Mapping of crop types and crop sequences with combined time series of Sentinel-1, Sentinel-2 and Landsat 8 data for Germany

Monitoring agricultural systems becomes increasingly important in the context of global challenges like climate change, biodiversity loss, population growth, and the rising demand for agricultural products. High-resolution, national-scale maps of agricultural land are needed to develop strategies fo...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Remote sensing of environment Ročník 269; s. 112831
Hlavní autoři: Blickensdörfer, Lukas, Schwieder, Marcel, Pflugmacher, Dirk, Nendel, Claas, Erasmi, Stefan, Hostert, Patrick
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Elsevier Inc 01.02.2022
Elsevier BV
Témata:
ISSN:0034-4257, 1879-0704
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Monitoring agricultural systems becomes increasingly important in the context of global challenges like climate change, biodiversity loss, population growth, and the rising demand for agricultural products. High-resolution, national-scale maps of agricultural land are needed to develop strategies for future sustainable agriculture. However, the characterization of agricultural land cover over large areas and for multiple years remains challenging due to the locally diverse and temporally variable characteristics of cultivated land. We here propose a workflow for generating national agricultural land cover maps on a yearly basis that accounts for varying environmental conditions. We tested the approach by mapping 24 agricultural land cover classes in Germany for the three years 2017, 2018, and 2019, in which the meteorological conditions strongly differed. We used a random forest classifier and dense time series data from Sentinel-2 and Landsat 8 in combination with monthly Sentinel-1 composites and environmental data and evaluated the relative importance of optical, radar, and environmental data. Our results show high overall accuracy and plausible class accuracies for the most dominant crop types across different years despite the strong inter-annual meteorological variability and the presence of drought and non-drought years. The maps show high spatial consistency and good delineation of field parcels. Combining optical, SAR, and environmental data increased overall accuracies by 6% to 10% compared to single sensor approaches, in which optical data outperformed SAR. Overall accuracy ranged between 78% and 80%, and the mapped areas aligned well with agricultural statistics at the regional and national level. Based on the multi-year dataset we mapped major crop sequences of cereals and leaf crops. Most crop sequences were dominated by winter cereals followed by summer cereals. Monocultures of summer cereals were mainly revealed in the Northwest of Germany. We showcased that high spatial and thematic detail in combination with annual mapping will stimulate research on crop cycles and studies to assess the impact of environmental policies on management decisions. Our results demonstrate the capabilities of integrated optical time series and SAR data in combination with variables describing local and seasonal environmental conditions for annual large-area crop type mapping. •Large-area crop type mapping without region−/class-specific feature selection.•Integration of data describing local and seasonal environmental conditions.•24 agricultural land cover classes at national scale and for multiple years.•High accuracy despite strong inter-annual meteorological variability.•Combined crop type maps enable crop sequence analysis at national scale.
AbstractList Monitoring agricultural systems becomes increasingly important in the context of global challenges like climate change, biodiversity loss, population growth, and the rising demand for agricultural products. High-resolution, national-scale maps of agricultural land are needed to develop strategies for future sustainable agriculture. However, the characterization of agricultural land cover over large areas and for multiple years remains challenging due to the locally diverse and temporally variable characteristics of cultivated land. We here propose a workflow for generating national agricultural land cover maps on a yearly basis that accounts for varying environmental conditions. We tested the approach by mapping 24 agricultural land cover classes in Germany for the three years 2017, 2018, and 2019, in which the meteorological conditions strongly differed. We used a random forest classifier and dense time series data from Sentinel-2 and Landsat 8 in combination with monthly Sentinel-1 composites and environmental data and evaluated the relative importance of optical, radar, and environmental data.Our results show high overall accuracy and plausible class accuracies for the most dominant crop types across different years despite the strong inter-annual meteorological variability and the presence of drought and non-drought years. The maps show high spatial consistency and good delineation of field parcels. Combining optical, SAR, and environmental data increased overall accuracies by 6% to 10% compared to single sensor approaches, in which optical data outperformed SAR. Overall accuracy ranged between 78% and 80%, and the mapped areas aligned well with agricultural statistics at the regional and national level. Based on the multi-year dataset we mapped major crop sequences of cereals and leaf crops. Most crop sequences were dominated by winter cereals followed by summer cereals. Monocultures of summer cereals were mainly revealed in the Northwest of Germany. We showcased that high spatial and thematic detail in combination with annual mapping will stimulate research on crop cycles and studies to assess the impact of environmental policies on management decisions. Our results demonstrate the capabilities of integrated optical time series and SAR data in combination with variables describing local and seasonal environmental conditions for annual large-area crop type mapping.
Monitoring agricultural systems becomes increasingly important in the context of global challenges like climate change, biodiversity loss, population growth, and the rising demand for agricultural products. High-resolution, national-scale maps of agricultural land are needed to develop strategies for future sustainable agriculture. However, the characterization of agricultural land cover over large areas and for multiple years remains challenging due to the locally diverse and temporally variable characteristics of cultivated land. We here propose a workflow for generating national agricultural land cover maps on a yearly basis that accounts for varying environmental conditions. We tested the approach by mapping 24 agricultural land cover classes in Germany for the three years 2017, 2018, and 2019, in which the meteorological conditions strongly differed. We used a random forest classifier and dense time series data from Sentinel-2 and Landsat 8 in combination with monthly Sentinel-1 composites and environmental data and evaluated the relative importance of optical, radar, and environmental data. Our results show high overall accuracy and plausible class accuracies for the most dominant crop types across different years despite the strong inter-annual meteorological variability and the presence of drought and non-drought years. The maps show high spatial consistency and good delineation of field parcels. Combining optical, SAR, and environmental data increased overall accuracies by 6% to 10% compared to single sensor approaches, in which optical data outperformed SAR. Overall accuracy ranged between 78% and 80%, and the mapped areas aligned well with agricultural statistics at the regional and national level. Based on the multi-year dataset we mapped major crop sequences of cereals and leaf crops. Most crop sequences were dominated by winter cereals followed by summer cereals. Monocultures of summer cereals were mainly revealed in the Northwest of Germany. We showcased that high spatial and thematic detail in combination with annual mapping will stimulate research on crop cycles and studies to assess the impact of environmental policies on management decisions. Our results demonstrate the capabilities of integrated optical time series and SAR data in combination with variables describing local and seasonal environmental conditions for annual large-area crop type mapping. •Large-area crop type mapping without region−/class-specific feature selection.•Integration of data describing local and seasonal environmental conditions.•24 agricultural land cover classes at national scale and for multiple years.•High accuracy despite strong inter-annual meteorological variability.•Combined crop type maps enable crop sequence analysis at national scale.
ArticleNumber 112831
Author Blickensdörfer, Lukas
Erasmi, Stefan
Schwieder, Marcel
Pflugmacher, Dirk
Nendel, Claas
Hostert, Patrick
Author_xml – sequence: 1
  givenname: Lukas
  surname: Blickensdörfer
  fullname: Blickensdörfer, Lukas
  email: lukas.blickensdoerfer@thuenen.de
  organization: Thünen Institute of Forest Ecosystems, Alfred-Moeller-Straße 1, 16225 Eberswalde, Germany
– sequence: 2
  givenname: Marcel
  surname: Schwieder
  fullname: Schwieder, Marcel
  organization: Geography Department, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany
– sequence: 3
  givenname: Dirk
  surname: Pflugmacher
  fullname: Pflugmacher, Dirk
  organization: Geography Department, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany
– sequence: 4
  givenname: Claas
  surname: Nendel
  fullname: Nendel, Claas
  organization: Leibniz Centre for Agricultural Landscape Research, Eberswalder Straße 84, 15374 Müncheberg, Germany
– sequence: 5
  givenname: Stefan
  surname: Erasmi
  fullname: Erasmi, Stefan
  organization: Thünen Institute of Farm Economics, Bundesallee 63, 38116 Braunschweig, Germany
– sequence: 6
  givenname: Patrick
  surname: Hostert
  fullname: Hostert, Patrick
  organization: Geography Department, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany
BookMark eNp9kcFu3CAQhlGVSt2keYDekHrJod7OYIyxcqqiNI20VQ9tzojFuGFlgwtsolVfvmwcqVIOuQAz83-jYf5TcuKDt4R8QFgjoPi8W8dk1wwYrhGZrPENWaFsuwpa4CdkBVDzirOmfUdOU9oBYCNbXJG_3_U8O_-bhoGaGGaaD7NNVPt-CZP9s7felNSjy_fUhGnrvO1pdpMtxehKpaA_rc8lP1b46f-bPbXZlCPpTCXtddZ0CJHe2Dhpf3hP3g56TPb8-T4jd1-vf119qzY_bm6vvmwqwwFz1RnRgWHc1JKDbjgrkekGAYx3WnfQyx5NjcMWxFYzKaBtdCNr23ZyABBQn5GLpe8cQ_lNympyydhx1N6GfVJM1IIjNkIU6ccX0l3YR1-mKyrWyqbDp4btoiorSinaQRmXdXbB56jdqBDU0RS1U8UUdTRFLaYUEl-Qc3STjodXmcuFsWVHD85GlYw7etK7aE1WfXCv0P8AKk6kpQ
CitedBy_id crossref_primary_10_3390_rs15174123
crossref_primary_10_1016_j_rse_2023_113623
crossref_primary_10_1111_1365_2664_14604
