Mapping of crop types and crop sequences with combined time series of Sentinel-1, Sentinel-2 and Landsat 8 data for Germany
Monitoring agricultural systems becomes increasingly important in the context of global challenges like climate change, biodiversity loss, population growth, and the rising demand for agricultural products. High-resolution, national-scale maps of agricultural land are needed to develop strategies fo...
Uložené v:
| Vydané v: | Remote sensing of environment Ročník 269; s. 112831 |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
Elsevier Inc
01.02.2022
Elsevier BV |
| Predmet: | |
| ISSN: | 0034-4257, 1879-0704 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Monitoring agricultural systems becomes increasingly important in the context of global challenges like climate change, biodiversity loss, population growth, and the rising demand for agricultural products. High-resolution, national-scale maps of agricultural land are needed to develop strategies for future sustainable agriculture. However, the characterization of agricultural land cover over large areas and for multiple years remains challenging due to the locally diverse and temporally variable characteristics of cultivated land. We here propose a workflow for generating national agricultural land cover maps on a yearly basis that accounts for varying environmental conditions. We tested the approach by mapping 24 agricultural land cover classes in Germany for the three years 2017, 2018, and 2019, in which the meteorological conditions strongly differed. We used a random forest classifier and dense time series data from Sentinel-2 and Landsat 8 in combination with monthly Sentinel-1 composites and environmental data and evaluated the relative importance of optical, radar, and environmental data.
Our results show high overall accuracy and plausible class accuracies for the most dominant crop types across different years despite the strong inter-annual meteorological variability and the presence of drought and non-drought years. The maps show high spatial consistency and good delineation of field parcels. Combining optical, SAR, and environmental data increased overall accuracies by 6% to 10% compared to single sensor approaches, in which optical data outperformed SAR. Overall accuracy ranged between 78% and 80%, and the mapped areas aligned well with agricultural statistics at the regional and national level. Based on the multi-year dataset we mapped major crop sequences of cereals and leaf crops. Most crop sequences were dominated by winter cereals followed by summer cereals. Monocultures of summer cereals were mainly revealed in the Northwest of Germany. We showcased that high spatial and thematic detail in combination with annual mapping will stimulate research on crop cycles and studies to assess the impact of environmental policies on management decisions. Our results demonstrate the capabilities of integrated optical time series and SAR data in combination with variables describing local and seasonal environmental conditions for annual large-area crop type mapping.
•Large-area crop type mapping without region−/class-specific feature selection.•Integration of data describing local and seasonal environmental conditions.•24 agricultural land cover classes at national scale and for multiple years.•High accuracy despite strong inter-annual meteorological variability.•Combined crop type maps enable crop sequence analysis at national scale. |
|---|---|
| AbstractList | Monitoring agricultural systems becomes increasingly important in the context of global challenges like climate change, biodiversity loss, population growth, and the rising demand for agricultural products. High-resolution, national-scale maps of agricultural land are needed to develop strategies for future sustainable agriculture. However, the characterization of agricultural land cover over large areas and for multiple years remains challenging due to the locally diverse and temporally variable characteristics of cultivated land. We here propose a workflow for generating national agricultural land cover maps on a yearly basis that accounts for varying environmental conditions. We tested the approach by mapping 24 agricultural land cover classes in Germany for the three years 2017, 2018, and 2019, in which the meteorological conditions strongly differed. We used a random forest classifier and dense time series data from Sentinel-2 and Landsat 8 in combination with monthly Sentinel-1 composites and environmental data and evaluated the relative importance of optical, radar, and environmental data.Our results show high overall accuracy and plausible class accuracies for the most dominant crop types across different years despite the strong inter-annual meteorological variability and the presence of drought and non-drought years. The maps show high spatial consistency and good delineation of field parcels. Combining optical, SAR, and environmental data increased overall accuracies by 6% to 10% compared to single sensor approaches, in which optical data outperformed SAR. Overall accuracy ranged between 78% and 80%, and the mapped areas aligned well with agricultural statistics at the regional and national level. Based on the multi-year dataset we mapped major crop sequences of cereals and leaf crops. Most crop sequences were dominated by winter cereals followed by summer cereals. Monocultures of summer cereals were mainly revealed in the Northwest of Germany. We showcased that high spatial and thematic detail in combination with annual mapping will stimulate research on crop cycles and studies to assess the impact of environmental policies on management decisions. Our results demonstrate the capabilities of integrated optical time series and SAR data in combination with variables describing local and seasonal environmental conditions for annual large-area crop type mapping. Monitoring agricultural systems becomes increasingly important in the context of global challenges like climate change, biodiversity loss, population growth, and the rising demand for agricultural products. High-resolution, national-scale maps of agricultural land are needed to develop strategies for future sustainable agriculture. However, the characterization of agricultural land cover over large areas and for multiple years remains challenging due to the locally diverse and temporally variable characteristics of cultivated land. We here propose a workflow for generating national agricultural land cover maps on a yearly basis that accounts for varying environmental conditions. We tested the approach by mapping 24 agricultural land cover classes in Germany for the three years 2017, 2018, and 2019, in which the meteorological conditions strongly differed. We used a random forest classifier and dense time series data from Sentinel-2 and Landsat 8 in combination with monthly Sentinel-1 composites and environmental data and evaluated the relative importance of optical, radar, and environmental data. Our results show high overall accuracy and plausible class accuracies for the most dominant crop types across different years despite the strong inter-annual meteorological variability and the presence of drought and non-drought years. The maps show high spatial consistency and good delineation of field parcels. Combining optical, SAR, and environmental data increased overall accuracies by 6% to 10% compared to single sensor approaches, in which optical data outperformed SAR. Overall accuracy ranged between 78% and 80%, and the mapped areas aligned well with agricultural statistics at the regional and national level. Based on the multi-year dataset we mapped major crop sequences of cereals and leaf crops. Most crop sequences were dominated by winter cereals followed by summer cereals. Monocultures of summer cereals were mainly revealed in the Northwest of Germany. We showcased that high spatial and thematic detail in combination with annual mapping will stimulate research on crop cycles and studies to assess the impact of environmental policies on management decisions. Our results demonstrate the capabilities of integrated optical time series and SAR data in combination with variables describing local and seasonal environmental conditions for annual large-area crop type mapping. •Large-area crop type mapping without region−/class-specific feature selection.•Integration of data describing local and seasonal environmental conditions.•24 agricultural land cover classes at national scale and for multiple years.•High accuracy despite strong inter-annual meteorological variability.•Combined crop type maps enable crop sequence analysis at national scale. |
| ArticleNumber | 112831 |
| Author | Blickensdörfer, Lukas Erasmi, Stefan Schwieder, Marcel Pflugmacher, Dirk Nendel, Claas Hostert, Patrick |
| Author_xml | – sequence: 1 givenname: Lukas surname: Blickensdörfer fullname: Blickensdörfer, Lukas email: lukas.blickensdoerfer@thuenen.de organization: Thünen Institute of Forest Ecosystems, Alfred-Moeller-Straße 1, 16225 Eberswalde, Germany – sequence: 2 givenname: Marcel surname: Schwieder fullname: Schwieder, Marcel organization: Geography Department, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany – sequence: 3 givenname: Dirk surname: Pflugmacher fullname: Pflugmacher, Dirk organization: Geography Department, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany – sequence: 4 givenname: Claas surname: Nendel fullname: Nendel, Claas organization: Leibniz Centre for Agricultural Landscape Research, Eberswalder Straße 84, 15374 Müncheberg, Germany – sequence: 5 givenname: Stefan surname: Erasmi fullname: Erasmi, Stefan organization: Thünen Institute of Farm Economics, Bundesallee 63, 38116 Braunschweig, Germany – sequence: 6 givenname: Patrick surname: Hostert fullname: Hostert, Patrick organization: Geography Department, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany |
| BookMark | eNp9kcFu3CAQhlGVSt2keYDekHrJod7OYIyxcqqiNI20VQ9tzojFuGFlgwtsolVfvmwcqVIOuQAz83-jYf5TcuKDt4R8QFgjoPi8W8dk1wwYrhGZrPENWaFsuwpa4CdkBVDzirOmfUdOU9oBYCNbXJG_3_U8O_-bhoGaGGaaD7NNVPt-CZP9s7felNSjy_fUhGnrvO1pdpMtxehKpaA_rc8lP1b46f-bPbXZlCPpTCXtddZ0CJHe2Dhpf3hP3g56TPb8-T4jd1-vf119qzY_bm6vvmwqwwFz1RnRgWHc1JKDbjgrkekGAYx3WnfQyx5NjcMWxFYzKaBtdCNr23ZyABBQn5GLpe8cQ_lNympyydhx1N6GfVJM1IIjNkIU6ccX0l3YR1-mKyrWyqbDp4btoiorSinaQRmXdXbB56jdqBDU0RS1U8UUdTRFLaYUEl-Qc3STjodXmcuFsWVHD85GlYw7etK7aE1WfXCv0P8AKk6kpQ |
| CitedBy_id | crossref_primary_10_3390_rs15174123 crossref_primary_10_1016_j_rse_2023_113623 crossref_primary_10_1111_1365_2664_14604 crossref_primary_10_1080_10095020_2025_2514824 crossref_primary_10_1002_eap_70016 crossref_primary_10_1016_j_dib_2025_111617 crossref_primary_10_1016_j_jag_2022_103006 crossref_primary_10_5194_essd_16_867_2024 crossref_primary_10_1109_TGRS_2024_3354239 crossref_primary_10_1007_s41064_023_00247_x crossref_primary_10_1016_j_compag_2024_109370 crossref_primary_10_1080_15481603_2025_2520072 crossref_primary_10_1016_j_atech_2025_101276 crossref_primary_10_1016_j_isprsjprs_2024_08_006 crossref_primary_10_1109_JSTARS_2022_3218881 crossref_primary_10_1038_s41597_024_04062_w crossref_primary_10_1016_j_rse_2024_114430 crossref_primary_10_1016_j_rse_2023_113980 crossref_primary_10_1016_j_agee_2023_108818 crossref_primary_10_1088_1748_9326_adc7cc crossref_primary_10_1016_j_ecolind_2024_112664 crossref_primary_10_1016_j_geoderma_2023_116620 crossref_primary_10_1016_j_jag_2025_104728 crossref_primary_10_1002_ldr_5109 crossref_primary_10_3390_rs16091633 crossref_primary_10_1016_j_iswcr_2025_06_002 crossref_primary_10_3390_rs13173523 crossref_primary_10_1016_j_isprsjprs_2025_03_024 crossref_primary_10_1016_j_isprsjprs_2023_06_003 crossref_primary_10_1109_JSTARS_2023_3239756 crossref_primary_10_5194_essd_16_1623_2024 crossref_primary_10_1007_s10661_025_13880_3 crossref_primary_10_1016_j_ecolind_2025_113212 crossref_primary_10_1016_j_ophoto_2025_100091 crossref_primary_10_1016_j_geoderma_2024_116929 crossref_primary_10_3390_rs17101707 crossref_primary_10_1016_j_rse_2022_113449 crossref_primary_10_1088_1748_9326_ad7613 crossref_primary_10_3390_en16135113 crossref_primary_10_1016_j_still_2024_106144 crossref_primary_10_1016_j_agsy_2025_104322 crossref_primary_10_1016_j_eja_2024_127496 crossref_primary_10_1002_arp_1999 crossref_primary_10_1117_1_JRS_18_014514 crossref_primary_10_1016_j_neunet_2025_107921 crossref_primary_10_1016_j_habitatint_2025_103358 crossref_primary_10_1038_s41597_022_01589_8 crossref_primary_10_1016_j_jag_2023_103533 crossref_primary_10_1016_j_scitotenv_2024_170583 crossref_primary_10_1109_TGRS_2023_3243900 crossref_primary_10_1016_j_isprsjprs_2025_04_031 crossref_primary_10_1088_2515_7620_adf801 crossref_primary_10_1109_LGRS_2025_3587517 crossref_primary_10_1007_s12145_025_01819_8 crossref_primary_10_3389_frsen_2025_1610005 crossref_primary_10_24072_pcjournal_521 crossref_primary_10_5194_nhess_25_2115_2025 crossref_primary_10_1016_j_jag_2023_103409 crossref_primary_10_1016_j_rse_2024_114585 crossref_primary_10_1016_j_scitotenv_2024_171366 crossref_primary_10_1109_ACCESS_2024_3485512 crossref_primary_10_1016_j_rsase_2025_101629 crossref_primary_10_1080_17538947_2024_2359577 crossref_primary_10_1080_10095020_2025_2508223 crossref_primary_10_3390_rs14174358 crossref_primary_10_1016_j_jag_2023_103283 crossref_primary_10_1007_s10661_024_12640_z crossref_primary_10_1016_j_jag_2024_104097 crossref_primary_10_1038_s41597_024_04139_6 crossref_primary_10_1007_s10531_024_02861_6 crossref_primary_10_1016_j_rse_2024_114594 crossref_primary_10_1080_17538947_2025_2497487 crossref_primary_10_1007_s11707_024_1109_y crossref_primary_10_1016_j_ecolind_2025_113813 crossref_primary_10_1029_2024JG008231 crossref_primary_10_1016_j_isprsjprs_2025_07_009 crossref_primary_10_1016_j_isprsjprs_2023_07_004 crossref_primary_10_1016_j_rsase_2024_101339 crossref_primary_10_1016_j_compag_2025_110613 crossref_primary_10_1007_s10336_024_02222_8 crossref_primary_10_1007_s11442_023_2146_2 crossref_primary_10_1016_j_agsy_2025_104338 crossref_primary_10_1080_01431161_2023_2205984 crossref_primary_10_1109_TGRS_2024_3361895 crossref_primary_10_1155_acis_6626517 crossref_primary_10_1016_j_rsase_2022_100774 crossref_primary_10_1016_j_fcr_2024_109695 crossref_primary_10_1109_JSTARS_2025_3525552 crossref_primary_10_1016_j_isprsjprs_2022_12_005 crossref_primary_10_1109_JSTARS_2024_3434438 crossref_primary_10_1016_j_ecoinf_2024_102836 crossref_primary_10_1016_j_rse_2023_113680 crossref_primary_10_1016_j_compag_2025_110184 crossref_primary_10_1080_22797254_2024_2372855 crossref_primary_10_1111_tgis_13120 crossref_primary_10_1016_j_ecolind_2024_112437 crossref_primary_10_1016_j_rsase_2023_101014 crossref_primary_10_1088_2515_7620_acbd1e crossref_primary_10_1016_j_jag_2024_104204 crossref_primary_10_1016_j_asr_2023_07_061 crossref_primary_10_1038_s41598_025_93658_2 crossref_primary_10_1016_j_isprsjprs_2024_05_019 crossref_primary_10_1038_s41597_024_03247_7 crossref_primary_10_1109_JSTARS_2025_3560071 crossref_primary_10_1088_1748_9326_ac8daa crossref_primary_10_1109_TGRS_2024_3391625 crossref_primary_10_1109_JSTARS_2024_3497653 crossref_primary_10_1038_s41597_025_04430_0 crossref_primary_10_1111_gcbb_70075 crossref_primary_10_1007_s11004_024_10163_4 crossref_primary_10_1016_j_rse_2024_114387 crossref_primary_10_1109_JSTARS_2024_3427127 crossref_primary_10_1007_s10980_024_01889_x crossref_primary_10_1016_j_geothermics_2025_103255 crossref_primary_10_1038_s41597_025_05210_6 crossref_primary_10_1016_j_jag_2025_104571 crossref_primary_10_1016_j_rser_2025_115775 crossref_primary_10_1016_j_srs_2025_100227 crossref_primary_10_1016_j_compag_2023_108284 crossref_primary_10_1016_j_isprsjprs_2023_08_007 crossref_primary_10_1016_j_jag_2024_104172 crossref_primary_10_1038_s41597_024_04065_7 crossref_primary_10_1007_s12355_025_01638_7 crossref_primary_10_1016_j_agwat_2023_108641 crossref_primary_10_1038_s41598_024_68960_0 crossref_primary_10_1016_j_compag_2024_109536 crossref_primary_10_1371_journal_pone_0302882 crossref_primary_10_1016_j_isprsjprs_2024_07_025 crossref_primary_10_1016_j_scitotenv_2023_168825 crossref_primary_10_1109_TGRS_2025_3544339 crossref_primary_10_1080_20964471_2025_2463730 crossref_primary_10_1016_j_ecolind_2024_112709 crossref_primary_10_1080_17538947_2024_2310090 crossref_primary_10_1016_j_jag_2022_103092 crossref_primary_10_1016_j_ecolind_2024_111853 crossref_primary_10_1016_j_eja_2022_126632 crossref_primary_10_1016_j_rse_2023_113800 crossref_primary_10_1109_JSTARS_2025_3527017 crossref_primary_10_1016_j_jag_2025_104673 crossref_primary_10_1016_j_eja_2023_126916 crossref_primary_10_1109_JSTARS_2024_3522389 crossref_primary_10_1080_15481603_2024_2395700 crossref_primary_10_1080_10106049_2024_2384473 crossref_primary_10_1016_j_rse_2022_112990 crossref_primary_10_1016_j_rse_2022_112994 crossref_primary_10_1016_j_compag_2024_109437 crossref_primary_10_1016_j_ecoinf_2025_103075 crossref_primary_10_1016_j_jag_2025_104785 crossref_primary_10_1016_j_watres_2025_123903 crossref_primary_10_1007_s10661_023_11877_4 crossref_primary_10_1111_sum_70108 crossref_primary_10_1016_j_rsase_2023_101064 crossref_primary_10_1016_j_jag_2024_104085 crossref_primary_10_1016_j_jenvman_2023_119615 crossref_primary_10_1109_JSTARS_2024_3422795 crossref_primary_10_1016_j_rse_2024_114069 crossref_primary_10_1016_j_isprsjprs_2024_10_013 crossref_primary_10_1016_j_rsase_2022_100812 crossref_primary_10_1080_01431161_2023_2217985 crossref_primary_10_1016_j_jag_2024_104138 crossref_primary_10_1080_22797254_2025_2507738 crossref_primary_10_1016_j_isprsjprs_2025_04_021 crossref_primary_10_1186_s13717_025_00593_1 crossref_primary_10_1016_j_scitotenv_2024_177984 crossref_primary_10_1016_j_isprsjprs_2022_10_017 crossref_primary_10_1016_j_isprsjprs_2024_10_015 crossref_primary_10_1080_20964471_2025_2540703 crossref_primary_10_1016_j_rsase_2025_101593 crossref_primary_10_1002_ece3_71889 crossref_primary_10_1016_j_jag_2024_103718 crossref_primary_10_1109_JSTARS_2024_3428627 crossref_primary_10_1016_j_rse_2025_114995 crossref_primary_10_1109_ACCESS_2024_3436620 crossref_primary_10_1016_j_cj_2023_12_010 crossref_primary_10_1109_ACCESS_2024_3477735 crossref_primary_10_3897_aca_8_e149204 crossref_primary_10_1016_j_isprsjprs_2025_04_012 crossref_primary_10_1016_j_jag_2023_103318 crossref_primary_10_1007_s10661_024_12496_3 crossref_primary_10_1111_rec_70109 crossref_primary_10_5897_AJEST2025_3380 crossref_primary_10_1017_S002185962300014X crossref_primary_10_1016_j_compag_2023_108015 crossref_primary_10_1080_15481603_2025_2531593 crossref_primary_10_1016_j_jag_2024_103867 crossref_primary_10_1016_j_rse_2025_114858 crossref_primary_10_1016_j_rse_2025_114736 crossref_primary_10_1111_gcbb_13027 crossref_primary_10_1016_j_jag_2024_103860 crossref_primary_10_1016_j_jag_2024_104159 crossref_primary_10_3390_rs14164056 crossref_primary_10_1016_j_rsase_2025_101693 crossref_primary_10_5194_essd_17_4039_2025 crossref_primary_10_1109_TGRS_2024_3430528 crossref_primary_10_1016_j_rser_2024_114706 crossref_primary_10_1016_j_rsase_2023_101093 crossref_primary_10_1007_s00128_023_03830_5 crossref_primary_10_1007_s00767_025_00595_y crossref_primary_10_1007_s11540_024_09769_2 crossref_primary_10_1016_j_compag_2025_110916 crossref_primary_10_1016_j_jenvman_2024_123884 crossref_primary_10_1080_01431161_2023_2176723 crossref_primary_10_1016_j_compag_2022_107083 crossref_primary_10_1016_j_compag_2024_109185 crossref_primary_10_5194_essd_16_59_2024 crossref_primary_10_1186_s12302_024_00944_3 |
