPL6_vC_TJq17ISz9Qmtb7VpczvrlgNRquVUBtgHpr_erU9tFvlk_h2rgD7aE1mLdSscktcWW7RQjvPC35W_bRlGz-hOEA3_Xw8KfBTlpe4lw-nZkpZayTmmT49KaZ4zueIO3k-Kg7R28N9_-7RqTYoOKD_m0qH8yAURASxLyGQVAqQXHGXEaoiAdzzQ1elSgAol1IiaCQEkxCpQDs9lqaud4QaWZ7JY4QVUGAeTXVGpO2eA-d-FIfauiEMIA3TNiI1lAlU9OJmy8UwWRIjG5QSjVJiUEpmbXS1ODKac2v8JnxdY59UZlb8LH3yJ-lTtE3Nx7NdKmeoUY4n8hxtwmf5UYwvrHp9AYDRyo4
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB58oh6sVsW3OXhSA5vNJpseRSxKHxSt0lvYneyCUJLSpEL99W7SpEVQQY-B2SV8mVeYmW8ALgMdeZFGZvMAc1Jtj9uCNXxbuj5himjlyIIyv8273WAwaPTKOe606navSpKFp14MuzmkaDRjNuGU2R_LsMpMwMr7-J6eX-ful9NiLStx89qk0beqlPndFV-D0ddKaBFgmrV_vdoObJf5pHU7U4BdWFJxHWplbmmVlpvWYasz52c1T-tF4yeme3DTT8aT1GrFSWb1kuE0n1I2GmmJ2JyepFNrxudotZNklO7DS_O-f_dglxsUbDT_TZkthOdLIr0GU-gpqiQqoYXDCdWBROEy39GRlojaoZRIGkjJFQbaM06PR5HjHsBKnMTqECyNFLlLI5MRGbsXKAQLGr6xbvQ9jPzoCEgFZYglvXi-5WIYLoiRc5RCg1KYoxR-HMHV_Mhoxq3xm_B1hX1Ymln6s_Txn6QvYOOh32mH7cdu6wQ2af4hi46VU1jJxhN1Bmv4nr2l4_NC1T4BCcbNcg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB58owff4tsePKnFNE2b7lHURXFdFnzgrSSTBARpl21X0F9v0m1XBBXEY2ESymRmMmFmvg_gMDEqUgaZzxN0oNoR9wVrxb4MY8I0MTqQFWR-h3e7ydNTq1fznBZNt3tTkhzNNDiUpqw87Stz-jn4FpCq6Yz5hFPmv0_CNHOcQe65fvc4DsWcVhStJHR1Smt7TVnzuy2-Xkxfq6LVZdNe-vdvLsNinWd6ZyPDWIEJna3CUp1zerVHF6uwcDvGbbVfs1VDKBZrcHKfD4aFd5PlpdfLX97c9LK1VE9kdvWwePNGOI9eJ8_7xTo8tC_vz6_8mlnBR_ueKn0holgSGbWYxkhTLVELIwJOqEkkipDFgVFGIpqAUiJpIiXXmJjIBkOuVBBuwFSWZ3oTPIMUeUiVzZRsPBAoBEtasfV6jCNUsdoC0qg1xRp23LFfvKSfgMlOS6nVUuq0lL5vwdF4SX-EufGb8HFzDmntfsXP0tt_kj6Aud5FO-1cd292YJ66c6waWXZhqhwM9R7M4Gv5XAz2K6v7AGTd1lY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Torus+Knot+Polynomials+and+Susy+Wilson+Loops&rft.jtitle=Letters+in+mathematical+physics&rft.au=Giasemidis%2C+Georgios&rft.au=Tierz%2C+Miguel&rft.date=2014-12-01&rft.issn=0377-9017&rft.eissn=1573-0530&rft.volume=104&rft.issue=12&rft.spage=1535&rft.epage=1556&rft_id=info:doi/10.1007%2Fs11005-014-0724-z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11005_014_0724_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-9017&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-9017&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-9017&client=summon