crossref_primary_10_1080_10095020_2025_2514824
crossref_primary_10_1002_eap_70016
crossref_primary_10_1016_j_dib_2025_111617
crossref_primary_10_1016_j_jag_2022_103006
crossref_primary_10_5194_essd_16_867_2024
crossref_primary_10_1109_TGRS_2024_3354239
crossref_primary_10_1007_s41064_023_00247_x
crossref_primary_10_1016_j_compag_2024_109370
crossref_primary_10_1080_15481603_2025_2520072
crossref_primary_10_1016_j_atech_2025_101276
crossref_primary_10_1016_j_isprsjprs_2024_08_006
crossref_primary_10_1109_JSTARS_2022_3218881
crossref_primary_10_1038_s41597_024_04062_w
crossref_primary_10_1016_j_rse_2024_114430
crossref_primary_10_1016_j_rse_2023_113980
crossref_primary_10_1016_j_agee_2023_108818
crossref_primary_10_1088_1748_9326_adc7cc
crossref_primary_10_1016_j_ecolind_2024_112664
crossref_primary_10_1016_j_geoderma_2023_116620
crossref_primary_10_1016_j_jag_2025_104728
crossref_primary_10_1002_ldr_5109
crossref_primary_10_3390_rs16091633
crossref_primary_10_1016_j_iswcr_2025_06_002
crossref_primary_10_3390_rs13173523
crossref_primary_10_1016_j_isprsjprs_2025_03_024
crossref_primary_10_1016_j_isprsjprs_2023_06_003
crossref_primary_10_1109_JSTARS_2023_3239756
crossref_primary_10_5194_essd_16_1623_2024
crossref_primary_10_1007_s10661_025_13880_3
crossref_primary_10_1016_j_ecolind_2025_113212
crossref_primary_10_1016_j_ophoto_2025_100091
crossref_primary_10_1016_j_geoderma_2024_116929
crossref_primary_10_3390_rs17101707
crossref_primary_10_1016_j_rse_2022_113449
crossref_primary_10_1088_1748_9326_ad7613
crossref_primary_10_3390_en16135113
crossref_primary_10_1016_j_still_2024_106144
crossref_primary_10_1016_j_agsy_2025_104322
crossref_primary_10_1016_j_eja_2024_127496
crossref_primary_10_1002_arp_1999
crossref_primary_10_1117_1_JRS_18_014514
crossref_primary_10_1016_j_neunet_2025_107921
crossref_primary_10_1016_j_habitatint_2025_103358
crossref_primary_10_1038_s41597_022_01589_8
crossref_primary_10_1016_j_jag_2023_103533
crossref_primary_10_1016_j_scitotenv_2024_170583
crossref_primary_10_1109_TGRS_2023_3243900
crossref_primary_10_1016_j_isprsjprs_2025_04_031
crossref_primary_10_1088_2515_7620_adf801
crossref_primary_10_1109_LGRS_2025_3587517
crossref_primary_10_1007_s12145_025_01819_8
crossref_primary_10_3389_frsen_2025_1610005
crossref_primary_10_24072_pcjournal_521
crossref_primary_10_5194_nhess_25_2115_2025
crossref_primary_10_1016_j_jag_2023_103409
crossref_primary_10_1016_j_rse_2024_114585
crossref_primary_10_1016_j_scitotenv_2024_171366
crossref_primary_10_1109_ACCESS_2024_3485512
crossref_primary_10_1016_j_rsase_2025_101629
crossref_primary_10_1080_17538947_2024_2359577
crossref_primary_10_1080_10095020_2025_2508223
crossref_primary_10_3390_rs14174358
crossref_primary_10_1016_j_jag_2023_103283
crossref_primary_10_1007_s10661_024_12640_z
crossref_primary_10_1016_j_jag_2024_104097
crossref_primary_10_1038_s41597_024_04139_6
crossref_primary_10_1007_s10531_024_02861_6
crossref_primary_10_1016_j_rse_2024_114594
crossref_primary_10_1080_17538947_2025_2497487
crossref_primary_10_1007_s11707_024_1109_y
crossref_primary_10_1016_j_ecolind_2025_113813
crossref_primary_10_1029_2024JG008231
crossref_primary_10_1016_j_isprsjprs_2025_07_009
crossref_primary_10_1016_j_isprsjprs_2023_07_004
crossref_primary_10_1016_j_rsase_2024_101339
crossref_primary_10_1016_j_compag_2025_110613
crossref_primary_10_1007_s10336_024_02222_8
crossref_primary_10_1007_s11442_023_2146_2
crossref_primary_10_1016_j_agsy_2025_104338
crossref_primary_10_1080_01431161_2023_2205984
crossref_primary_10_1109_TGRS_2024_3361895
crossref_primary_10_1155_acis_6626517
crossref_primary_10_1016_j_rsase_2022_100774
crossref_primary_10_1016_j_fcr_2024_109695
crossref_primary_10_1109_JSTARS_2025_3525552
crossref_primary_10_1016_j_isprsjprs_2022_12_005
crossref_primary_10_1109_JSTARS_2024_3434438
crossref_primary_10_1016_j_ecoinf_2024_102836
crossref_primary_10_1016_j_rse_2023_113680
crossref_primary_10_1016_j_compag_2025_110184
crossref_primary_10_1080_22797254_2024_2372855
crossref_primary_10_1111_tgis_13120
crossref_primary_10_1016_j_ecolind_2024_112437
crossref_primary_10_1016_j_rsase_2023_101014
crossref_primary_10_1088_2515_7620_acbd1e
crossref_primary_10_1016_j_jag_2024_104204
crossref_primary_10_1016_j_asr_2023_07_061
crossref_primary_10_1038_s41598_025_93658_2
crossref_primary_10_1016_j_isprsjprs_2024_05_019
crossref_primary_10_1038_s41597_024_03247_7
crossref_primary_10_1109_JSTARS_2025_3560071
crossref_primary_10_1088_1748_9326_ac8daa
crossref_primary_10_1109_TGRS_2024_3391625
crossref_primary_10_1109_JSTARS_2024_3497653
crossref_primary_10_1038_s41597_025_04430_0
crossref_primary_10_1111_gcbb_70075
crossref_primary_10_1007_s11004_024_10163_4
crossref_primary_10_1016_j_rse_2024_114387
crossref_primary_10_1109_JSTARS_2024_3427127
crossref_primary_10_1007_s10980_024_01889_x
crossref_primary_10_1016_j_geothermics_2025_103255
crossref_primary_10_1038_s41597_025_05210_6
crossref_primary_10_1016_j_jag_2025_104571
crossref_primary_10_1016_j_rser_2025_115775
crossref_primary_10_1016_j_srs_2025_100227
crossref_primary_10_1016_j_compag_2023_108284
crossref_primary_10_1016_j_isprsjprs_2023_08_007
crossref_primary_10_1016_j_jag_2024_104172
crossref_primary_10_1038_s41597_024_04065_7
crossref_primary_10_1007_s12355_025_01638_7
crossref_primary_10_1016_j_agwat_2023_108641
crossref_primary_10_1038_s41598_024_68960_0
crossref_primary_10_1016_j_compag_2024_109536
crossref_primary_10_1371_journal_pone_0302882
crossref_primary_10_1016_j_isprsjprs_2024_07_025
crossref_primary_10_1016_j_scitotenv_2023_168825
crossref_primary_10_1109_TGRS_2025_3544339
crossref_primary_10_1080_20964471_2025_2463730
crossref_primary_10_1016_j_ecolind_2024_112709
crossref_primary_10_1080_17538947_2024_2310090
crossref_primary_10_1016_j_jag_2022_103092
crossref_primary_10_1016_j_ecolind_2024_111853
crossref_primary_10_1016_j_eja_2022_126632
crossref_primary_10_1016_j_rse_2023_113800
crossref_primary_10_1109_JSTARS_2025_3527017
crossref_primary_10_1016_j_jag_2025_104673
crossref_primary_10_1016_j_eja_2023_126916
crossref_primary_10_1109_JSTARS_2024_3522389
crossref_primary_10_1080_15481603_2024_2395700
crossref_primary_10_1080_10106049_2024_2384473
crossref_primary_10_1016_j_rse_2022_112990
crossref_primary_10_1016_j_rse_2022_112994
crossref_primary_10_1016_j_compag_2024_109437
crossref_primary_10_1016_j_ecoinf_2025_103075
crossref_primary_10_1016_j_jag_2025_104785
crossref_primary_10_1016_j_watres_2025_123903
crossref_primary_10_1007_s10661_023_11877_4
crossref_primary_10_1111_sum_70108
crossref_primary_10_1016_j_rsase_2023_101064
crossref_primary_10_1016_j_jag_2024_104085
crossref_primary_10_1016_j_jenvman_2023_119615
crossref_primary_10_1109_JSTARS_2024_3422795
crossref_primary_10_1016_j_rse_2024_114069
crossref_primary_10_1016_j_isprsjprs_2024_10_013
crossref_primary_10_1016_j_rsase_2022_100812
crossref_primary_10_1080_01431161_2023_2217985
crossref_primary_10_1016_j_jag_2024_104138
crossref_primary_10_1080_22797254_2025_2507738
crossref_primary_10_1016_j_isprsjprs_2025_04_021
crossref_primary_10_1186_s13717_025_00593_1
crossref_primary_10_1016_j_scitotenv_2024_177984
crossref_primary_10_1016_j_isprsjprs_2022_10_017
crossref_primary_10_1016_j_isprsjprs_2024_10_015
crossref_primary_10_1080_20964471_2025_2540703
crossref_primary_10_1016_j_rsase_2025_101593
crossref_primary_10_1002_ece3_71889
crossref_primary_10_1016_j_jag_2024_103718
crossref_primary_10_1109_JSTARS_2024_3428627
crossref_primary_10_1016_j_rse_2025_114995
crossref_primary_10_1109_ACCESS_2024_3436620
crossref_primary_10_1016_j_cj_2023_12_010
crossref_primary_10_1109_ACCESS_2024_3477735
crossref_primary_10_3897_aca_8_e149204
crossref_primary_10_1016_j_isprsjprs_2025_04_012
crossref_primary_10_1016_j_jag_2023_103318
crossref_primary_10_1007_s10661_024_12496_3
crossref_primary_10_1111_rec_70109
crossref_primary_10_5897_AJEST2025_3380
crossref_primary_10_1017_S002185962300014X
crossref_primary_10_1016_j_compag_2023_108015
crossref_primary_10_1080_15481603_2025_2531593
crossref_primary_10_1016_j_jag_2024_103867
crossref_primary_10_1016_j_rse_2025_114858
crossref_primary_10_1016_j_rse_2025_114736
crossref_primary_10_1111_gcbb_13027
crossref_primary_10_1016_j_jag_2024_103860
crossref_primary_10_1016_j_jag_2024_104159
crossref_primary_10_3390_rs14164056
crossref_primary_10_1016_j_rsase_2025_101693
crossref_primary_10_5194_essd_17_4039_2025
crossref_primary_10_1109_TGRS_2024_3430528
crossref_primary_10_1016_j_rser_2024_114706
crossref_primary_10_1016_j_rsase_2023_101093
crossref_primary_10_1007_s00128_023_03830_5
crossref_primary_10_1007_s00767_025_00595_y
crossref_primary_10_1007_s11540_024_09769_2
crossref_primary_10_1016_j_compag_2025_110916
crossref_primary_10_1016_j_jenvman_2024_123884
crossref_primary_10_1080_01431161_2023_2176723
crossref_primary_10_1016_j_compag_2022_107083
crossref_primary_10_1016_j_compag_2024_109185
crossref_primary_10_5194_essd_16_59_2024
crossref_primary_10_1186_s12302_024_00944_3
Cites_doi 10.1126/science.1057544
10.1016/j.rse.2011.11.026
10.1016/j.isprsjprs.2016.01.011
10.1016/j.rse.2018.11.007
10.1126/science.1111772
10.1016/j.landusepol.2016.05.023
10.1109/TGRS.2006.872081
10.1109/TGRS.2016.2530856
10.1007/s10113-010-0173-x
10.3390/rs11151768
10.1016/j.agee.2004.12.002
10.1016/0034-4257(88)90106-X
10.1080/01431169608948714
10.1007/s41064-018-0050-7
10.1016/0034-4257(79)90013-0
10.1016/j.eja.2017.09.010
10.3390/rs2061589
10.1016/j.tree.2021.06.010
10.3390/app9040655
10.1016/j.rse.2009.07.006
10.1016/j.eja.2015.06.007
10.1016/j.compag.2012.07.015
10.3390/rs12172779
10.3390/rs8070591
10.1016/j.compag.2021.106173
10.1016/j.rse.2018.12.026
10.1023/A:1010933404324
10.3390/rs11010037
10.3390/rs11151783
10.1016/j.eja.2017.11.002
10.1080/10106049.2011.562309
10.1016/j.rse.2018.04.046
10.1016/j.ecolmodel.2011.02.018
10.3390/rs70607959
10.3390/rs10101642
10.1016/j.tree.2015.06.007
10.1016/j.rse.2013.08.023
10.1016/j.ecolind.2017.07.059
10.3390/rs13050968
10.1080/01431161.2019.1569791
10.1038/s41586-019-1418-6
10.3390/rs11030232
10.3390/rs8050362
10.3390/rs12183096
10.3390/rs11091124
10.1080/22797254.2018.1455540
10.1016/j.rse.2016.08.025
10.1016/j.rse.2017.06.022
10.3390/rs9010095
10.1016/j.rse.2016.02.028
10.1016/j.catena.2015.05.004
10.1016/j.agsy.2019.102707
10.1111/j.1469-185X.2011.00184.x
10.1016/j.rse.2012.01.010
10.1016/j.rse.2017.07.015
10.1111/gcb.13988
10.1016/j.rse.2021.112367
10.1016/j.rse.2018.10.031
10.1109/JSTARS.2010.2051942
10.1016/j.rse.2020.111673
10.1016/j.rse.2019.111286
10.1016/j.rse.2014.02.015
10.1016/0034-4257(91)90048-B
10.1016/j.rse.2018.09.002
10.1080/01431161.2014.930207
ContentType Journal Article
Copyright 2021 The Authors
Copyright Elsevier BV Feb 2022
Copyright_xml – notice: 2021 The Authors
– notice: Copyright Elsevier BV Feb 2022
DBID 6I.