| Cites_doi | 10.1126/science.1057544 10.1016/j.rse.2011.11.026 10.1016/j.isprsjprs.2016.01.011 10.1016/j.rse.2018.11.007 10.1126/science.1111772 10.1016/j.landusepol.2016.05.023 10.1109/TGRS.2006.872081 10.1109/TGRS.2016.2530856 10.1007/s10113-010-0173-x 10.3390/rs11151768 10.1016/j.agee.2004.12.002 10.1016/0034-4257(88)90106-X 10.1080/01431169608948714 10.1007/s41064-018-0050-7 10.1016/0034-4257(79)90013-0 10.1016/j.eja.2017.09.010 10.3390/rs2061589 10.1016/j.tree.2021.06.010 10.3390/app9040655 10.1016/j.rse.2009.07.006 10.1016/j.eja.2015.06.007 10.1016/j.compag.2012.07.015 10.3390/rs12172779 10.3390/rs8070591 10.1016/j.compag.2021.106173 10.1016/j.rse.2018.12.026 10.1023/A:1010933404324 10.3390/rs11010037 10.3390/rs11151783 10.1016/j.eja.2017.11.002 10.1080/10106049.2011.562309 10.1016/j.rse.2018.04.046 10.1016/j.ecolmodel.2011.02.018 10.3390/rs70607959 10.3390/rs10101642 10.1016/j.tree.2015.06.007 10.1016/j.rse.2013.08.023 10.1016/j.ecolind.2017.07.059 10.3390/rs13050968 10.1080/01431161.2019.1569791 10.1038/s41586-019-1418-6 10.3390/rs11030232 10.3390/rs8050362 10.3390/rs12183096 10.3390/rs11091124 10.1080/22797254.2018.1455540 10.1016/j.rse.2016.08.025 10.1016/j.rse.2017.06.022 10.3390/rs9010095 10.1016/j.rse.2016.02.028 10.1016/j.catena.2015.05.004 10.1016/j.agsy.2019.102707 10.1111/j.1469-185X.2011.00184.x 10.1016/j.rse.2012.01.010 10.1016/j.rse.2017.07.015 10.1111/gcb.13988 10.1016/j.rse.2021.112367 10.1016/j.rse.2018.10.031 10.1109/JSTARS.2010.2051942 10.1016/j.rse.2020.111673 10.1016/j.rse.2019.111286 10.1016/j.rse.2014.02.015 10.1016/0034-4257(91)90048-B 10.1016/j.rse.2018.09.002 10.1080/01431161.2014.930207 |
| ContentType | Journal Article |
| Copyright | 2021 The Authors Copyright Elsevier BV Feb 2022 |
| Copyright_xml | – notice: 2021 The Authors – notice: Copyright Elsevier BV Feb 2022 |
| DBID | 6I. AAFTH AAYXX CITATION 7QF 7QO 7QQ 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7TG 7U5 8BQ 8FD C1K F28 FR3 H8D H8G JG9 JQ2 KL. KR7 L7M L~C L~D P64 7S9 L.6 |
| DOI | 10.1016/j.rse.2021.112831 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Meteorological & Geoastrophysical Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library Materials Research Database ProQuest Computer Science Collection Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Meteorological & Geoastrophysical Abstracts Biotechnology Research Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts Ecology Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Meteorological & Geoastrophysical Abstracts - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA Materials Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Geology Environmental Sciences Agriculture |
| EISSN | 1879-0704 |
| ExternalDocumentID | 10_1016_j_rse_2021_112831 S0034425721005514 |
| GeographicLocations | Germany |
| GeographicLocations_xml | – name: Germany |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29P 4.4 41~ 457 4G. 53G 5VS 6I. 6TJ 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABFYP ABJNI ABLST ABMAC ABPPZ ABQEM ABQYD ABXDB ABYKQ ACDAQ ACGFS ACIWK ACLVX ACPRK ACRLP ACSBN ADBBV ADEZE ADMUD AEBSH AEKER AENEX AFFNX AFKWA AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FA8 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HMA HMC HVGLF HZ~ H~9 IHE IMUCA J1W KCYFY KOM LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SEN SEP SES SEW SPC SPCBC SSE SSJ SSZ T5K TN5 TWZ VOH WH7 WUQ XOL ZCA ZMT ~02 ~G- ~KM 9DU AAHBH AATTM AAXKI AAYWO AAYXX ABDPE ABUFD ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN ADXHL AEGFY AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7QF 7QO 7QQ 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7TG 7U5 8BQ 8FD AGCQF C1K F28 FR3 H8D H8G JG9 JQ2 KL. KR7 L7M L~C L~D P64 7S9 L.6 |
| ID | FETCH-LOGICAL-c401t-9c690c24c3840a54290cc9f60249aa90d8d1c31fb06ba286075a583e798f00603 |
| ISICitedReferencesCount | 305 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000759682100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0034-4257 |
| IngestDate | Wed Oct 01 11:53:15 EDT 2025 Wed Aug 13 07:00:10 EDT 2025 Tue Nov 18 22:33:12 EST 2025 Sat Nov 29 07:29:12 EST 2025 Fri Feb 23 02:41:16 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | SAR Analysis-ready data Time series Optical remote sensing Multi-sensor Big data Agricultural land cover Large-area mapping |
| Language | English |
| License | This is an open access article under the CC BY license. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c401t-9c690c24c3840a54290cc9f60249aa90d8d1c31fb06ba286075a583e798f00603 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.rse.2021.112831 |
| PQID | 2627859160 |
| PQPubID | 2045405 |
| ParticipantIDs | proquest_miscellaneous_2636411566 proquest_journals_2627859160 crossref_citationtrail_10_1016_j_rse_2021_112831 crossref_primary_10_1016_j_rse_2021_112831 elsevier_sciencedirect_doi_10_1016_j_rse_2021_112831 |
| PublicationCentury | 2000 |
| PublicationDate | February 2022 2022-02-00 20220201 |
| PublicationDateYYYYMMDD | 2022-02-01 |
| PublicationDate_xml | – month: 02 year: 2022 text: February 2022 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Remote sensing of environment |
| PublicationYear | 2022 |
| Publisher | Elsevier Inc Elsevier BV |
| Publisher_xml | – name: Elsevier Inc – name: Elsevier BV |
| References | Denize, Hubert-Moy, Betbeder, Corgne, Baudry, Pottier (bb0090) 2019; 11 Roßkopf, Fell, Zeitz (bb0345) 2015; 133 van den Hoogen, Geisen, Routh, Ferris, Traunspurger, Wardle, de Goede, Adams, Ahmad, Andriuzzi, Bardgett, Bonkowski, Campos-Herrera, Cares, Caruso, de Brito Caixeta, Chen, Costa, Creamer, da Cunha, Castro, Dam, Djigal, Escuer, Griffiths, Gutiérrez, Hohberg, Kalinkina, Kardol, Kergunteuil, Korthals, Krashevska, Kudrin, Li, Liang, Magilton, Marais, Martín, Matveeva, Mayad, Mulder, Mullin, Neilson, Nguyen, Nielsen, Okada, Rius, Pan, Peneva, Pellissier, Pereira, da Silva, Pitteloud, Powers, Powers, Quist, Rasmann, Moreno, Scheu, Setälä, Sushchuk, Tiunov, Trap, van der Putten, Vestergård, Villenave, Waeyenberge, Wall, Wilschut, Wright, Yang, Crowther (bb0465) 2019; 572 DWD (bb0155) 2018 Congalton (bb0075) 1991; 37 Khatami, Mountrakis, Stehman (bb0265) 2016; 177 Stehman (bb0405) 2014; 35 EEA (bb0170) 2019 (bb0375) 2013 Liedtke, Marschner, Bernd (bb0280) 2003 Meinert, Becker, Bissolli, Daßler, Breidenbach, Ziese (bb0295) 2019 Bennett, Bending, Chandler, Hilton, Mills (bb0025) 2012; 87 DWD (bb0125) 2017 Schwieder, Leitão, da Cunha Bustamante, Ferreira, Rabe, Hostert (bb0380) 2016; 52 DWD (bb0135) 2018 McFeeters (bb0290) 1996; 17 DWD (2018d). Monthly grids of soil moisture under grass and sandy loam. Deutscher Wetterdienst. Version 0.x. Frantz, Haß, Uhl, Stoffels, Hill (bb0205) 2018; 215 Breiman (bb0060) 2001; 45 Belgiu, Drăguţ (bb0020) 2016; 114 Orynbaikyzy, Gessner, Conrad (bb0315) 2019; 40 Tóth, Kučas (bb0440) 2016; 57 Tegetmeyer, Barthelmes, Busse, Barthelmes (bb0420) 2020 Griffiths, Nendel, Hostert (bb0220) 2019; 220 Destatis (bb0395) 2019 Rounsevell, Ewert, Reginster, Leemans, Carter (bb0350) 2005; 107 Dirksmeyer, Garming, Strohm (bb0110) 2014 (accessed 24 March 2021). Claverie, Ju, Masek, Dungan, Vermote, Roger, Skakun, Justice (bb0070) 2018; 219 EC (bb0165) 2017 Testa, Soudani, Boschetti, Borgogno Mondino (bb0425) 2018; 64 Stehman (bb0400) 2009; 113 Jin, Kumar, Li, Feng, Xu, Yang, Wang (bb0255) 2018; 92 DWD (bb0150) 2018 Veloso, Mermoz, Bouvet, Le Toan, Planells, Dejoux, Ceschia (bb0475) 2017; 199 Pasher, McGovern, Putinski (bb0325) 2016; 44 Heupel, Spengler, Itzerott (bb0235) 2018; 86 van Tricht, Gobin, Gilliams, Piccard (bb0470) 2018; 10 Reinermann, Gessner, Asam, Kuenzer, Dech (bb0340) 2019; 11 Inglada, Vincent, Arias, Marais-Sicre (bb0245) 2016; 8 Frantz (bb0195) 2019; 11 DWD (bb0120) 2019 Foody (bb0190) 2021; 259 Waldhoff, Lussem, Bareth (bb0485) 2017; 61 Hampf, Stella, Berg, Kawohl, Nendel (bb0230) 2020; 177 Preidl, Lange, Doktor (bb0335) 2020; 240 Frantz, Roder, Stellmes, Hill (bb0200) 2016; 54 Rufin, Frantz, Yan, Hostert (bb0360) 2020 Smith, Bustamante, Ahammad, Clark, Dong, Elsiddig, Haberl, Harper, House, Jafari, Masera, Mbow, Ravindranath, Rice, Robledo Abad, Romanovskaya, Sperling, Tubiello (bb0390) 2014 Johnson (bb0260) 2019; 232 Marais Sicre, Inglada, Fieuzal, Baup, Valero, Cros, Huc, Demarez (bb0285) 2016; 8 Huete (bb0240) 1988; 25 Waldner, Fritz, Di Gregorio, Defourny (bb0490) 2015; 7 Lark, Schelly, Gibbs (bb0275) 2021; 13 Tucker (bb0450) 1979; 8 Tscharntke, Grass, Wanger, Westphal, Batáry (bb0445) 2021; 36 Schellhorn, Gagic, Bommarco (bb0365) 2015; 30 Stein, Steinmann (bb0410) 2018; 92 Zhong, Gong, Biging (bb0510) 2014; 140 Benz, Banovsky, Cesarz, Schmidt (bb0030) 2020 Bindi, Olesen (bb0035) 2011; 11 Gruber, Peckham (bb0225) 2009 Udelhoven (bb0460) 2011; 4 Foley, Defries, Asner, Barford, Bonan, Carpenter, Chapin, Coe, Daily, Gibbs, Helkowski, Holloway, Howard, Kucharik, Monfreda, Patz, Prentice, Ramankutty, Snyder (bb0185) 2005; 309 Wang, Azzari, Lobell (bb0495) 2019; 222 BMEL (bb0065) 2017 Destatis (bb0105) 2018 Orynbaikyzy, Gessner, Mack, Conrad (bb0320) 2020; 12 Defourny, Bontemps, Bellemans, Cara, Dedieu, Guzzonato, Hagolle, Inglada, Nicola, Rabaute, Savinaud, Udroiu, Valero, Bégué, Dejoux, El Harti, Ezzahar, Kussul, Labbassi, Lebourgeois, Miao, Newby, Nyamugama, Salh, Shelestov, Simonneaux, Traore, Traore, Koetz (bb0085) 2019; 221 Ghazaryan, Dubovyk, Löw, Lavreniuk, Kolotii, Schellberg, Kussul (bb0215) 2018; 51 Destatis (bb0095) 2017 Storey, Roy, Masek, Gascon, Dwyer, Choate (bb0415) 2016; 186 Rufin, Frantz, Ernst, Rabe, Griffiths, Özdoğan, Hostert (bb0355) 2019; 11 Tetteh, Gocht, Schwieder, Erasmi, Conrad (bb0430) 2020; 12 Pongratz, Dolman, Don, Erb, Fuchs, Herold, Jones, Kuemmerle, Luyssaert, Meyfroidt, Naudts (bb0330) 2018; 24 USGS (bb0455) 2021 BKG (bb0040) 2015 Beierkuhnlein, Samimi, Faust (bb0015) 2017 Nasirzadehdizaji, Balik Sanli, Abdikan, Cakir, Sekertekin, Ustuner (bb0300) 2019; 9 Skakun, Vermote, Franch, Roger, Kussul, Ju, Masek (bb0385) 2019; 11 Inglada, Vincent, Arias, Tardy, Morin, Rodes (bb0250) 2017; 9 Fisette, Rollin, Aly, Campbell, Daneshfar, Filyer, Smith, Davidson, Shang, Jarvis (bb0175) 2010; 36 Wulder, Masek, Cohen, Loveland, Woodcock (bb0505) 2012; 122 Bargiel (bb0005) 2017; 198 USGS (bb0160) 2017 DWD (bb0130) 2018 DWD (bb0140) 2018 Nendel, Berg, Kersebaum, Mirschel, Specka, Wegehenkel, Wenkel, Wieland (bb0305) 2011; 222 Schulz, Holtgrave, Kleinschmit (bb0370) 2021; 186 Gao, Masek, Schwaller, Hall (bb0210) 2006; 44 Wilson, Mitchell, Pasher, McGovern, Hudson, Fahrig (bb0500) 2017; 83 Foerster, Kaden, Foerster, Itzerott (bb0180) 2012; 89 Olofsson, Foody, Herold, Stehman, Woodcock, Wulder (bb0310) 2014; 148 BKG (bb0045) 2018 Davidson, Fisette, McNairn, Daneshfar (bb0080) 2017 Destatis (bb0100) 2017 Tilman, Fargione, Wolff, D'Antonio, Dobson, Howarth, Schindler, Schlesinger, Simberloff, Swackhamer (bb0435) 2001; 292 Becker-Reshef, Justice, Sullivan, Vermote, Tucker, Anyamba, Small, Pak, Masuoka, Schmaltz, Hansen, Pittman, Birkett, Williams, Reynolds, Doorn (bb0010) 2010; 2 Breiman (bb0055) 1998 Kollas, Kersebaum, Nendel, Manevski, Müller, Palosuo, Armas-Herrera, Beaudoin, Bindi, Charfeddine, Conradt, Constantin, Eitzinger, Ewert, Ferrise, Gaiser, Cortazar-Atauri, Giglio, Hlavinka, Hoffmann, Hoffmann, Launay, Manderscheid, Mary, Mirschel, Moriondo, Olesen, Öztürk, Pacholski, Ripoche-Wachter, Roggero, Roncossek, Rötter, Ruget, Sharif, Trnka, Ventrella, Waha, Wegehenkel, Weigel, Wu (bb0270) 2015; 70 Boryan, Yang, Mueller, Craig (bb0050) 2011; 26 Drusch, Del Bello, Carlier, Colin, Fernandez, Gascon, Hoersch, Isola, Laberinti, Martimort, Meygret, Spoto, Sy, Marchese, Bargellini (bb0115) 2012; 120 Drusch (10.1016/j.rse.2021.112831_bb0115) 2012; 120 Reinermann (10.1016/j.rse.2021.112831_bb0340) 2019; 11 DWD (10.1016/j.rse.2021.112831_bb0155) Becker-Reshef (10.1016/j.rse.2021.112831_bb0010) 2010; 2 Foody (10.1016/j.rse.2021.112831_bb0190) 2021; 259 Nasirzadehdizaji (10.1016/j.rse.2021.112831_bb0300) 2019; 9 Congalton (10.1016/j.rse.2021.112831_bb0075) 1991; 37 Storey (10.1016/j.rse.2021.112831_bb0415) 2016; 186 Defourny (10.1016/j.rse.2021.112831_bb0085) 2019; 221 Tscharntke (10.1016/j.rse.2021.112831_bb0445) 2021; 36 Foley (10.1016/j.rse.2021.112831_bb0185) 2005; 309 DWD (10.1016/j.rse.2021.112831_bb0130) 2018 Smith (10.1016/j.rse.2021.112831_bb0390) 2014 Rounsevell (10.1016/j.rse.2021.112831_bb0350) 2005; 107 Bindi (10.1016/j.rse.2021.112831_bb0035) 2011; 11 Destatis (10.1016/j.rse.2021.112831_bb0105) Benz (10.1016/j.rse.2021.112831_bb0030) Griffiths (10.1016/j.rse.2021.112831_bb0220) 2019; 220 DWD (10.1016/j.rse.2021.112831_bb0125) 2017 USGS (10.1016/j.rse.2021.112831_bb0455) Tetteh (10.1016/j.rse.2021.112831_bb0430) 2020; 12 Hampf (10.1016/j.rse.2021.112831_bb0230) 2020; 177 Breiman (10.1016/j.rse.2021.112831_bb0060) 2001; 45 Liedtke (10.1016/j.rse.2021.112831_bb0280) 2003 Pongratz (10.1016/j.rse.2021.112831_bb0330) 2018; 24 Bennett (10.1016/j.rse.2021.112831_bb0025) 2012; 87 van Tricht (10.1016/j.rse.2021.112831_bb0470) 2018; 10 BKG (10.1016/j.rse.2021.112831_bb0040) Frantz (10.1016/j.rse.2021.112831_bb0195) 2019; 11 Rufin (10.1016/j.rse.2021.112831_bb0360) 2020 van den Hoogen (10.1016/j.rse.2021.112831_bb0465) 2019; 572 Nendel (10.1016/j.rse.2021.112831_bb0305) 2011; 222 Boryan (10.1016/j.rse.2021.112831_bb0050) 2011; 26 Roßkopf (10.1016/j.rse.2021.112831_bb0345) 2015; 133 Schwieder (10.1016/j.rse.2021.112831_bb0380) 2016; 52 Foerster (10.1016/j.rse.2021.112831_bb0180) 2012; 89 Gruber (10.1016/j.rse.2021.112831_bb0225) 2009 Bargiel (10.1016/j.rse.2021.112831_bb0005) 2017; 198 Fisette (10.1016/j.rse.2021.112831_bb0175) 2010; 36 Orynbaikyzy (10.1016/j.rse.2021.112831_bb0315) 2019; 40 Waldner (10.1016/j.rse.2021.112831_bb0490) 2015; 7 BMEL (10.1016/j.rse.2021.112831_bb0065) Davidson (10.1016/j.rse.2021.112831_bb0080) 2017 Wulder (10.1016/j.rse.2021.112831_bb0505) 2012; 122 Tucker (10.1016/j.rse.2021.112831_bb0450) 1979; 8 Beierkuhnlein (10.1016/j.rse.2021.112831_bb0015) 2017 EEA (10.1016/j.rse.2021.112831_bb0170) Frantz (10.1016/j.rse.2021.112831_bb0205) 2018; 215 DWD (10.1016/j.rse.2021.112831_bb0120) 2019 McFeeters (10.1016/j.rse.2021.112831_bb0290) 1996; 17 (10.1016/j.rse.2021.112831_bb0375) 2013 Marais Sicre (10.1016/j.rse.2021.112831_bb0285) 2016; 8 Stehman (10.1016/j.rse.2021.112831_bb0405) 2014; 35 Schulz (10.1016/j.rse.2021.112831_bb0370) 2021; 186 10.1016/j.rse.2021.112831_bb0145 Huete (10.1016/j.rse.2021.112831_bb0240) 1988; 25 Stein (10.1016/j.rse.2021.112831_bb0410) 2018; 92 BKG (10.1016/j.rse.2021.112831_bb0045) Veloso (10.1016/j.rse.2021.112831_bb0475) 2017; 199 Destatis (10.1016/j.rse.2021.112831_bb0100) Tilman (10.1016/j.rse.2021.112831_bb0435) 2001; 292 DWD (10.1016/j.rse.2021.112831_bb0135) Udelhoven (10.1016/j.rse.2021.112831_bb0460) 2011; 4 Olofsson (10.1016/j.rse.2021.112831_bb0310) 2014; 148 Wilson (10.1016/j.rse.2021.112831_bb0500) 2017; 83 DWD (10.1016/j.rse.2021.112831_bb0150) Lark (10.1016/j.rse.2021.112831_bb0275) 2021; 13 Belgiu (10.1016/j.rse.2021.112831_bb0020) 2016; 114 Tegetmeyer (10.1016/j.rse.2021.112831_bb0420) Breiman (10.1016/j.rse.2021.112831_bb0055) 1998 Destatis (10.1016/j.rse.2021.112831_bb0095) Gao (10.1016/j.rse.2021.112831_bb0210) 2006; 44 Orynbaikyzy (10.1016/j.rse.2021.112831_bb0320) 2020; 12 EC (10.1016/j.rse.2021.112831_bb0165) 2017 Meinert (10.1016/j.rse.2021.112831_bb0295) 2019 Stehman (10.1016/j.rse.2021.112831_bb0400) 2009; 113 Destatis (10.1016/j.rse.2021.112831_bb0395) Waldhoff (10.1016/j.rse.2021.112831_bb0485) 2017; 61 Pasher (10.1016/j.rse.2021.112831_bb0325) 2016; 44 Testa (10.1016/j.rse.2021.112831_bb0425) 2018; 64 Rufin (10.1016/j.rse.2021.112831_bb0355) 2019; 11 Jin (10.1016/j.rse.2021.112831_bb0255) 2018; 92 USGS (10.1016/j.rse.2021.112831_bb0160) 2017 Tóth (10.1016/j.rse.2021.112831_bb0440) 2016; 57 Zhong (10.1016/j.rse.2021.112831_bb0510) 2014; 140 Frantz (10.1016/j.rse.2021.112831_bb0200) 2016; 54 Ghazaryan (10.1016/j.rse.2021.112831_bb0215) 2018; 51 Heupel (10.1016/j.rse.2021.112831_bb0235) 2018; 86 Skakun (10.1016/j.rse.2021.112831_bb0385) 2019; 11 Dirksmeyer (10.1016/j.rse.2021.112831_bb0110) Schellhorn (10.1016/j.rse.2021.112831_bb0365) 2015; 30 Wang (10.1016/j.rse.2021.112831_bb0495) 2019; 222 Preidl (10.1016/j.rse.2021.112831_bb0335) 2020; 240 Khatami (10.1016/j.rse.2021.112831_bb0265) 2016; 177 Denize (10.1016/j.rse.2021.112831_bb0090) 2019; 11 Inglada (10.1016/j.rse.2021.112831_bb0250) 2017; 9 Kollas (10.1016/j.rse.2021.112831_bb0270) 2015; 70 DWD (10.1016/j.rse.2021.112831_bb0140) Claverie (10.1016/j.rse.2021.112831_bb0070) 2018; 219 Inglada (10.1016/j.rse.2021.112831_bb0245) 2016; 8 Johnson (10.1016/j.rse.2021.112831_bb0260) 2019; 232 |
| References_xml | – volume: 120 start-page: 25 year: 2012 end-page: 36 ident: bb0115 article-title: Sentinel-2: ESA’s optical high-resolution Mission for GMES operational services publication-title: Remote Sens. Environ. – year: 2018 ident: bb0130 article-title: Deutschlandwetter im Jahr 2018 – volume: 232 year: 2019 ident: bb0260 article-title: Using the Landsat archive to map crop cover history across the United States publication-title: Remote Sens. Environ. – volume: 221 start-page: 551 year: 2019 end-page: 568 ident: bb0085 article-title: Near real-time agriculture monitoring at national scale at parcel resolution: performance assessment of the Sen2-Agri automated system in various cropping systems around the world publication-title: Remote Sens. Environ. – volume: 11 start-page: 1124 year: 2019 ident: bb0195 article-title: FORCE—Landsat + Sentinel-2 analysis ready data and beyond publication-title: Remote Sens. – volume: 40 start-page: 6553 year: 2019 end-page: 6595 ident: bb0315 article-title: Crop type classification using a combination of optical and radar remote sensing data: a review publication-title: Int. J. Remote Sens. – volume: 83 start-page: 218 year: 2017 end-page: 226 ident: bb0500 article-title: Influence of crop type, heterogeneity and woody structure on avian biodiversity in agricultural landscapes publication-title: Ecol. Indic. – year: 2017 ident: bb0165 article-title: CAP Explained. Direct Payments for Farmers 2015–2020 – volume: 36 start-page: 919 year: 2021 end-page: 930 ident: bb0445 article-title: Beyond organic farming - harnessing biodiversity-friendly landscapes publication-title: Trends Ecol. Evol. – volume: 7 start-page: 7959 year: 2015 end-page: 7986 ident: bb0490 article-title: Mapping priorities to focus cropland mapping activities: fitness assessment of existing global, regional and national cropland maps publication-title: Remote Sens. – year: 2018 ident: bb0105 article-title: Bodenfläche nach Art der tatsächlichen Nutzung. 