A Fast and Simple Subexponential Fixed Parameter Algorithm for One-Sided Crossing Minimization
We give a subexponential fixed parameter algorithm for one-sided crossing minimization. It runs in time, where n is the number of vertices of the given graph and parameter k is the number of crossings. The exponent of in this bound is asymptotically optimal assuming the Exponential Time Hypothesis a...
Uloženo v:
| Vydáno v: | Algorithmica Ročník 72; číslo 3; s. 778 - 790 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
01.07.2015
|
| Témata: | |
| ISSN: | 0178-4617, 1432-0541 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We give a subexponential fixed parameter algorithm for one-sided crossing minimization. It runs in
time, where
n
is the number of vertices of the given graph and parameter
k
is the number of crossings. The exponent of
in this bound is asymptotically optimal assuming the Exponential Time Hypothesis and the previously best known algorithm runs in
time. We achieve this significant improvement by the use of a certain interval graph naturally associated with the problem instance and a simple dynamic program on this interval graph. The linear dependency on
n
is also achieved through the use of this interval graph. |
|---|---|
| ISSN: | 0178-4617 1432-0541 |
| DOI: | 10.1007/s00453-014-9872-x |