AAFTH
AAYXX
CITATION
7QF
7QO
7QQ
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7TG
7U5
8BQ
8FD
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KL.
KR7
L7M
L~C
L~D
P64
7S9
L.6
DOI 10.1016/j.rse.2021.112831
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Meteorological & Geoastrophysical Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
Materials Research Database
ProQuest Computer Science Collection
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Meteorological & Geoastrophysical Abstracts
Biotechnology Research Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Ecology Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Geography
Geology
Environmental Sciences
Agriculture
EISSN 1879-0704
ExternalDocumentID 10_1016_j_rse_2021_112831
S0034425721005514
GeographicLocations Germany
GeographicLocations_xml – name: Germany
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29P
4.4
41~
457
4G.
53G
5VS
6I.
6TJ
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABPPZ
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACLVX
ACPRK
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFFNX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FA8
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HMA
HMC
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
KCYFY
KOM
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SEN
SEP
SES
SEW
SPC
SPCBC
SSE
SSJ
SSZ
T5K
TN5
TWZ
VOH
WH7
WUQ
XOL
ZCA
ZMT
~02
~G-
~KM
9DU
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABUFD
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
ADXHL
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7QF
7QO
7QQ
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7TG
7U5
8BQ
8FD
AGCQF
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KL.
KR7
L7M
L~C
L~D
P64
7S9
L.6
ID FETCH-LOGICAL-c401t-9c690c24c3840a54290cc9f60249aa90d8d1c31fb06ba286075a583e798f00603
ISICitedReferencesCount 305
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000759682100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0034-4257
IngestDate Wed Oct 01 11:53:15 EDT 2025
Wed Aug 13 07:00:10 EDT 2025
Tue Nov 18 22:33:12 EST 2025
Sat Nov 29 07:29:12 EST 2025
Fri Feb 23 02:41:16 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords SAR
Analysis-ready data
Time series
Optical remote sensing
Multi-sensor
Big data
Agricultural land cover
Large-area mapping
Language English
License This is an open access article under the CC BY license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c401t-9c690c24c3840a54290cc9f60249aa90d8d1c31fb06ba286075a583e798f00603
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://dx.doi.org/10.1016/j.rse.2021.112831
PQID 2627859160
PQPubID 2045405
ParticipantIDs proquest_miscellaneous_2636411566
proquest_journals_2627859160
crossref_citationtrail_10_1016_j_rse_2021_112831
crossref_primary_10_1016_j_rse_2021_112831
elsevier_sciencedirect_doi_10_1016_j_rse_2021_112831
PublicationCentury 2000
PublicationDate February 2022
2022-02-00
20220201
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: February 2022
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Remote sensing of environment
PublicationYear 2022
Publisher Elsevier Inc
Elsevier BV
Publisher_xml – name: Elsevier Inc
– name: Elsevier BV
References Denize, Hubert-Moy, Betbeder, Corgne, Baudry, Pottier (bb0090) 2019; 11
Roßkopf, Fell, Zeitz (bb0345) 2015; 133
van den Hoogen, Geisen, Routh, Ferris, Traunspurger, Wardle, de Goede, Adams, Ahmad, Andriuzzi, Bardgett, Bonkowski, Campos-Herrera, Cares, Caruso, de Brito Caixeta, Chen, Costa, Creamer, da Cunha, Castro, Dam, Djigal, Escuer, Griffiths, Gutiérrez, Hohberg, Kalinkina, Kardol, Kergunteuil, Korthals, Krashevska, Kudrin, Li, Liang, Magilton, Marais, Martín, Matveeva, Mayad, Mulder, Mullin, Neilson, Nguyen, Nielsen, Okada, Rius, Pan, Peneva, Pellissier, Pereira, da Silva, Pitteloud, Powers, Powers, Quist, Rasmann, Moreno, Scheu, Setälä, Sushchuk, Tiunov, Trap, van der Putten, Vestergård, Villenave, Waeyenberge, Wall, Wilschut, Wright, Yang, Crowther (bb0465) 2019; 572
DWD (bb0155) 2018
Congalton (bb0075) 1991; 37
Khatami, Mountrakis, Stehman (bb0265) 2016; 177
Stehman (bb0405) 2014; 35
EEA (bb0170) 2019
(bb0375) 2013
Liedtke, Marschner, Bernd (bb0280) 2003
Meinert, Becker, Bissolli, Daßler, Breidenbach, Ziese (bb0295) 2019
Bennett, Bending, Chandler, Hilton, Mills (bb0025) 2012; 87
DWD (bb0125) 2017
Schwieder, Leitão, da Cunha Bustamante, Ferreira, Rabe, Hostert (bb0380) 2016; 52
DWD (bb0135) 2018
McFeeters (bb0290) 1996; 17
DWD (2018d). Monthly grids of soil moisture under grass and sandy loam. Deutscher Wetterdienst. Version 0.x.
Frantz, Haß, Uhl, Stoffels, Hill (bb0205) 2018; 215
Breiman (bb0060) 2001; 45
Belgiu, Drăguţ (bb0020) 2016; 114
Orynbaikyzy, Gessner, Conrad (bb0315) 2019; 40
Tóth, Kučas (bb0440) 2016; 57
Tegetmeyer, Barthelmes, Busse, Barthelmes (bb0420) 2020
Griffiths, Nendel, Hostert (bb0220) 2019; 220
Destatis (bb0395) 2019
Rounsevell, Ewert, Reginster, Leemans, Carter (bb0350) 2005; 107
Dirksmeyer, Garming, Strohm (bb0110) 2014
(accessed 24 March 2021).
Claverie, Ju, Masek, Dungan, Vermote, Roger, Skakun, Justice (bb0070) 2018; 219
EC (bb0165) 2017
Testa, Soudani, Boschetti, Borgogno Mondino (bb0425) 2018; 64
Stehman (bb0400) 2009; 113
Jin, Kumar, Li, Feng, Xu, Yang, Wang (bb0255) 2018; 92
DWD (bb0150) 2018
Veloso, Mermoz, Bouvet, Le Toan, Planells, Dejoux, Ceschia (bb0475) 2017; 199
Pasher, McGovern, Putinski (bb0325) 2016; 44
Heupel, Spengler, Itzerott (bb0235) 2018; 86
van Tricht, Gobin, Gilliams, Piccard (bb0470) 2018; 10
Reinermann, Gessner, Asam, Kuenzer, Dech (bb0340) 2019; 11
Inglada, Vincent, Arias, Marais-Sicre (bb0245) 2016; 8
Frantz (bb0195) 2019; 11
DWD (bb0120) 2019
Foody (bb0190) 2021; 259
Waldhoff, Lussem, Bareth (bb0485) 2017; 61
Hampf, Stella, Berg, Kawohl, Nendel (bb0230) 2020; 177
Preidl, Lange, Doktor (bb0335) 2020; 240
Frantz, Roder, Stellmes, Hill (bb0200) 2016; 54
Rufin, Frantz, Yan, Hostert (bb0360) 2020
Smith, Bustamante, Ahammad, Clark, Dong, Elsiddig, Haberl, Harper, House, Jafari, Masera, Mbow, Ravindranath, Rice, Robledo Abad, Romanovskaya, Sperling, Tubiello (bb0390) 2014
Johnson (bb0260) 2019; 232
Marais Sicre, Inglada, Fieuzal, Baup, Valero, Cros, Huc, Demarez (bb0285) 2016; 8
Huete (bb0240) 1988; 25
Waldner, Fritz, Di Gregorio, Defourny (bb0490) 2015; 7
Lark, Schelly, Gibbs (bb0275) 2021; 13
Tucker (bb0450) 1979; 8
Tscharntke, Grass, Wanger, Westphal, Batáry (bb0445) 2021; 36
Schellhorn, Gagic, Bommarco (bb0365) 2015; 30
Stein, Steinmann (bb0410) 2018; 92
Zhong, Gong, Biging (bb0510) 2014; 140
Benz, Banovsky, Cesarz, Schmidt (bb0030) 2020
Bindi, Olesen (bb0035) 2011; 11
Gruber, Peckham (bb0225) 2009
Udelhoven (bb0460) 2011; 4
Foley, Defries, Asner, Barford, Bonan, Carpenter, Chapin, Coe, Daily, Gibbs, Helkowski, Holloway, Howard, Kucharik, Monfreda, Patz, Prentice, Ramankutty, Snyder (bb0185) 2005; 309
Wang, Azzari, Lobell (bb0495) 2019; 222
BMEL (bb0065) 2017
Destatis (bb0105) 2018
Orynbaikyzy, Gessner, Mack, Conrad (bb0320) 2020; 12
Defourny, Bontemps, Bellemans, Cara, Dedieu, Guzzonato, Hagolle, Inglada, Nicola, Rabaute, Savinaud, Udroiu, Valero, Bégué, Dejoux, El Harti, Ezzahar, Kussul, Labbassi, Lebourgeois, Miao, Newby, Nyamugama, Salh, Shelestov, Simonneaux, Traore, Traore, Koetz (bb0085) 2019; 221
Ghazaryan, Dubovyk, Löw, Lavreniuk, Kolotii, Schellberg, Kussul (bb0215) 2018; 51
Destatis (bb0095) 2017