2017 – year: 2018 ident: bb0045 article-title: Digitales Basis-Landschaftsmodell – start-page: 91 year: 2017 end-page: 130 ident: bb0080 article-title: Detailed crop mapping using remote sensing data (crop data layers). In global strategy to improve agricultural and rural statistics (GSARS) publication-title: Handbook on Remote Sensing for Agricultural Statistics – volume: 572 start-page: 194 year: 2019 end-page: 198 ident: bb0465 article-title: Soil nematode abundance and functional group composition at a global scale publication-title: Nature – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: bb0060 article-title: Random forests publication-title: Mach. Learn. – volume: 86 start-page: 53 year: 2018 end-page: 69 ident: bb0235 article-title: A progressive crop-type classification using multitemporal remote sensing data and phenological information publication-title: PFG – Journal of Photogrammetry, Remote Sensing and Geoinformation Science – volume: 12 start-page: 2779 year: 2020 ident: bb0320 article-title: Crop type classification using fusion of Sentinel-1 and Sentinel-2 data: assessing the impact of feature selection, optical data availability, and parcel sizes on the accuracies publication-title: Remote Sens. – volume: 8 start-page: 127 year: 1979 end-page: 150 ident: bb0450 article-title: Red and photographic infrared linear combinations for monitoring vegetation publication-title: Remote Sens. Environ. – start-page: 104 year: 2003 end-page: 105 ident: bb0280 article-title: Bodengüte der landwirtschaftlichen Nutzflächen publication-title: Relief, Boden Und Wasser – volume: 219 start-page: 145 year: 2018 end-page: 161 ident: bb0070 article-title: The harmonized Landsat and Sentinel-2 surface reflectance data set publication-title: Remote Sens. Environ. – volume: 186 start-page: 121 year: 2016 end-page: 122 ident: bb0415 article-title: A note on the temporary misregistration of Landsat-8 operational land imager (OLI) and Sentinel-2 multi spectral instrument (MSI) imagery publication-title: Remote Sens. Environ. – volume: 199 start-page: 415 year: 2017 end-page: 426 ident: bb0475 article-title: Understanding the temporal behavior of crops using Sentinel-1 and Sentinel-2-like data for agricultural applications publication-title: Remote Sens. Environ. – volume: 61 start-page: 55 year: 2017 end-page: 69 ident: bb0485 article-title: Multi-data approach for remote sensing-based regional crop rotation mapping: a case study for the Rur catchment, Germany publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 11 start-page: 1783 year: 2019 ident: bb0340 article-title: The effect of droughts on vegetation condition in Germany: an analysis based on two decades of satellite earth observation time series and crop yield statistics publication-title: Remote Sens. – year: 2017 ident: bb0015 article-title: Die Physische Geographie Deutschlands – year: 2019 ident: bb0395 article-title: Durchschnittliche genutzte landwirtschaftliche Fläche pro Betrieb nach Bundesland in Deutschland 2019 (in Hektar) [Graph]. Statista – volume: 17 start-page: 1425 year: 1996 end-page: 1432 ident: bb0290 article-title: The use of the normalized difference water index (NDWI) in the delineation of open water features publication-title: Int. J. Remote Sens. – year: 2013 ident: bb0375 publication-title: Phenology: An Integrative Environmental Science – year: 2021 ident: bb0455 article-title: Landsat Collection 2 (ver. 1.1, January 15, 2021). U.S. Geological Survey Fact Sheet 2021–3002 – volume: 114 start-page: 24 year: 2016 end-page: 31 ident: bb0020 article-title: Random forest in remote sensing: a review of applications and future directions publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 4 start-page: 310 year: 2011 end-page: 317 ident: bb0460 article-title: TimeStats: A software tool for the retrieval of temporal patterns from global satellite archives publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing – volume: 89 start-page: 30 year: 2012 end-page: 40 ident: bb0180 article-title: Crop type mapping using spectral–temporal profiles and phenological information publication-title: Comput. Electron. Agric. – reference: DWD (2018d). Monthly grids of soil moisture under grass and sandy loam. Deutscher Wetterdienst. Version 0.x. – volume: 26 start-page: 341 year: 2011 end-page: 358 ident: bb0050 article-title: Monitoring US agriculture: the US Department of Agriculture, National Agricultural Statistics Service, cropland data layer program publication-title: Geocarto International – volume: 44 start-page: 2207 year: 2006 end-page: 2218 ident: bb0210 article-title: On the blending of the Landsat and MODIS surface reflectance: predicting daily Landsat surface reflectance publication-title: IEEE Trans. Geosci. Remote Sens. – year: 2020 ident: bb0420 article-title: Aggregierte Karte der Organischen Böden Deutschlands. Selbstverlag – volume: 30 start-page: 524 year: 2015 end-page: 530 ident: bb0365 article-title: Time will tell: resource continuity bolsters ecosystem services publication-title: Trends Ecol. Evol. – year: 2019 ident: bb0120 article-title: Deutschlandwetter im Jahr 2019 – year: 2018 ident: bb0150 article-title: Multi-annual grids of precipitation height over Germany 1981–2010. Deutscher Wetterdienst. Version v1.0 – volume: 70 start-page: 98 year: 2015 end-page: 111 ident: bb0270 article-title: Crop rotation modelling—a European model intercomparison publication-title: Eur. J. Agron. – year: 2014 ident: bb0110 article-title: Horticulture Report 2014 – start-page: 171 year: 2009 end-page: 194 ident: bb0225 article-title: Chapter 7 Land-surface parameters and objects in hydrology publication-title: Geomorphometry - Concepts, Software, Applications – volume: 9 start-page: 95 year: 2017 ident: bb0250 article-title: Operational high resolution land cover map production at the country scale using satellite image time series publication-title: Remote Sens. – volume: 9 start-page: 655 year: 2019 ident: bb0300 article-title: Sensitivity analysis of multi-temporal Sentinel-1 SAR parameters to crop height and canopy coverage publication-title: Appl. Sci. – volume: 25 start-page: 295 year: 1988 end-page: 309 ident: bb0240 article-title: A soil-adjusted vegetation index (SAVI) publication-title: Remote Sens. Environ. – reference: (accessed 24 March 2021). – volume: 8 start-page: 362 year: 2016 ident: bb0245 article-title: Improved early crop type identification by joint use of high temporal resolution SAR and optical image time series publication-title: Remote Sens. – volume: 51 start-page: 511 year: 2018 end-page: 524 ident: bb0215 article-title: A rule-based approach for crop identification using multi-temporal and multi-sensor phenological metrics publication-title: European Journal of Remote Sensing – volume: 92 start-page: 30 year: 2018 end-page: 40 ident: bb0410 article-title: Identifying crop rotation practice by the typification of crop sequence patterns for arable farming systems – a case study from Central Europe publication-title: Eur. J. Agron. – volume: 122 start-page: 2 year: 2012 end-page: 10 ident: bb0505 article-title: Opening the archive: how free data has enabled the science and monitoring promise of Landsat publication-title: Remote Sens. Environ. – volume: 215 start-page: 471 year: 2018 end-page: 481 ident: bb0205 article-title: Improvement of the Fmask algorithm for Sentinel-2 images: separating clouds from bright surfaces based on parallax effects publication-title: Remote Sens. Environ. – volume: 133 start-page: 157 year: 2015 end-page: 170 ident: bb0345 article-title: Organic soils in Germany, their distribution and carbon stocks publication-title: CATENA – volume: 10 start-page: 1642 year: 2018 ident: bb0470 article-title: Synergistic use of radar Sentinel-1 and optical Sentinel-2 imagery for crop mapping: a case study for Belgium publication-title: Remote Sens. – volume: 222 start-page: 303 year: 2019 end-page: 317 ident: bb0495 article-title: Crop type mapping without field-level labels: random forest transfer and unsupervised clustering techniques publication-title: Remote Sens. Environ. – volume: 198 start-page: 369 year: 2017 end-page: 383 ident: bb0005 article-title: A new method for crop classification combining time series of radar images and crop phenology information publication-title: Remote Sens. Environ. – volume: 13 start-page: 968 year: 2021 ident: bb0275 article-title: Accuracy, bias, and improvements in mapping crops and cropland across the United States using the USDA cropland data layer publication-title: Remote Sens. – volume: 35 start-page: 4923 year: 2014 end-page: 4939 ident: bb0405 article-title: Estimating area and map accuracy for stratified random sampling when the strata are different from the map classes publication-title: Int. J. Remote Sens. – volume: 64 start-page: 132 year: 2018 end-page: 144 ident: bb0425 article-title: MODIS-derived EVI, NDVI and WDRVI time series to estimate phenological metrics in French deciduous forests publication-title: Int. J. Appl. Earth Obs. Geoinf. – year: 1998 ident: bb0055 article-title: Classification and Regression Trees – volume: 240 year: 2020 ident: bb0335 article-title: Introducing APiC for regionalised land cover mapping on the national scale using Sentinel-2A imagery publication-title: Remote Sens. Environ. – volume: 292 start-page: 281 year: 2001 end-page: 284 ident: bb0435 article-title: Forecasting agriculturally driven global environmental change publication-title: Science (New York – year: 2018 ident: bb0135 article-title: Aktuelle stündlich gleitende RADOLAN-Raster der täglichen Niederschlagshöhe (binär). Deutsche Wetterdienst. Version V001 – volume: 177 start-page: 89 year: 2016 end-page: 100 ident: bb0265 article-title: A meta-analysis of remote sensing research on supervised pixel-based land-cover image classification processes: general guidelines for practitioners and future research publication-title: Remote Sens. Environ. – year: 2017 ident: bb0065 article-title: Daten und Fakten. Land-, Forst- und Ernährungswirtschaft mit Fischerei und Wein- und Gartenbau – volume: 11 start-page: 151 year: 2011 end-page: 158 ident: bb0035 article-title: The responses of agriculture in Europe to climate change publication-title: Reg. Environ. Chang. – year: 2015 ident: bb0040 article-title: Digitales Geländemodell Gitterweite 10 m – volume: 8 start-page: 591 year: 2016 ident: bb0285 article-title: Early detection of summer crops using high spatial resolution optical image time series publication-title: Remote Sens. – year: 2018 ident: bb0155 article-title: Multi-annual means of grids of air temperature (2m) over Germany 1981–2010. Deutscher Wetterdienst. Version v1.0 – volume: 148 start-page: 42 year: 2014 end-page: 57 ident: bb0310 article-title: Good practices for estimating area and assessing accuracy of land change publication-title: Remote Sens. Environ. – year: 2018 ident: bb0140 article-title: Grids of monthly averaged daily air temperature (2m) over Germany. Deutscher Wetterdienst. Version v1.0 – volume: 186 year: 2021 ident: bb0370 article-title: Large-scale winter catch crop monitoring with Sentinel-2 time series and machine learning–an alternative to on-site controls? publication-title: Comput. Electron. Agric. – year: 2019 ident: bb0295 article-title: Ursachen Und Folgender Trockenheitin Deutsch-Land Und Europa Ab Juni 2019 – volume: 37 start-page: 35 year: 1991 end-page: 46 ident: bb0075 article-title: A review of assessing the accuracy of classifications of remotely sensed data publication-title: Remote Sens. Environ. – volume: 259 year: 2021 ident: bb0190 article-title: Impacts of ignorance on the accuracy of image classification and thematic mapping publication-title: Remote Sens. Environ. – volume: 177 year: 2020 ident: bb0230 article-title: Future yields of double-cropping systems in the Southern Amazon, Brazil, under climate change and technological development publication-title: Agric. Syst. – year: 2017 ident: bb0160 article-title: Shuttle Radar Topography Mission (SRTM) 1 Arc-Second Global – volume: 113 start-page: 2455 year: 2009 end-page: 2462 ident: bb0400 article-title: Model-assisted estimation as a unifying framework for estimating the area of land cover and land-cover change from remote sensing publication-title: Remote Sens. Environ. – volume: 12 start-page: 3096 year: 2020 ident: bb0430 article-title: Unsupervised parameterization for optimal segmentation of agricultural parcels from satellite images in different agricultural landscapes publication-title: Remote Sens. – start-page: 1 year: 2020 end-page: 5 ident: bb0360 article-title: Operational coregistration of the sentinel-2A/B image archive using multitemporal Landsat spectral averages publication-title: IEEE Geosci. Remote Sens. Lett. – year: 2017 ident: bb0125 article-title: Deutschlandwetter Im Jahr 2017 – volume: 309 start-page: 570 year: 2005 end-page: 574 ident: bb0185 article-title: Global consequences of land use publication-title: Science (New York, N.Y.) – volume: 222 start-page: 1614 year: 2011 end-page: 1625 ident: bb0305 article-title: The MONICA model: testing predictability for crop growth, soil moisture and nitrogen dynamics publication-title: Ecol. Model. – volume: 44 start-page: 113 year: 2016 end-page: 123 ident: bb0325 article-title: Measuring and monitoring linear woody features in agricultural landscapes through earth observation data as an indicator of habitat availability publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 140 start-page: 1 year: 2014 end-page: 13 ident: bb0510 article-title: Efficient corn and soybean mapping with temporal extendability: A multi-year experiment using Landsat imagery publication-title: Remote Sens. Environ. – volume: 11 start-page: 37 year: 2019 ident: bb0090 article-title: Evaluation of using Sentinel-1 and -2 time-series to identify winter land use in agricultural landscapes publication-title: Remote Sens. – volume: 220 start-page: 135 year: 2019 end-page: 151 ident: bb0220 article-title: Intra-annual reflectance composites from Sentinel-2 and Landsat for national-scale crop and land cover mapping publication-title: Remote Sens. Environ. – volume: 11 start-page: 1768 year: 2019 ident: bb0385 article-title: Winter wheat yield assessment from Landsat 8 and Sentinel-2 data: incorporating surface reflectance, through Phenological fitting, into regression yield models publication-title: Remote Sens. – volume: 2 start-page: 1589 year: 2010 end-page: 1609 ident: bb0010 article-title: Monitoring global croplands with coarse resolution earth observations: the global agriculture monitoring (GLAM) project publication-title: Remote Sens. – year: 2019 ident: bb0170 article-title: Copernicus Land Monitoring Service –High Resolution Layer Small Woody Features –2015 reference year. Product Specifications & User Guidelines. European Environment Agency. – year: 2017 ident: bb0095 article-title: Bewässerung in landwirtschaftlichen Betrieben / Agrarstrukturerhebung. 2016 – year: 2017 ident: bb0100 article-title: Methodische Grundlagender Agrarstrukturerhebung 2016 – volume: 54 start-page: 3928 year: 2016 end-page: 3943 ident: bb0200 article-title: An operational radiometric Landsat preprocessing framework for large-area time series applications publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 57 start-page: 64 year: 2016 end-page: 79 ident: bb0440 article-title: Spatial information in European agricultural data management. Requirements and interoperability supported by a domain model publication-title: Land Use Policy – volume: 36 start-page: 270 year: 2010 end-page: 274 ident: bb0175 article-title: AAFC annual crop inventory publication-title: Can. J. Remote. Sens. – year: 2020 ident: bb0030 article-title: CODE-DE Portal Handbook, Version 2.0 – start-page: 811 year: 2014 end-page: 922 ident: bb0390 article-title: Agriculture, forestry and other land use (AFOLU) publication-title: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change – volume: 92 start-page: 141 year: 2018 end-page: 152 ident: bb0255 article-title: A review of data assimilation of remote sensing and crop models publication-title: Eur. J. Agron. – volume: 52 start-page: 361 year: 2016 end-page: 370 ident: bb0380 article-title: Mapping Brazilian savanna vegetation gradients with Landsat time series publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 11 start-page: 232 year: 2019 ident: bb0355 article-title: Mapping cropping practices on a national scale using intra-annual landsat time series binning publication-title: Remote Sens. – volume: 87 start-page: 52 year: 2012 end-page: 71 ident: bb0025 article-title: Meeting the demand for crop production: the challenge of yield decline in crops grown in short rotations publication-title: Biol. Rev. Camb. Philos. Soc. – volume: 24 start-page: 1470 year: 2018 end-page: 1487 ident: bb0330 article-title: Models meet data: challenges and opportunities in implementing land management in earth system models publication-title: Glob. Chang. Biol. – volume: 107 start-page: 117 year: 2005 end-page: 135 ident: bb0350 article-title: Future scenarios of European agricultural land use publication-title: Agric. Ecosyst. Environ. – ident: 10.1016/j.rse.2021.112831_bb0095 – ident: 10.1016/j.rse.2021.112831_bb0110 – volume: 292 start-page: 281 year: 2001 ident: 10.1016/j.rse.2021.112831_bb0435 article-title: Forecasting agriculturally driven global environmental change publication-title: Science (New York, N.Y.) doi: 10.1126/science.1057544 – volume: 120 start-page: 25 year: 2012 ident: 10.1016/j.rse.2021.112831_bb0115 article-title: Sentinel-2: ESA’s optical high-resolution Mission for GMES operational services publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2011.11.026 – year: 2013 ident: 10.1016/j.rse.2021.112831_bb0375 – volume: 114 start-page: 24 year: 2016 ident: 10.1016/j.rse.2021.112831_bb0020 article-title: Random forest in remote sensing: a review of applications and future directions publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2016.01.011 – year: 2017 ident: 10.1016/j.rse.2021.112831_bb0125 – ident: 10.1016/j.rse.2021.112831_bb0395 – volume: 221 start-page: 551 year: 2019 ident: 10.1016/j.rse.2021.112831_bb0085 article-title: Near real-time agriculture monitoring at national scale at parcel resolution: performance assessment of the Sen2-Agri automated system in various cropping systems around the world publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.11.007 – year: 1998 ident: 10.1016/j.rse.2021.112831_bb0055 – ident: 10.1016/j.rse.2021.112831_bb0030 – volume: 309 start-page: 570 year: 2005 ident: 10.1016/j.rse.2021.112831_bb0185 article-title: Global consequences of land use publication-title: Science (New York, N.Y.) doi: 10.1126/science.1111772 – volume: 52 start-page: 361 year: 2016 ident: 10.1016/j.rse.2021.112831_bb0380 article-title: Mapping Brazilian savanna vegetation gradients with Landsat time series publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 57 start-page: 64 year: 2016 ident: 10.1016/j.rse.2021.112831_bb0440 article-title: Spatial information in European agricultural data management. Requirements and interoperability supported by a domain model publication-title: Land Use Policy doi: 10.1016/j.landusepol.2016.05.023 – volume: 44 start-page: 2207 year: 2006 ident: 10.1016/j.rse.2021.112831_bb0210 article-title: On the blending of the Landsat and MODIS surface reflectance: predicting daily Landsat surface reflectance publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2006.872081 – volume: 54 start-page: 3928 year: 2016 ident: 10.1016/j.rse.2021.112831_bb0200 article-title: An operational radiometric Landsat preprocessing framework for large-area time series applications publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2016.2530856 – volume: 11 start-page: 151 year: 2011 ident: 10.1016/j.rse.2021.112831_bb0035 article-title: The responses of agriculture in Europe to climate change publication-title: Reg. Environ. Chang. doi: 10.1007/s10113-010-0173-x – year: 2017 ident: 10.1016/j.rse.2021.112831_bb0015 – ident: 10.1016/j.rse.2021.112831_bb0040 – volume: 36 start-page: 270 year: 2010 ident: 10.1016/j.rse.2021.112831_bb0175 article-title: AAFC annual crop inventory publication-title: Can. J. Remote. Sens. – volume: 11 start-page: 1768 year: 2019 ident: 10.1016/j.rse.2021.112831_bb0385 article-title: Winter wheat yield assessment from Landsat 8 and Sentinel-2 data: incorporating surface reflectance, through Phenological fitting, into regression yield models publication-title: Remote Sens. doi: 10.3390/rs11151768 – volume: 107 start-page: 117 year: 2005 ident: 10.1016/j.rse.2021.112831_bb0350 article-title: Future scenarios of European agricultural land use publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2004.12.002 – volume: 61 start-page: 55 year: 2017 ident: 10.1016/j.rse.2021.112831_bb0485 article-title: Multi-data approach for remote sensing-based regional crop rotation mapping: a case study for the Rur catchment, Germany publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 25 start-page: 295 year: 1988 ident: 10.1016/j.rse.2021.112831_bb0240 article-title: A soil-adjusted vegetation index (SAVI) publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(88)90106-X – volume: 17 start-page: 1425 year: 1996 ident: 10.1016/j.rse.2021.112831_bb0290 article-title: The use of the normalized difference water index (NDWI) in the delineation of open water features publication-title: Int. J. Remote Sens. doi: 10.1080/01431169608948714 – volume: 86 start-page: 53 year: 2018 ident: 10.1016/j.rse.2021.112831_bb0235 article-title: A progressive crop-type classification using multitemporal remote sensing data and phenological information publication-title: PFG – Journal of Photogrammetry, Remote Sensing and Geoinformation Science doi: 10.1007/s41064-018-0050-7 – ident: 10.1016/j.rse.2021.112831_bb0150 – volume: 8 start-page: 127 year: 1979 ident: 10.1016/j.rse.2021.112831_bb0450 article-title: Red and photographic infrared linear combinations for monitoring vegetation publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(79)90013-0 – volume: 92 start-page: 30 year: 2018 ident: 10.1016/j.rse.2021.112831_bb0410 article-title: Identifying crop rotation practice by the typification of crop sequence patterns for arable farming systems – a case study from Central Europe publication-title: Eur. J. Agron. doi: 10.1016/j.eja.2017.09.010 – start-page: 1 year: 2020 ident: 10.1016/j.rse.2021.112831_bb0360 article-title: Operational coregistration of the sentinel-2A/B image archive using multitemporal Landsat spectral averages publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 2 start-page: 1589 year: 2010 ident: 10.1016/j.rse.2021.112831_bb0010 article-title: Monitoring global croplands with coarse resolution earth observations: the global agriculture monitoring (GLAM) project publication-title: Remote Sens. doi: 10.3390/rs2061589 – volume: 36 start-page: 919 year: 2021 ident: 10.1016/j.rse.2021.112831_bb0445 article-title: Beyond organic farming - harnessing biodiversity-friendly landscapes publication-title: Trends Ecol. Evol. doi: 10.1016/j.tree.2021.06.010 – volume: 9 start-page: 655 year: 2019 ident: 10.1016/j.rse.2021.112831_bb0300 article-title: Sensitivity analysis of multi-temporal Sentinel-1 SAR parameters to crop height and canopy coverage publication-title: Appl. Sci. doi: 10.3390/app9040655 – ident: 10.1016/j.rse.2021.112831_bb0420 – volume: 113 start-page: 2455 year: 2009 ident: 10.1016/j.rse.2021.112831_bb0400 article-title: Model-assisted estimation as a unifying framework for estimating the area of land cover and land-cover change from remote sensing publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2009.07.006 – volume: 70 start-page: 98 year: 2015 ident: 10.1016/j.rse.2021.112831_bb0270 article-title: Crop rotation modelling—a European model intercomparison publication-title: Eur. J. Agron. doi: 10.1016/j.eja.2015.06.007 – ident: 10.1016/j.rse.2021.112831_bb0140 – volume: 89 start-page: 30 year: 2012 ident: 10.1016/j.rse.2021.112831_bb0180 article-title: Crop type mapping using spectral–temporal profiles and phenological information publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2012.07.015 – volume: 44 start-page: 113 year: 2016 ident: 10.1016/j.rse.2021.112831_bb0325 article-title: Measuring and monitoring linear woody features in agricultural landscapes through earth observation data as an indicator of habitat availability publication-title: Int. J. Appl. Earth Obs. Geoinf. – start-page: 811 year: 2014 ident: 10.1016/j.rse.2021.112831_bb0390 article-title: Agriculture, forestry and other land use (AFOLU) – volume: 12 start-page: 2779 year: 2020 ident: 10.1016/j.rse.2021.112831_bb0320 article-title: Crop type classification using fusion of Sentinel-1 and Sentinel-2 data: assessing the impact of feature selection, optical data availability, and parcel sizes on the accuracies publication-title: Remote Sens. doi: 10.3390/rs12172779 – ident: 10.1016/j.rse.2021.112831_bb0455 – year: 2019 ident: 10.1016/j.rse.2021.112831_bb0120 – volume: 8 start-page: 591 year: 2016 ident: 10.1016/j.rse.2021.112831_bb0285 article-title: Early detection of summer crops using high spatial resolution optical image time series publication-title: Remote Sens. doi: 10.3390/rs8070591 – volume: 186 year: 2021 ident: 10.1016/j.rse.2021.112831_bb0370 article-title: Large-scale winter catch crop monitoring with Sentinel-2 time series and machine learning–an alternative to on-site controls? publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2021.106173 – volume: 222 start-page: 303 year: 2019 ident: 10.1016/j.rse.2021.112831_bb0495 article-title: Crop type mapping without field-level labels: random forest transfer and unsupervised clustering techniques publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.12.026 – ident: 10.1016/j.rse.2021.112831_bb0135 – ident: 10.1016/j.rse.2021.112831_bb0105 – year: 2019 ident: 10.1016/j.rse.2021.112831_bb0295 – start-page: 171 year: 2009 ident: 10.1016/j.rse.2021.112831_bb0225 article-title: Chapter 7 Land-surface parameters and objects in hydrology – ident: 10.1016/j.rse.2021.112831_bb0145 – volume: 45 start-page: 5 year: 2001 ident: 10.1016/j.rse.2021.112831_bb0060 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – volume: 11 start-page: 37 year: 2019 ident: 10.1016/j.rse.2021.112831_bb0090 article-title: Evaluation of using Sentinel-1 and -2 time-series to identify winter land use in agricultural landscapes publication-title: Remote Sens. doi: 10.3390/rs11010037 – volume: 11 start-page: 1783 year: 2019 ident: 10.1016/j.rse.2021.112831_bb0340 article-title: The effect of droughts on vegetation condition in Germany: an analysis based on two decades of satellite earth observation time series and crop yield statistics publication-title: Remote Sens. doi: 10.3390/rs11151783 – volume: 92 start-page: 141 year: 2018 ident: 10.1016/j.rse.2021.112831_bb0255 article-title: A review of data assimilation of remote sensing and crop models publication-title: Eur. J. Agron. doi: 10.1016/j.eja.2017.11.002 – volume: 26 start-page: 341 year: 2011 ident: 10.1016/j.rse.2021.112831_bb0050 article-title: Monitoring US agriculture: the US Department of Agriculture, National Agricultural Statistics Service, cropland data layer program publication-title: Geocarto International doi: 10.1080/10106049.2011.562309 – volume: 215 start-page: 471 year: 2018 ident: 10.1016/j.rse.2021.112831_bb0205 article-title: Improvement of the Fmask algorithm for Sentinel-2 images: separating clouds from bright surfaces based on parallax effects publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.04.046 – start-page: 104 year: 2003 ident: 10.1016/j.rse.2021.112831_bb0280 article-title: Bodengüte der landwirtschaftlichen Nutzflächen – volume: 222 start-page: 1614 year: 2011 ident: 10.1016/j.rse.2021.112831_bb0305 article-title: The MONICA model: testing predictability for crop growth, soil moisture and nitrogen dynamics publication-title: Ecol. Model. doi: 10.1016/j.ecolmodel.2011.02.018 – volume: 7 start-page: 7959 year: 2015 ident: 10.1016/j.rse.2021.112831_bb0490 article-title: Mapping priorities to focus cropland mapping activities: fitness assessment of existing global, regional and national cropland maps publication-title: Remote Sens. doi: 10.3390/rs70607959 – volume: 10 start-page: 1642 year: 2018 ident: 10.1016/j.rse.2021.112831_bb0470 article-title: Synergistic use of radar Sentinel-1 and optical Sentinel-2 imagery for crop mapping: a case study for Belgium publication-title: Remote Sens. doi: 10.3390/rs10101642 – year: 2018 ident: 10.1016/j.rse.2021.112831_bb0130 – ident: 10.1016/j.rse.2021.112831_bb0155 – year: 2017 ident: 10.1016/j.rse.2021.112831_bb0160 – ident: 10.1016/j.rse.2021.112831_bb0065 – volume: 30 start-page: 524 year: 2015 ident: 10.1016/j.rse.2021.112831_bb0365 article-title: Time will tell: resource continuity bolsters ecosystem services publication-title: Trends Ecol. Evol. doi: 10.1016/j.tree.2015.06.007 – volume: 140 start-page: 1 year: 2014 ident: 10.1016/j.rse.2021.112831_bb0510 article-title: Efficient corn and soybean mapping with temporal extendability: A multi-year experiment using Landsat imagery publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2013.08.023 – volume: 83 start-page: 218 year: 2017 ident: 10.1016/j.rse.2021.112831_bb0500 article-title: Influence of crop