The conjugacy problem in extensions of Thompson’s group F
We solve the twisted conjugacy problem on Thompson’s group F . We also exhibit orbit undecidable subgroups of Aut( F ), and give a proof that Aut( F ) and Aut + ( F ) are orbit decidable provided a certain conjecture on Thompson’s group T is true. By using general criteria introduced by Bogopolski,...
Uloženo v:
| Vydáno v: | Israel journal of mathematics Ročník 216; číslo 1; s. 15 - 59 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article Publikace |
| Jazyk: | angličtina |
| Vydáno: |
Jerusalem
The Hebrew University Magnes Press
01.10.2016
Springer Nature B.V |
| Témata: | |
| ISSN: | 0021-2172, 1565-8511 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We solve the twisted conjugacy problem on Thompson’s group
F
. We also exhibit orbit undecidable subgroups of Aut(
F
), and give a proof that Aut(
F
) and Aut
+
(
F
) are orbit decidable provided a certain conjecture on Thompson’s group
T
is true. By using general criteria introduced by Bogopolski, Martino and Ventura in [5], we construct a family of free extensions of F where the conjugacy problem is unsolvable. As a byproduct of our techniques, we give a new proof of a result of Bleak–Fel’shtyn–Gonçalves in [4] showing that
F
has property
R
∞
, and which can be extended to show that Thompson’s group T also has property
R
∞
. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0021-2172 1565-8511 |
| DOI: | 10.1007/s11856-016-1403-9 |