Storey, Roy, Masek, Gascon, Dwyer, Choate (bb0415) 2016; 186
Rufin, Frantz, Ernst, Rabe, Griffiths, Özdoğan, Hostert (bb0355) 2019; 11
Tetteh, Gocht, Schwieder, Erasmi, Conrad (bb0430) 2020; 12
Pongratz, Dolman, Don, Erb, Fuchs, Herold, Jones, Kuemmerle, Luyssaert, Meyfroidt, Naudts (bb0330) 2018; 24
USGS (bb0455) 2021
BKG (bb0040) 2015
Beierkuhnlein, Samimi, Faust (bb0015) 2017
Nasirzadehdizaji, Balik Sanli, Abdikan, Cakir, Sekertekin, Ustuner (bb0300) 2019; 9
Skakun, Vermote, Franch, Roger, Kussul, Ju, Masek (bb0385) 2019; 11
Inglada, Vincent, Arias, Tardy, Morin, Rodes (bb0250) 2017; 9
Fisette, Rollin, Aly, Campbell, Daneshfar, Filyer, Smith, Davidson, Shang, Jarvis (bb0175) 2010; 36
Wulder, Masek, Cohen, Loveland, Woodcock (bb0505) 2012; 122
Bargiel (bb0005) 2017; 198
USGS (bb0160) 2017
DWD (bb0130) 2018
DWD (bb0140) 2018
Nendel, Berg, Kersebaum, Mirschel, Specka, Wegehenkel, Wenkel, Wieland (bb0305) 2011; 222
Schulz, Holtgrave, Kleinschmit (bb0370) 2021; 186
Gao, Masek, Schwaller, Hall (bb0210) 2006; 44
Wilson, Mitchell, Pasher, McGovern, Hudson, Fahrig (bb0500) 2017; 83
Foerster, Kaden, Foerster, Itzerott (bb0180) 2012; 89
Olofsson, Foody, Herold, Stehman, Woodcock, Wulder (bb0310) 2014; 148
BKG (bb0045) 2018
Davidson, Fisette, McNairn, Daneshfar (bb0080) 2017
Destatis (bb0100) 2017
Tilman, Fargione, Wolff, D'Antonio, Dobson, Howarth, Schindler, Schlesinger, Simberloff, Swackhamer (bb0435) 2001; 292
Becker-Reshef, Justice, Sullivan, Vermote, Tucker, Anyamba, Small, Pak, Masuoka, Schmaltz, Hansen, Pittman, Birkett, Williams, Reynolds, Doorn (bb0010) 2010; 2
Breiman (bb0055) 1998
Kollas, Kersebaum, Nendel, Manevski, Müller, Palosuo, Armas-Herrera, Beaudoin, Bindi, Charfeddine, Conradt, Constantin, Eitzinger, Ewert, Ferrise, Gaiser, Cortazar-Atauri, Giglio, Hlavinka, Hoffmann, Hoffmann, Launay, Manderscheid, Mary, Mirschel, Moriondo, Olesen, Öztürk, Pacholski, Ripoche-Wachter, Roggero, Roncossek, Rötter, Ruget, Sharif, Trnka, Ventrella, Waha, Wegehenkel, Weigel, Wu (bb0270) 2015; 70
Boryan, Yang, Mueller, Craig (bb0050) 2011; 26
Drusch, Del Bello, Carlier, Colin, Fernandez, Gascon, Hoersch, Isola, Laberinti, Martimort, Meygret, Spoto, Sy, Marchese, Bargellini (bb0115) 2012; 120
Drusch (10.1016/j.rse.2021.112831_bb0115) 2012; 120
Reinermann (10.1016/j.rse.2021.112831_bb0340) 2019; 11
DWD (10.1016/j.rse.2021.112831_bb0155)
Becker-Reshef (10.1016/j.rse.2021.112831_bb0010) 2010; 2
Foody (10.1016/j.rse.2021.112831_bb0190) 2021; 259
Nasirzadehdizaji (10.1016/j.rse.2021.112831_bb0300) 2019; 9
Congalton (10.1016/j.rse.2021.112831_bb0075) 1991; 37
Storey (10.1016/j.rse.2021.112831_bb0415) 2016; 186
Defourny (10.1016/j.rse.2021.112831_bb0085) 2019; 221
Tscharntke (10.1016/j.rse.2021.112831_bb0445) 2021; 36
Foley (10.1016/j.rse.2021.112831_bb0185) 2005; 309
DWD (10.1016/j.rse.2021.112831_bb0130) 2018
Smith (10.1016/j.rse.2021.112831_bb0390) 2014
Rounsevell (10.1016/j.rse.2021.112831_bb0350) 2005; 107
Bindi (10.1016/j.rse.2021.112831_bb0035) 2011; 11
Destatis (10.1016/j.rse.2021.112831_bb0105)
Benz (10.1016/j.rse.2021.112831_bb0030)
Griffiths (10.1016/j.rse.2021.112831_bb0220) 2019; 220
DWD (10.1016/j.rse.2021.112831_bb0125) 2017
USGS (10.1016/j.rse.2021.112831_bb0455)
Tetteh (10.1016/j.rse.2021.112831_bb0430) 2020; 12
Hampf (10.1016/j.rse.2021.112831_bb0230) 2020; 177
Breiman (10.1016/j.rse.2021.112831_bb0060) 2001; 45
Liedtke (10.1016/j.rse.2021.112831_bb0280) 2003
Pongratz (10.1016/j.rse.2021.112831_bb0330) 2018; 24
Bennett (10.1016/j.rse.2021.112831_bb0025) 2012; 87
van Tricht (10.1016/j.rse.2021.112831_bb0470) 2018; 10
BKG (10.1016/j.rse.2021.112831_bb0040)
Frantz (10.1016/j.rse.2021.112831_bb0195) 2019; 11
Rufin (10.1016/j.rse.2021.112831_bb0360) 2020
van den Hoogen (10.1016/j.rse.2021.112831_bb0465) 2019; 572
Nendel (10.1016/j.rse.2021.112831_bb0305) 2011; 222
Boryan (10.1016/j.rse.2021.112831_bb0050) 2011; 26
Roßkopf (10.1016/j.rse.2021.112831_bb0345) 2015; 133
Schwieder (10.1016/j.rse.2021.112831_bb0380) 2016; 52
Foerster (10.1016/j.rse.2021.112831_bb0180) 2012; 89
Gruber (10.1016/j.rse.2021.112831_bb0225) 2009
Bargiel (10.1016/j.rse.2021.112831_bb0005) 2017; 198
Fisette (10.1016/j.rse.2021.112831_bb0175) 2010; 36
Orynbaikyzy (10.1016/j.rse.2021.112831_bb0315) 2019; 40
Waldner (10.1016/j.rse.2021.112831_bb0490) 2015; 7
BMEL (10.1016/j.rse.2021.112831_bb0065)
Davidson (10.1016/j.rse.2021.112831_bb0080) 2017
Wulder (10.1016/j.rse.2021.112831_bb0505) 2012; 122
Tucker (10.1016/j.rse.2021.112831_bb0450) 1979; 8
Beierkuhnlein (10.1016/j.rse.2021.112831_bb0015) 2017
EEA (10.1016/j.rse.2021.112831_bb0170)
Frantz (10.1016/j.rse.2021.112831_bb0205) 2018; 215
DWD (10.1016/j.rse.2021.112831_bb0120) 2019
McFeeters (10.1016/j.rse.2021.112831_bb0290) 1996; 17
(10.1016/j.rse.2021.112831_bb0375) 2013
Marais Sicre (10.1016/j.rse.2021.112831_bb0285) 2016; 8
Stehman (10.1016/j.rse.2021.112831_bb0405) 2014; 35
Schulz (10.1016/j.rse.2021.112831_bb0370) 2021; 186
10.1016/j.rse.2021.112831_bb0145
Huete (10.1016/j.rse.2021.112831_bb0240) 1988; 25
Stein (10.1016/j.rse.2021.112831_bb0410) 2018; 92
BKG (10.1016/j.rse.2021.112831_bb0045)
Veloso (10.1016/j.rse.2021.112831_bb0475) 2017; 199
Destatis (10.1016/j.rse.2021.112831_bb0100)
Tilman (10.1016/j.rse.2021.112831_bb0435) 2001; 292
DWD (10.1016/j.rse.2021.112831_bb0135)
Udelhoven (10.1016/j.rse.2021.112831_bb0460) 2011; 4
Olofsson (10.1016/j.rse.2021.112831_bb0310) 2014; 148
Wilson (10.1016/j.rse.2021.112831_bb0500) 2017; 83
DWD (10.1016/j.rse.2021.112831_bb0150)
Lark (10.1016/j.rse.2021.112831_bb0275) 2021; 13
Belgiu (10.1016/j.rse.2021.112831_bb0020) 2016; 114
Tegetmeyer (10.1016/j.rse.2021.112831_bb0420)
Breiman (10.1016/j.rse.2021.112831_bb0055) 1998
Destatis (10.1016/j.rse.2021.112831_bb0095)
Gao (10.1016/j.rse.2021.112831_bb0210) 2006; 44
Orynbaikyzy (10.1016/j.rse.2021.112831_bb0320) 2020; 12
EC (10.1016/j.rse.2021.112831_bb0165) 2017
Meinert (10.1016/j.rse.2021.112831_bb0295) 2019
Stehman (10.1016/j.rse.2021.112831_bb0400) 2009; 113
Destatis (10.1016/j.rse.2021.112831_bb0395)
Waldhoff (10.1016/j.rse.2021.112831_bb0485) 2017; 61
Pasher (10.1016/j.rse.2021.112831_bb0325) 2016; 44
Testa (10.1016/j.rse.2021.112831_bb0425) 2018; 64
Rufin (10.1016/j.rse.2021.112831_bb0355) 2019; 11
Jin (10.1016/j.rse.2021.112831_bb0255) 2018; 92
USGS (10.1016/j.rse.2021.112831_bb0160) 2017
Tóth (10.1016/j.rse.2021.112831_bb0440) 2016; 57
Zhong (10.1016/j.rse.2021.112831_bb0510) 2014; 140
Frantz (10.1016/j.rse.2021.112831_bb0200) 2016; 54
Ghazaryan (10.1016/j.rse.2021.112831_bb0215) 2018; 51
Heupel (10.1016/j.rse.2021.112831_bb0235) 2018; 86
Skakun (10.1016/j.rse.2021.112831_bb0385) 2019; 11
Dirksmeyer (10.1016/j.rse.2021.112831_bb0110)
Schellhorn (10.1016/j.rse.2021.112831_bb0365) 2015; 30
Wang (10.1016/j.rse.2021.112831_bb0495) 2019; 222
Preidl (10.1016/j.rse.2021.112831_bb0335) 2020; 240
Khatami (10.1016/j.rse.2021.112831_bb0265) 2016; 177
Denize (10.1016/j.rse.2021.112831_bb0090) 2019; 11
Inglada (10.1016/j.rse.2021.112831_bb0250) 2017; 9
Kollas (10.1016/j.rse.2021.112831_bb0270) 2015; 70
DWD (10.1016/j.rse.2021.112831_bb0140)
Claverie (10.1016/j.rse.2021.112831_bb0070) 2018; 219
Inglada (10.1016/j.rse.2021.112831_bb0245) 2016; 8
Johnson (10.1016/j.rse.2021.112831_bb0260) 2019; 232
References_xml – volume: 120
  start-page: 25
  year: 2012
  end-page: 36
  ident: bb0115
  article-title: Sentinel-2: ESA’s optical high-resolution Mission for GMES operational services
  publication-title: Remote Sens. Environ.
– year: 2018
  ident: bb0130
  article-title: Deutschlandwetter im Jahr 2018
– volume: 232
  year: 2019
  ident: bb0260
  article-title: Using the Landsat archive to map crop cover history across the United States
  publication-title: Remote Sens. Environ.
– volume: 221
  start-page: 551
  year: 2019
  end-page: 568
  ident: bb0085
  article-title: Near real-time agriculture monitoring at national scale at parcel resolution: performance assessment of the Sen2-Agri automated system in various cropping systems around the world
  publication-title: Remote Sens. Environ.
– volume: 11
  start-page: 1124
  year: 2019
  ident: bb0195
  article-title: FORCE—Landsat + Sentinel-2 analysis ready data and beyond
  publication-title: Remote Sens.
– volume: 40
  start-page: 6553
  year: 2019
  end-page: 6595
  ident: bb0315
  article-title: Crop type classification using a combination of optical and radar remote sensing data: a review
  publication-title: Int. J. Remote Sens.
– volume: 83
  start-page: 218
  year: 2017
  end-page: 226
  ident: bb0500
  article-title: Influence of crop type, heterogeneity and woody structure on avian biodiversity in agricultural landscapes
  publication-title: Ecol. Indic.
– year: 2017
  ident: bb0165
  article-title: CAP Explained. Direct Payments for Farmers 2015–2020
– volume: 36
  start-page: 919
  year: 2021
  end-page: 930
  ident: bb0445
  article-title: Beyond organic farming - harnessing biodiversity-friendly landscapes
  publication-title: Trends Ecol. Evol.
– volume: 7
  start-page: 7959
  year: 2015
  end-page: 7986
  ident: bb0490
  article-title: Mapping priorities to focus cropland mapping activities: fitness assessment of existing global, regional and national cropland maps
  publication-title: Remote Sens.
– year: 2018
  ident: bb0105
  article-title: Bodenfläche nach Art der tatsächlichen Nutzung. 2017
– year: 2018
  ident: bb0045
  article-title: Digitales Basis-Landschaftsmodell
– start-page: 91
  year: 2017
  end-page: 130
  ident: bb0080
  article-title: Detailed crop mapping using remote sensing data (crop data layers). In global strategy to improve agricultural and rural statistics (GSARS)
  publication-title: Handbook on Remote Sensing for Agricultural Statistics
– volume: 572
  start-page: 194
  year: 2019
  end-page: 198
  ident: bb0465
  article-title: Soil nematode abundance and functional group composition at a global scale
  publication-title: Nature
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: bb0060
  article-title: Random forests
  publication-title: Mach. Learn.
– volume: 86
  start-page: 53
  year: 2018
  end-page: 69
  ident: bb0235
  article-title: A progressive crop-type classification using multitemporal remote sensing data and phenological information
  publication-title: PFG – Journal of Photogrammetry, Remote Sensing and Geoinformation Science
– volume: 12
  start-page: 2779
  year: 2020
  ident: bb0320
  article-title: Crop type classification using fusion of Sentinel-1 and Sentinel-2 data: assessing the impact of feature selection, optical data availability, and parcel sizes on the accuracies
  publication-title: Remote Sens.
– volume: 8
  start-page: 127
  year: 1979
  end-page: 150
  ident: bb0450
  article-title: Red and photographic infrared linear combinations for monitoring vegetation
  publication-title: Remote Sens. Environ.
– start-page: 104
  year: 2003
  end-page: 105
  ident: bb0280
  article-title: Bodengüte der landwirtschaftlichen Nutzflächen
  publication-title: Relief, Boden Und Wasser
– volume: 219
  start-page: 145
  year: 2018
  end-page: 161
  ident: bb0070
  article-title: The harmonized Landsat and Sentinel-2 surface reflectance data set
  publication-title: Remote Sens. Environ.
– volume: 186
  start-page: 121
  year: 2016
  end-page: 122
  ident: bb0415
  article-title: A note on the temporary misregistration of Landsat-8 operational land imager (OLI) and Sentinel-2 multi spectral instrument (MSI) imagery
  publication-title: Remote Sens. Environ.
– volume: 199
  start-page: 415
  year: 2017
  end-page: 426
  ident: bb0475
  article-title: Understanding the temporal behavior of crops using Sentinel-1 and Sentinel-2-like data for agricultural applications
  publication-title: Remote Sens. Environ.
– volume: 61
  start-page: 55
  year: 2017
  end-page: 69
  ident: bb0485
  article-title: Multi-data approach for remote sensing-based regional crop rotation mapping: a case study for the Rur catchment, Germany
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 11
  start-page: 1783
  year: 2019
  ident: bb0340
  article-title: The effect of droughts on vegetation condition in Germany: an analysis based on two decades of satellite earth observation time series and crop yield statistics
  publication-title: Remote Sens.
– year: 2017
  ident: bb0015
  article-title: Die Physische Geographie Deutschlands
– year: 2019
  ident: bb0395
  article-title: Durchschnittliche genutzte landwirtschaftliche Fläche pro Betrieb nach Bundesland in Deutschland 2019 (in Hektar) [Graph]. Statista
– volume: 17
  start-page: 1425
  year: 1996
  end-page: 1432
  ident: bb0290
  article-title: The use of the normalized difference water index (NDWI) in the delineation of open water features
  publication-title: Int. J. Remote Sens.
– year: 2013
  ident: bb0375
  publication-title: Phenology: An Integrative Environmental Science
– year: 2021
  ident: bb0455
  article-title: Landsat Collection 2 (ver. 1.1, January 15, 2021). U.S. Geological Survey Fact Sheet 2021–3002
– volume: 114
  start-page: 24
  year: 2016
  end-page: 31
  ident: bb0020
  article-title: Random forest in remote sensing: a review of applications and future directions
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 4
  start-page: 310
  year: 2011
  end-page: 317
  ident: bb0460
  article-title: TimeStats: A software tool for the retrieval of temporal patterns from global satellite archives
  publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
– volume: 89
  start-page: 30
  year: 2012
  end-page: 40
  ident: bb0180
  article-title: Crop type mapping using spectral–temporal profiles and phenological information
  publication-title: Comput. Electron. Agric.
– reference: DWD (2018d). Monthly grids of soil moisture under grass and sandy loam. Deutscher Wetterdienst. Version 0.x.
– volume: 26
  start-page: 341
  year: 2011
  end-page: 358
  ident: bb0050
  article-title: Monitoring US agriculture: the US Department of Agriculture, National Agricultural Statistics Service, cropland data layer program
  publication-title: Geocarto International
– volume: 44
  start-page: 2207
  year: 2006
  end-page: 2218
  ident: bb0210
  article-title: On the blending of the Landsat and MODIS surface reflectance: predicting daily Landsat surface reflectance
  publication-title: IEEE Trans. Geosci. Remote Sens.
– year: 2020
  ident: bb0420
  article-title: Aggregierte Karte der Organischen Böden Deutschlands. Selbstverlag
– volume: 30
  start-page: 524
  year: 2015
  end-page: 530
  ident: bb0365
  article-title: Time will tell: resource continuity bolsters ecosystem services
  publication-title: Trends Ecol. Evol.
– year: 2019
  ident: bb0120
  article-title: Deutschlandwetter im Jahr 2019
– year: 2018
  ident: bb0150
  article-title: Multi-annual grids of precipitation height over Germany 1981–2010. Deutscher Wetterdienst. Version v1.0
– volume: 70
  start-page: 98
  year: 2015
  end-page: 111
  ident: bb0270
  article-title: Crop rotation modelling—a European model intercomparison
  publication-title: Eur. J. Agron.
– year: 2014
  ident: bb0110
  article-title: Horticulture Report 2014
– start-page: 171
  year: 2009
  end-page: 194
  ident: bb0225
  article-title: Chapter 7 Land-surface parameters and objects in hydrology
  publication-title: Geomorphometry - Concepts, Software, Applications
– volume: 9
  start-page: 95
  year: 2017
  ident: bb0250
  article-title: Operational high resolution land cover map production at the country scale using satellite image time series
  publication-title: Remote Sens.
– volume: 9
  start-page: 655
  year: 2019
  ident: bb0300
  article-title: Sensitivity analysis of multi-temporal Sentinel-1 SAR parameters to crop height and canopy coverage
  publication-title: Appl. Sci.
– volume: 25
  start-page: 295
  year: 1988
  end-page: 309
  ident: bb0240
  article-title: A soil-adjusted vegetation index (SAVI)
  publication-title: Remote Sens. Environ.
– reference: (accessed 24 March 2021).
– volume: 8
  start-page: 362
  year: 2016
  ident: bb0245
  article-title: Improved early crop type identification by joint use of high temporal resolution SAR and optical image time series
  publication-title: Remote Sens.
– volume: 51
  start-page: 511
  year: 2018
  end-page: 524
  ident: bb0215
  article-title: A rule-based approach for crop identification using multi-temporal and multi-sensor phenological metrics
  publication-title: European Journal of Remote Sensing
– volume: 92
  start-page: 30
  year: 2018
  end-page: 40
  ident: bb0410
  article-title: Identifying crop rotation practice by the typification of crop sequence patterns for arable farming systems – a case study from Central Europe
  publication-title: Eur. J. Agron.
– volume: 122
  start-page: 2
  year: 2012
  end-page: 10
  ident: bb0505
  article-title: Opening the archive: how free data has enabled the science and monitoring promise of Landsat
  publication-title: Remote Sens. Environ.
– volume: 215
  start-page: 471
  year: 2018
  end-page: 481
  ident: bb0205
  article-title: Improvement of the Fmask algorithm for Sentinel-2 images: separating clouds from bright surfaces based on parallax effects
  publication-title: Remote Sens. Environ.
– volume: 133
  start-page: 157
  year: 2015
  end-page: 170
  ident: bb0345
  article-title: Organic soils in Germany, their distribution and carbon stocks
  publication-title: CATENA
– volume: 10
  start-page: 1642
  year: 2018
  ident: bb0470
  article-title: Synergistic use of radar Sentinel-1 and optical Sentinel-2 imagery for crop mapping: a case study for Belgium
  publication-title: Remote Sens.
– volume: 222
  start-page: 303
  year: 2019
  end-page: 317
  ident: bb0495
  article-title: Crop type mapping without field-level labels: random forest transfer and unsupervised clustering techniques
  publication-title: Remote Sens. Environ.
– volume: 198
  start-page: 369
  year: 2017
  end-page: 383
  ident: bb0005
  article-title: A new method for crop classification combining time series of radar images and crop phenology information
  publication-title: Remote Sens. Environ.
– volume: 13
  start-page: 968
  year: 2021
  ident: bb0275
  article-title: Accuracy, bias, and improvements in mapping crops and cropland across the United States using the USDA cropland data layer
  publication-title: Remote Sens.
– volume: 35
  start-page: 4923
  year: 2014
  end-page: 4939
  ident: bb0405
  article-title: Estimating area and map accuracy for stratified random sampling when the strata are different from the map classes
  publication-title: Int. J. Remote Sens.
– volume: 64
  start-page: 132
  year: 2018
  end-page: 144
  ident: bb0425
  article-title: MODIS-derived EVI, NDVI and WDRVI time series to estimate phenological metrics in French deciduous forests
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– year: 1998
  ident: bb0055
  article-title: Classification and Regression Trees
– volume: 240
  year: 2020
  ident: bb0335
  article-title: Introducing APiC for regionalised land cover mapping on the national scale using Sentinel-2A imagery
  publication-title: Remote Sens. Environ.
– volume: 292
  start-page: 281
  year: 2001
  end-page: 284
  ident: bb0435
  article-title: Forecasting agriculturally driven global environmental change
  publication-title: Science (New York
– year: 2018
  ident: bb0135
  article-title: Aktuelle stündlich gleitende RADOLAN-Raster der täglichen Niederschlagshöhe (binär). Deutsche Wetterdienst. Version V001
– volume: 177
  start-page: 89
  year: 2016
  end-page: 100
  ident: bb0265
  article-title: A meta-analysis of remote sensing research on supervised pixel-based land-cover image classification processes: general guidelines for practitioners and future research
  publication-title: Remote Sens. Environ.
– year: 2017
  ident: bb0065
  article-title: Daten und Fakten. Land-, Forst- und Ernährungswirtschaft mit Fischerei und Wein- und Gartenbau
– volume: 11
  start-page: 151
  year: 2011
  end-page: 158
  ident: bb0035
  article-title: The responses of agriculture in Europe to climate change
  publication-title: Reg. Environ. Chang.
– year: 2015
  ident: bb0040
  article-title: Digitales Geländemodell Gitterweite 10 m
– volume: 8
  start-page: 591
  year: 2016
  ident: bb0285
  article-title: Early detection of summer crops using high spatial resolution optical image time series
  publication-title: Remote Sens.
– year: 2018
  ident: bb0155
  article-title: Multi-annual means of grids of air temperature (2m) over Germany 1981–2010. Deutscher Wetterdienst. Version v1.0
– volume: 148
  start-page: 42
  year: 2014
  end-page: 57
  ident: bb0310
  article-title: Good practices for estimating area and assessing accuracy of land change
  publication-title: Remote Sens. Environ.
– year: 2018
  ident: bb0140
  article-title: Grids of monthly averaged daily air temperature (2m) over Germany. Deutscher Wetterdienst. Version v1.0
– volume: 186
  year: 2021
  ident: bb0370
  article-title: Large-scale winter catch crop monitoring with Sentinel-2 time series and machine learning–an alternative to on-site controls?
  publication-title: Comput. Electron. Agric.
– year: 2019
  ident: bb0295
  article-title: Ursachen Und Folgender Trockenheitin Deutsch-Land Und Europa Ab Juni 2019
– volume: 37
  start-page: 35
  year: 1991
  end-page: 46
  ident: bb0075
  article-title: A review of assessing the accuracy of classifications of remotely sensed data
  publication-title: Remote Sens. Environ.
– volume: 259
  year: 2021
  ident: bb0190
  article-title: Impacts of ignorance on the accuracy of image classification and thematic mapping
  publication-title: Remote Sens. Environ.
– volume: 177
  year: 2020
  ident: bb0230
  article-title: Future yields of double-cropping systems in the Southern Amazon, Brazil, under climate change and technological development
  publication-title: Agric. Syst.
– year: 2017
  ident: bb0160
  article-title: Shuttle Radar Topography Mission (SRTM) 1 Arc-Second Global
– volume: 113
  start-page: 2455
  year: 2009
  end-page: 2462
  ident: bb0400
  article-title: Model-assisted estimation as a unifying framework for estimating the area of land cover and land-cover change from remote sensing
  publication-title: Remote Sens. Environ.
– volume: 12
  start-page: 3096
  year: 2020
  ident: bb0430
  article-title: Unsupervised parameterization for optimal segmentation of agricultural parcels from satellite images in different agricultural landscapes
  publication-title: Remote Sens.
– start-page: 1
  year: 2020
  end-page: 5
  ident: bb0360
  article-title: Operational coregistration of the sentinel-2A/B image archive using multitemporal Landsat spectral averages
  publication-title: IEEE Geosci. Remote Sens. Lett.
– year: 2017
  ident: bb0125
  article-title: Deutschlandwetter Im Jahr 2017
– volume: 309
  start-page: 570
  year: 2005
  end-page: 574
  ident: bb0185
  article-title: Global consequences of land use
  publication-title: Science (New York, N.Y.)
– volume: 222
  start-page: 1614
  year: 2011
  end-page: 1625
  ident: bb0305
  article-title: The MONICA model: testing predictability for crop growth, soil moisture and nitrogen dynamics
  publication-title: Ecol. Model.
– volume: 44
  start-page: 113
  year: 2016
  end-page: 123
  ident: bb0325
  article-title: Measuring and monitoring linear woody features in agricultural landscapes through earth observation data as an indicator of habitat availability
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 140
  start-page: 1
  year: 2014
  end-page: 13
  ident: bb0510
  article-title: Efficient corn and soybean mapping with temporal extendability: A multi-year experiment using Landsat imagery
  publication-title: Remote Sens. Environ.
– volume: 11
  start-page: 37
  year: 2019
  ident: bb0090
  article-title: Evaluation of using Sentinel-1 and -2 time-series to identify winter land use in agricultural landscapes
  publication-title: Remote Sens.
– volume: 220
  start-page: 135
  year: 2019
  end-page: 151
  ident: bb0220
  article-title: Intra-annual reflectance composites from Sentinel-2 and Landsat for national-scale crop and land cover mapping
  publication-title: Remote Sens. Environ.
– volume: 11
  start-page: 1768
  year: 2019
  ident: bb0385
  article-title: Winter wheat yield assessment from Landsat 8 and Sentinel-2 data: incorporating surface reflectance, through Phenological fitting, into regression yield models
  publication-title: Remote Sens.
– volume: 2
  start-page: 1589
  year: 2010
  end-page: 1609
  ident: bb0010
  article-title: Monitoring global croplands with coarse resolution earth observations: the global agriculture monitoring (GLAM) project
  publication-title: Remote Sens.
– year: 2019
  ident: bb0170
  article-title: Copernicus Land Monitoring Service –High Resolution Layer Small Woody Features –2015 reference year. Product Specifications & User Guidelines. European Environment Agency.
– year: 2017
  ident: bb0095
  article-title: Bewässerung in landwirtschaftlichen Betrieben / Agrarstrukturerhebung. 2016
– year: 2017
  ident: bb0100
  article-title: Methodische Grundlagender Agrarstrukturerhebung 2016
– volume: 54
  start-page: 3928
  year: 2016
  end-page: 3943
  ident: bb0200
  article-title: An operational radiometric Landsat preprocessing framework for large-area time series applications
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 57
  start-page: 64
  year: 2016
  end-page: 79
  ident: bb0440
  article-title: Spatial information in European agricultural data management. Requirements and interoperability supported by a domain model
  publication-title: Land Use Policy
– volume: 36
  start-page: 270
  year: 2010
  end-page: 274
  ident: bb0175
  article-title: AAFC annual crop inventory
  publication-title: Can. J. Remote. Sens.
– year: 2020
  ident: bb0030
  article-title: CODE-DE Portal Handbook, Version 2.0
– start-page: 811
  year: 2014
  end-page: 922
  ident: bb0390
  article-title: Agriculture, forestry and other land use (AFOLU)
  publication-title: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change
– volume: 92
  start-page: 141
  year: 2018
  end-page: 152
  ident: bb0255
  article-title: A review of data assimilation of remote sensing and crop models
  publication-title: Eur. J. Agron.
– volume: 52
  start-page: 361
  year: 2016
  end-page: 370
  ident: bb0380
  article-title: Mapping Brazilian savanna vegetation gradients with Landsat time series
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 11
  start-page: 232
  year: 2019
  ident: bb0355
  article-title: Mapping cropping practices on a national scale using intra-annual landsat time series binning
  publication-title: Remote Sens.
– volume: 87
  start-page: 52
  year: 2012
  end-page: 71
  ident: bb0025
  article-title: Meeting the demand for crop production: the challenge of yield decline in crops grown in short rotations
  publication-title: Biol. Rev. Camb. Philos. Soc.
– volume: 24
  start-page: 1470
  year: 2018
  end-page: 1487
  ident: bb0330
  article-title: Models meet data: challenges and opportunities in implementing land management in earth system models
  publication-title: Glob. Chang. Biol.
– volume: 107
  start-page: 117
  year: 2005
  end-page: 135
  ident: bb0350
  article-title: Future scenarios of European agricultural land use
  publication-title: Agric. Ecosyst. Environ.
– ident: 10.1016/j.rse.2021.112831_bb0095
– ident: 10.1016/j.rse.2021.112831_bb0110
– volume: 292
  start-page: 281
  year: 2001
  ident: 10.1016/j.rse.2021.112831_bb0435
  article-title: Forecasting agriculturally driven global environmental change
  publication-title: Science (New York, N.Y.)
  doi: 10.1126/science.1057544
– volume: 120
  start-page: 25
  year: 2012
  ident: 10.1016/j.rse.2021.112831_bb0115
  article-title: Sentinel-2: ESA’s optical high-resolution Mission for GMES operational services
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.11.026
– year: 2013
  ident: 10.1016/j.rse.2021.112831_bb0375
– volume: 114
  start-page: 24
  year: 2016
  ident: 10.1016/j.rse.2021.112831_bb0020
  article-title: Random forest in remote sensing: a review of applications and future directions
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2016.01.011
– year: 2017
  ident: 10.1016/j.rse.2021.112831_bb0125
– ident: 10.1016/j.rse.2021.112831_bb0395
– volume: 221
  start-page: 551
  year: 2019
  ident: 10.1016/j.rse.2021.112831_bb0085
  article-title: Near real-time agriculture monitoring at national scale at parcel resolution: performance assessment of the Sen2-Agri automated system in various cropping systems around the world
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.11.007
– year: 1998
  ident: 10.1016/j.rse.2021.112831_bb0055
– ident: 10.1016/j.rse.2021.112831_bb0030
– volume: 309
  start-page: 570
  year: 2005
  ident: 10.1016/j.rse.2021.112831_bb0185
  article-title: Global consequences of land use
  publication-title: Science (New York, N.Y.)
  doi: 10.1126/science.1111772
– volume: 52
  start-page: 361
  year: 2016
  ident: 10.1016/j.rse.2021.112831_bb0380
  article-title: Mapping Brazilian savanna vegetation gradients with Landsat time series
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 57
  start-page: 64
  year: 2016
  ident: 10.1016/j.rse.2021.112831_bb0440
  article-title: Spatial information in European agricultural data management. Requirements and interoperability supported by a domain model
  publication-title: Land Use Policy
  doi: 10.1016/j.landusepol.2016.05.023
– volume: 44
  start-page: 2207
  year: 2006
  ident: 10.1016/j.rse.2021.112831_bb0210
  article-title: On the blending of the Landsat and MODIS surface reflectance: predicting daily Landsat surface reflectance
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2006.872081
– volume: 54
  start-page: 3928
  year: 2016
  ident: 10.1016/j.rse.2021.112831_bb0200
  article-title: An operational radiometric Landsat preprocessing framework for large-area time series applications
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2016.2530856
– volume: 11
  start-page: 151
  year: 2011
  ident: 10.1016/j.rse.2021.112831_bb0035
  article-title: The responses of agriculture in Europe to climate change
  publication-title: Reg. Environ. Chang.
  doi: 10.1007/s10113-010-0173-x
– year: 2017
  ident: 10.1016/j.rse.2021.112831_bb0015
– ident: 10.1016/j.rse.2021.112831_bb0040
– volume: 36
  start-page: 270
  year: 2010
  ident: 10.1016/j.rse.2021.112831_bb0175
  article-title: AAFC annual crop inventory
  publication-title: Can. J. Remote. Sens.
– volume: 11
  start-page: 1768
  year: 2019
  ident: 10.1016/j.rse.2021.112831_bb0385
  article-title: Winter wheat yield assessment from Landsat 8 and Sentinel-2 data: incorporating surface reflectance, through Phenological fitting, into regression yield models
  publication-title: Remote Sens.
  doi: 10.3390/rs11151768
– volume: 107
  start-page: 117
  year: 2005
  ident: 10.1016/j.rse.2021.112831_bb0350
  article-title: Future scenarios of European agricultural land use
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2004.12.002
– volume: 61
  start-page: 55
  year: 2017
  ident: 10.1016/j.rse.2021.112831_bb0485
  article-title: Multi-data approach for remote sensing-based regional crop rotation mapping: a case study for the Rur catchment, Germany
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 25
  start-page: 295
  year: 1988
  ident: 10.1016/j.rse.2021.112831_bb0240
  article-title: A soil-adjusted vegetation index (SAVI)
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(88)90106-X
– volume: 17
  start-page: 1425
  year: 1996
  ident: 10.1016/j.rse.2021.112831_bb0290
  article-title: The use of the normalized difference water index (NDWI) in the delineation of open water features
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431169608948714
– volume: 86
  start-page: 53
  year: 2018
  ident: 10.1016/j.rse.2021.112831_bb0235
  article-title: A progressive crop-type classification using multitemporal remote sensing data and phenological information
  publication-title: PFG – Journal of Photogrammetry, Remote Sensing and Geoinformation Science
  doi: 10.1007/s41064-018-0050-7
– ident: 10.1016/j.rse.2021.112831_bb0150
– volume: 8
  start-page: 127
  year: 1979
  ident: 10.1016/j.rse.2021.112831_bb0450
  article-title: Red and photographic infrared linear combinations for monitoring vegetation
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(79)90013-0
– volume: 92
  start-page: 30
  year: 2018
  ident: 10.1016/j.rse.2021.112831_bb0410
  article-title: Identifying crop rotation practice by the typification of crop sequence patterns for arable farming systems – a case study from Central Europe
  publication-title: Eur. J. Agron.
  doi: 10.1016/j.eja.2017.09.010
– start-page: 1
  year: 2020
  ident: 10.1016/j.rse.2021.112831_bb0360
  article-title: Operational coregistration of the sentinel-2A/B image archive using multitemporal Landsat spectral averages
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 2
  start-page: 1589
  year: 2010
  ident: 10.1016/j.rse.2021.112831_bb0010
  article-title: Monitoring global croplands with coarse resolution earth observations: the global agriculture monitoring (GLAM) project
  publication-title: Remote Sens.
  doi: 10.3390/rs2061589
– volume: 36
  start-page: 919
  year: 2021
  ident: 10.1016/j.rse.2021.112831_bb0445
  article-title: Beyond organic farming - harnessing biodiversity-friendly landscapes
  publication-title: Trends Ecol. Evol.
  doi: 10.1016/j.tree.2021.06.010
– volume: 9
  start-page: 655
  year: 2019
  ident: 10.1016/j.rse.2021.112831_bb0300
  article-title: Sensitivity analysis of multi-temporal Sentinel-1 SAR parameters to crop height and canopy coverage
  publication-title: Appl. Sci.
  doi: 10.3390/app9040655
– ident: 10.1016/j.rse.2021.112831_bb0420
– volume: 113
  start-page: 2455
  year: 2009
  ident: 10.1016/j.rse.2021.112831_bb0400
  article-title: Model-assisted estimation as a unifying framework for estimating the area of land cover and land-cover change from remote sensing
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2009.07.006
– volume: 70
  start-page: 98
  year: 2015
  ident: 10.1016/j.rse.2021.112831_bb0270
  article-title: Crop rotation modelling—a European model intercomparison
  publication-title: Eur. J. Agron.
  doi: 10.1016/j.eja.2015.06.007
– ident: 10.1016/j.rse.2021.112831_bb0140
– volume: 89
  start-page: 30
  year: 2012
  ident: 10.1016/j.rse.2021.112831_bb0180
  article-title: Crop type mapping using spectral–temporal profiles and phenological information
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2012.07.015
– volume: 44
  start-page: 113
  year: 2016
  ident: 10.1016/j.rse.2021.112831_bb0325
  article-title: Measuring and monitoring linear woody features in agricultural landscapes through earth observation data as an indicator of habitat availability
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– start-page: 811
  year: 2014
  ident: 10.1016/j.rse.2021.112831_bb0390
  article-title: Agriculture, forestry and other land use (AFOLU)
– volume: 12
  start-page: 2779
  year: 2020
  ident: 10.1016/j.rse.2021.112831_bb0320
  article-title: Crop type classification using fusion of Sentinel-1 and Sentinel-2 data: assessing the impact of feature selection, optical data availability, and parcel sizes on the accuracies
  publication-title: Remote Sens.
  doi: 10.3390/rs12172779
– ident: 10.1016/j.rse.2021.112831_bb0455
– year: 2019
  ident: 10.1016/j.rse.2021.112831_bb0120
– volume: 8
  start-page: 591
  year: 2016
  ident: 10.1016/j.rse.2021.112831_bb0285
  article-title: Early detection of summer crops using high spatial resolution optical image time series
  publication-title: Remote Sens.
  doi: 10.3390/rs8070591
– volume: 186
  year: 2021
  ident: 10.1016/j.rse.2021.112831_bb0370
  article-title: Large-scale winter catch crop monitoring with Sentinel-2 time series and machine learning–an alternative to on-site controls?
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2021.106173
– volume: 222
  start-page: 303
  year: 2019
  ident: 10.1016/j.rse.2021.112831_bb0495
  article-title: Crop type mapping without field-level labels: random forest transfer and unsupervised clustering techniques
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.12.026
– ident: 10.1016/j.rse.2021.112831_bb0135
– ident: 10.1016/j.rse.2021.112831_bb0105
– year: 2019
  ident: 10.1016/j.rse.2021.112831_bb0295
– start-page: 171
  year: 2009
  ident: 10.1016/j.rse.2021.112831_bb0225
  article-title: Chapter 7 Land-surface parameters and objects in hydrology
– ident: 10.1016/j.rse.2021.112831_bb0145
– volume: 45
  start-page: 5
  year: 2001
  ident: 10.1016/j.rse.2021.112831_bb0060
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 11
  start-page: 37
  year: 2019
  ident: 10.1016/j.rse.2021.112831_bb0090
  article-title: Evaluation of using Sentinel-1 and -2 time-series to identify winter land use in agricultural landscapes
  publication-title: Remote Sens.
  doi: 10.3390/rs11010037
– volume: 11
  start-page: 1783
  year: 2019
  ident: 10.1016/j.rse.2021.112831_bb0340
  article-title: The effect of droughts on vegetation condition in Germany: an analysis based on two decades of satellite earth observation time series and crop yield statistics
  publication-title: Remote Sens.
  doi: 10.3390/rs11151783
– volume: 92
  start-page: 141
  year: 2018
  ident: 10.1016/j.rse.2021.112831_bb0255
  article-title: A review of data assimilation of remote sensing and crop models
  publication-title: Eur. J. Agron.
  doi: 10.1016/j.eja.2017.11.002
– volume: 26
  start-page: 341
  year: 2011
  ident: 10.1016/j.rse.2021.112831_bb0050
  article-title: Monitoring US agriculture: the US Department of Agriculture, National Agricultural Statistics Service, cropland data layer program
  publication-title: Geocarto International
  doi: 10.1080/10106049.2011.562309
– volume: 215
  start-page: 471
  year: 2018
  ident: 10.1016/j.rse.2021.112831_bb0205
  article-title: Improvement of the Fmask algorithm for Sentinel-2 images: separating clouds from bright surfaces based on parallax effects
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.04.046
– start-page: 104
  year: 2003
  ident: 10.1016/j.rse.2021.112831_bb0280
  article-title: Bodengüte der landwirtschaftlichen Nutzflächen
– volume: 222
  start-page: 1614
  year: 2011
  ident: 10.1016/j.rse.2021.112831_bb0305
  article-title: The MONICA model: testing predictability for crop growth, soil moisture and nitrogen dynamics
  publication-title: Ecol. Model.
  doi: 10.1016/j.ecolmodel.2011.02.018
– volume: 7
  start-page: 7959
  year: 2015
  ident: 10.1016/j.rse.2021.112831_bb0490
  article-title: Mapping priorities to focus cropland mapping activities: fitness assessment of existing global, regional and national cropland maps
  publication-title: Remote Sens.
  doi: 10.3390/rs70607959
– volume: 10
  start-page: 1642
  year: 2018
  ident: 10.1016/j.rse.2021.112831_bb0470
  article-title: Synergistic use of radar Sentinel-1 and optical Sentinel-2 imagery for crop mapping: a case study for Belgium
  publication-title: Remote Sens.
  doi: 10.3390/rs10101642
– year: 2018
  ident: 10.1016/j.rse.2021.112831_bb0130
– ident: 10.1016/j.rse.2021.112831_bb0155
– year: 2017
  ident: 10.1016/j.rse.2021.112831_bb0160
– ident: 10.1016/j.rse.2021.112831_bb0065
– volume: 30
  start-page: 524
  year: 2015
  ident: 10.1016/j.rse.2021.112831_bb0365
  article-title: Time will tell: resource continuity bolsters ecosystem services
  publication-title: Trends Ecol. Evol.
  doi: 10.1016/j.tree.2015.06.007
– volume: 140
  start-page: 1
  year: 2014
  ident: 10.1016/j.rse.2021.112831_bb0510
  article-title: Efficient corn and soybean mapping with temporal extendability: A multi-year experiment using Landsat imagery
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2013.08.023
– volume: 83
  start-page: 218
  year: 2017
  ident: 10.1016/j.rse.2021.112831_bb0500
  article-title: Influence of crop type, heterogeneity and woody structure on avian biodiversity in agricultural landscapes
  publication-title: Ecol. Indic.
  doi: 10.1016/j.ecolind.2017.07.059
– volume: 13
  start-page: 968
  year: 2021
  ident: 10.1016/j.rse.2021.112831_bb0275
  article-title: Accuracy, bias, and improvements in mapping crops and cropland across the United States using the USDA cropland data layer
  publication-title: Remote Sens.
  doi: 10.3390/rs13050968
– volume: 40
  start-page: 6553
  year: 2019
  ident: 10.1016/j.rse.2021.112831_bb0315
  article-title: Crop type classification using a combination of optical and radar remote sensing data: a review
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2019.1569791
– volume: 572
  start-page: 194
  year: 2019
  ident: 10.1016/j.rse.2021.112831_bb0465
  article-title: Soil nematode abundance and functional group composition at a global scale
  publication-title: Nature
  doi: 10.1038/s41586-019-1418-6
– volume: 11
  start-page: 232
  year: 2019
  ident: 10.1016/j.rse.2021.112831_bb0355
  article-title: Mapping cropping practices on a national scale using intra-annual landsat time series binning
  publication-title: Remote Sens.
  doi: 10.3390/rs11030232
– volume: 8
  start-page: 362
  year: 2016
  ident: 10.1016/j.rse.2021.112831_bb0245
  article-title: Improved early crop type identification by joint use of high temporal resolution SAR and optical image time series
  publication-title: Remote Sens.
  doi: 10.3390/rs8050362
– volume: 64
  start-page: 132
  year: 2018
  ident: 10.1016/j.rse.2021.112831_bb0425
  article-title: MODIS-derived EVI, NDVI and WDRVI time series to estimate phenological metrics in French deciduous forests
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 12
  start-page: 3096
  year: 2020
  ident: 10.1016/j.rse.2021.112831_bb0430
  article-title: Unsupervised parameterization for optimal segmentation of agricultural parcels from satellite images in different agricultural landscapes
  publication-title: Remote Sens.
  doi: 10.3390/rs12183096
– year: 2017
  ident: 10.1016/j.rse.2021.112831_bb0165
– volume: 11
  start-page: 1124
  year: 2019
  ident: 10.1016/j.rse.2021.112831_bb0195
  article-title: FORCE—Landsat + Sentinel-2 analysis ready data and beyond
  publication-title: Remote Sens.
  doi: 10.3390/rs11091124
– volume: 51
  start-page: 511
  year: 2018
  ident: 10.1016/j.rse.2021.112831_bb0215
  article-title: A rule-based approach for crop identification using multi-temporal and multi-sensor phenological metrics
  publication-title: European Journal of Remote Sensing
  doi: 10.1080/22797254.2018.1455540
– volume: 186
  start-page: 121
  year: 2016
  ident: 10.1016/j.rse.2021.112831_bb0415
  article-title: A note on the temporary misregistration of Landsat-8 operational land imager (OLI) and Sentinel-2 multi spectral instrument (MSI) imagery
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.08.025
– volume: 198
  start-page: 369
  year: 2017
  ident: 10.1016/j.rse.2021.112831_bb0005
  article-title: A new method for crop classification combining time series of radar images and crop phenology information
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.06.022
– start-page: 91
  year: 2017
  ident: 10.1016/j.rse.2021.112831_bb0080
  article-title: Detailed crop mapping using remote sensing data (crop data layers). In global strategy to improve agricultural and rural statistics (GSARS)
– volume: 9
  start-page: 95
  year: 2017
  ident: 10.1016/j.rse.2021.112831_bb0250
  article-title: Operational high resolution land cover map production at the country scale using satellite image time series
  publication-title: Remote Sens.
  doi: 10.3390/rs9010095
– ident: 10.1016/j.rse.2021.112831_bb0045
– volume: 177
  start-page: 89
  year: 2016
  ident: 10.1016/j.rse.2021.112831_bb0265
  article-title: A meta-analysis of remote sensing research on supervised pixel-based land-cover image classification processes: general guidelines for practitioners and future research
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.02.028
– volume: 133
  start-page: 157
  year: 2015
  ident: 10.1016/j.rse.2021.112831_bb0345
  article-title: Organic soils in Germany, their distribution and carbon stocks
  publication-title: CATENA
  doi: 10.1016/j.catena.2015.05.004
– ident: 10.1016/j.rse.2021.112831_bb0100
– volume: 177
  year: 2020
  ident: 10.1016/j.rse.2021.112831_bb0230
  article-title: Future yields of double-cropping systems in the Southern Amazon, Brazil, under climate change and technological development
  publication-title: Agric. Syst.
  doi: 10.1016/j.agsy.2019.102707
– volume: 87
  start-page: 52
  year: 2012
  ident: 10.1016/j.rse.2021.112831_bb0025
  article-title: Meeting the demand for crop production: the challenge of yield decline in crops grown in short rotations
  publication-title: Biol. Rev. Camb. Philos. Soc.
  doi: 10.1111/j.1469-185X.2011.00184.x
– volume: 122
  start-page: 2
  year: 2012
  ident: 10.1016/j.rse.2021.112831_bb0505
  article-title: Opening the archive: how free data has enabled the science and monitoring promise of Landsat
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2012.01.010
– volume: 199
  start-page: 415
  year: 2017
  ident: 10.1016/j.rse.2021.112831_bb0475
  article-title: Understanding the temporal behavior of crops using Sentinel-1 and Sentinel-2-like data for agricultural applications
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.07.015
– volume: 24
  start-page: 1470
  year: 2018
  ident: 10.1016/j.rse.2021.112831_bb0330
  article-title: Models meet data: challenges and opportunities in implementing land management in earth system models
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/gcb.13988
– volume: 259
  year: 2021
  ident: 10.1016/j.rse.2021.112831_bb0190
  article-title: Impacts of ignorance on the accuracy of image classification and thematic mapping
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2021.112367
– volume: 220
  start-page: 135
  year: 2019
  ident: 10.1016/j.rse.2021.112831_bb0220
  article-title: Intra-annual reflectance composites from Sentinel-2 and Landsat for national-scale crop and land cover mapping
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.10.031
– volume: 4
  start-page: 310
  year: 2011
  ident: 10.1016/j.rse.2021.112831_bb0460
  article-title: TimeStats: A software tool for the retrieval of temporal patterns from global satellite archives
  publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
  doi: 10.1109/JSTARS.2010.2051942
– volume: 240
  year: 2020
  ident: 10.1016/j.rse.2021.112831_bb0335
  article-title: Introducing APiC for regionalised land cover mapping on the national scale using Sentinel-2A imagery
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2020.111673
– ident: 10.1016/j.rse.2021.112831_bb0170
– volume: 232
  year: 2019
  ident: 10.1016/j.rse.2021.112831_bb0260
  article-title: Using the Landsat archive to map crop cover history across the United States
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.111286
– volume: 148
  start-page: 42
  year: 2014
  ident: 10.1016/j.rse.2021.112831_bb0310
  article-title: Good practices for estimating area and assessing accuracy of land change
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2014.02.015
– volume: 37
  start-page: 35
  year: 1991
  ident: 10.1016/j.rse.2021.112831_bb0075
  article-title: A review of assessing the accuracy of classifications of remotely sensed data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(91)90048-B
– volume: 219
  start-page: 145
  year: 2018
  ident: 10.1016/j.rse.2021.112831_bb0070
  article-title: The harmonized Landsat and Sentinel-2 surface reflectance data set
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.09.002
– volume: 35
  start-page: 4923
  year: 2014
  ident: 10.1016/j.rse.2021.112831_bb0405
  article-title: Estimating area and map accuracy for stratified random sampling when the strata are different from the map classes
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2014.930207
SSID ssj0015871
Score 2.7224782
Snippet Monitoring agricultural systems becomes increasingly important in the context of global challenges like climate change, biodiversity loss, population growth,...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 112831
SubjectTerms Agricultural land
Agricultural land cover
Agricultural products
agricultural statistics
Agriculture
Analysis-ready data
Big data
Biodiversity
Biodiversity loss
Cereals
Climate change
Cropping sequence
Crops
Cultivated lands
data collection
Decision trees
Drought
Environmental conditions
Environmental impact
Environmental management
Environmental policy
Environmental testing
Farming systems
Germany
Land cover
Landsat
Large-area mapping
leaves
Mapping
Meteorological conditions
Monoculture
Multi-sensor
Optical remote sensing
Population growth
radar
Radar data
Remote sensing
SAR
Sequences
Summer
Sustainable agriculture
Time series
time series analysis
Workflow
Title Mapping of crop types and crop sequences with combined time series of Sentinel-1, Sentinel-2 and Landsat 8 data for Germany
URI https://dx.doi.org/10.1016/j.rse.2021.112831
https://www.proquest.com/docview/2627859160
https://www.proquest.com/docview/2636411566
Volume 269
WOSCitedRecordID wos000759682100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-0704
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015871
  issn: 0034-4257
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwELfKBoIXBIWJwUBG4omSKXESx3kcUymgrZrYkPoWOa4zOrK06p8xxKfiG3IXO-5atIk98BLFsX069X49n8_nO0LeyLgIg2ERejzNcy9iufBkzHMvUSrROo-TJMjrYhNJvy8Gg_So1frd3IW5KJOqEpeX6eS_ihq-gbDx6uwtxO2Iwgd4B6HDE8QOz38S_KGcTGwoM5bnqp2sJhFz3XSx003U-TnsjcHqxCLzHWTQZKE9xiiiSpdeUPtHmxarCR3g_WA574gOBpjWkYo91PDVyhnxFw0wQJrVzPJz5VadcwOUI9Aj1WyIJ_bv-bQwEDpYfJfO2j9W336M9ND0HOLlTBcWclSUi9Nz2SAPFLi7edRH537t4N4vpVxxb8DO2HehIlZlh5GHiuWqymamvItVumAyCrOU_LUeGNfE2e50hilRWbC7HLuae3ttTXSRik0Q3FkGJDIkkRkSd8gmS-IUFOnm3qfu4LM7uopFYso0Wr6bo_Q6qHCNj-uMoTWzoLZ1Th6Rh3aTQvcMuB6Tlq7aZKu7lB502kVh1ib3e9rmPW-Te726UvTPJ-SXxSEdFxSBR2scUkCOaTocUsQhbXBIEYfU4BCnLnH4bvnOajIWhVRQRCEFFFKLwqfk64fuyf5Hz1b68BTs7-deqnjqKxapUES-xBJqvlJpwTGfpZSpPxTDQIVBkfs8l0xwsHNlLEKdpKLAjELhFtmoxpV-RmiqcBcc8ZgBPZ0zGJ-ERaqxlFHIpb9N_OYnz5RNg4_VWMrsWlFvk7duysTkgLlpcNTIMbNGrDFOM8DkTdN2GplnVpnMMsZZgvklOXD92nWD_sdDPVnp8QLHhDwK0Avz_DZsviAPlv-2HbIxny70S3JXXcxHs-kri-k_drDR9w
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mapping+of+crop+types+and+crop+sequences+with+combined+time+series+of+Sentinel-1%2C+Sentinel-2+and+Landsat+8+data+for+Germany&rft.jtitle=Remote+sensing+of+environment&rft.au=Blickensd%C3%B6rfer%2C+Lukas&rft.au=Schwieder%2C+Marcel&rft.au=Pflugmacher%2C+Dirk&rft.au=Nendel%2C+Claas&rft.date=2022-02-01&rft.issn=0034-4257&rft.volume=269&rft.spage=112831&rft_id=info:doi/10.1016%2Fj.rse.2021.112831&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_rse_2021_112831
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0034-4257&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0034-4257&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0034-4257&client=summon