type, heterogeneity and woody structure on avian biodiversity in agricultural landscapes publication-title: Ecol. Indic. doi: 10.1016/j.ecolind.2017.07.059 – volume: 13 start-page: 968 year: 2021 ident: 10.1016/j.rse.2021.112831_bb0275 article-title: Accuracy, bias, and improvements in mapping crops and cropland across the United States using the USDA cropland data layer publication-title: Remote Sens. doi: 10.3390/rs13050968 – volume: 40 start-page: 6553 year: 2019 ident: 10.1016/j.rse.2021.112831_bb0315 article-title: Crop type classification using a combination of optical and radar remote sensing data: a review publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2019.1569791 – volume: 572 start-page: 194 year: 2019 ident: 10.1016/j.rse.2021.112831_bb0465 article-title: Soil nematode abundance and functional group composition at a global scale publication-title: Nature doi: 10.1038/s41586-019-1418-6 – volume: 11 start-page: 232 year: 2019 ident: 10.1016/j.rse.2021.112831_bb0355 article-title: Mapping cropping practices on a national scale using intra-annual landsat time series binning publication-title: Remote Sens. doi: 10.3390/rs11030232 – volume: 8 start-page: 362 year: 2016 ident: 10.1016/j.rse.2021.112831_bb0245 article-title: Improved early crop type identification by joint use of high temporal resolution SAR and optical image time series publication-title: Remote Sens. doi: 10.3390/rs8050362 – volume: 64 start-page: 132 year: 2018 ident: 10.1016/j.rse.2021.112831_bb0425 article-title: MODIS-derived EVI, NDVI and WDRVI time series to estimate phenological metrics in French deciduous forests publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 12 start-page: 3096 year: 2020 ident: 10.1016/j.rse.2021.112831_bb0430 article-title: Unsupervised parameterization for optimal segmentation of agricultural parcels from satellite images in different agricultural landscapes publication-title: Remote Sens. doi: 10.3390/rs12183096 – year: 2017 ident: 10.1016/j.rse.2021.112831_bb0165 – volume: 11 start-page: 1124 year: 2019 ident: 10.1016/j.rse.2021.112831_bb0195 article-title: FORCE—Landsat + Sentinel-2 analysis ready data and beyond publication-title: Remote Sens. doi: 10.3390/rs11091124 – volume: 51 start-page: 511 year: 2018 ident: 10.1016/j.rse.2021.112831_bb0215 article-title: A rule-based approach for crop identification using multi-temporal and multi-sensor phenological metrics publication-title: European Journal of Remote Sensing doi: 10.1080/22797254.2018.1455540 – volume: 186 start-page: 121 year: 2016 ident: 10.1016/j.rse.2021.112831_bb0415 article-title: A note on the temporary misregistration of Landsat-8 operational land imager (OLI) and Sentinel-2 multi spectral instrument (MSI) imagery publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2016.08.025 – volume: 198 start-page: 369 year: 2017 ident: 10.1016/j.rse.2021.112831_bb0005 article-title: A new method for crop classification combining time series of radar images and crop phenology information publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.06.022 – start-page: 91 year: 2017 ident: 10.1016/j.rse.2021.112831_bb0080 article-title: Detailed crop mapping using remote sensing data (crop data layers). In global strategy to improve agricultural and rural statistics (GSARS) – volume: 9 start-page: 95 year: 2017 ident: 10.1016/j.rse.2021.112831_bb0250 article-title: Operational high resolution land cover map production at the country scale using satellite image time series publication-title: Remote Sens. doi: 10.3390/rs9010095 – ident: 10.1016/j.rse.2021.112831_bb0045 – volume: 177 start-page: 89 year: 2016 ident: 10.1016/j.rse.2021.112831_bb0265 article-title: A meta-analysis of remote sensing research on supervised pixel-based land-cover image classification processes: general guidelines for practitioners and future research publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2016.02.028 – volume: 133 start-page: 157 year: 2015 ident: 10.1016/j.rse.2021.112831_bb0345 article-title: Organic soils in Germany, their distribution and carbon stocks publication-title: CATENA doi: 10.1016/j.catena.2015.05.004 – ident: 10.1016/j.rse.2021.112831_bb0100 – volume: 177 year: 2020 ident: 10.1016/j.rse.2021.112831_bb0230 article-title: Future yields of double-cropping systems in the Southern Amazon, Brazil, under climate change and technological development publication-title: Agric. Syst. doi: 10.1016/j.agsy.2019.102707 – volume: 87 start-page: 52 year: 2012 ident: 10.1016/j.rse.2021.112831_bb0025 article-title: Meeting the demand for crop production: the challenge of yield decline in crops grown in short rotations publication-title: Biol. Rev. Camb. Philos. Soc. doi: 10.1111/j.1469-185X.2011.00184.x – volume: 122 start-page: 2 year: 2012 ident: 10.1016/j.rse.2021.112831_bb0505 article-title: Opening the archive: how free data has enabled the science and monitoring promise of Landsat publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2012.01.010 – volume: 199 start-page: 415 year: 2017 ident: 10.1016/j.rse.2021.112831_bb0475 article-title: Understanding the temporal behavior of crops using Sentinel-1 and Sentinel-2-like data for agricultural applications publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.07.015 – volume: 24 start-page: 1470 year: 2018 ident: 10.1016/j.rse.2021.112831_bb0330 article-title: Models meet data: challenges and opportunities in implementing land management in earth system models publication-title: Glob. Chang. Biol. doi: 10.1111/gcb.13988 – volume: 259 year: 2021 ident: 10.1016/j.rse.2021.112831_bb0190 article-title: Impacts of ignorance on the accuracy of image classification and thematic mapping publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2021.112367 – volume: 220 start-page: 135 year: 2019 ident: 10.1016/j.rse.2021.112831_bb0220 article-title: Intra-annual reflectance composites from Sentinel-2 and Landsat for national-scale crop and land cover mapping publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.10.031 – volume: 4 start-page: 310 year: 2011 ident: 10.1016/j.rse.2021.112831_bb0460 article-title: TimeStats: A software tool for the retrieval of temporal patterns from global satellite archives publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing doi: 10.1109/JSTARS.2010.2051942 – volume: 240 year: 2020 ident: 10.1016/j.rse.2021.112831_bb0335 article-title: Introducing APiC for regionalised land cover mapping on the national scale using Sentinel-2A imagery publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2020.111673 – ident: 10.1016/j.rse.2021.112831_bb0170 – volume: 232 year: 2019 ident: 10.1016/j.rse.2021.112831_bb0260 article-title: Using the Landsat archive to map crop cover history across the United States publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.111286 – volume: 148 start-page: 42 year: 2014 ident: 10.1016/j.rse.2021.112831_bb0310 article-title: Good practices for estimating area and assessing accuracy of land change publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2014.02.015 – volume: 37 start-page: 35 year: 1991 ident: 10.1016/j.rse.2021.112831_bb0075 article-title: A review of assessing the accuracy of classifications of remotely sensed data publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(91)90048-B – volume: 219 start-page: 145 year: 2018 ident: 10.1016/j.rse.2021.112831_bb0070 article-title: The harmonized Landsat and Sentinel-2 surface reflectance data set publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.09.002 – volume: 35 start-page: 4923 year: 2014 ident: 10.1016/j.rse.2021.112831_bb0405 article-title: Estimating area and map accuracy for stratified random sampling when the strata are different from the map classes publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2014.930207 |
| SSID | ssj0015871 |
| Score | 2.7224789 |
| Snippet | Monitoring agricultural systems becomes increasingly important in the context of global challenges like climate change, biodiversity loss, population growth,... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 112831 |
| SubjectTerms | Agricultural land Agricultural land cover Agricultural products agricultural statistics Agriculture Analysis-ready data Big data Biodiversity Biodiversity loss Cereals Climate change Cropping sequence Crops Cultivated lands data collection Decision trees Drought Environmental conditions Environmental impact Environmental management Environmental policy Environmental testing Farming systems Germany Land cover Landsat Large-area mapping leaves Mapping Meteorological conditions Monoculture Multi-sensor Optical remote sensing Population growth radar Radar data Remote sensing SAR Sequences Summer Sustainable agriculture Time series time series analysis Workflow |
| Title | Mapping of crop types and crop sequences with combined time series of Sentinel-1, Sentinel-2 and Landsat 8 data for Germany |
| URI | https://dx.doi.org/10.1016/j.rse.2021.112831 https://www.proquest.com/docview/2627859160 https://www.proquest.com/docview/2636411566 |
| Volume | 269 |
| WOSCitedRecordID | wos000759682100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-0704 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0015871 issn: 0034-4257 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FFgQXBIGKQEGLhDgQXDl-ro-lSgMoDRVNpdys9XoNKa5j8ihF_BF-LjP7cGgFVTlwsWzvw6vMl9nZeRLyQiRB4maB7_DEDRzYj7nDQYxw4CDmJ0zyWGRCFZuIRyM2mSSHrdZPGwtzVsZVxc7Pk_q_khreAbExdPYfyN1MCi_gHogOVyA7XK9F-ANe18aVGctzKSWrTsSsHhvfaet1fgpnY5A6sch8Fxeos9AeoRdRJUunp_Sj9slTEw0xPpgvu6yLDqbKU3GAHL66YCP-KAEGOGe1MOv5LaquUQOUU-Aj1SJHi_2baF5oCA1XX3gj7R-Jz9-mMtctBxic2biFHBbl6tMpt8gDBt5EHo1Qua8U3Hsl5xfUG3AydhtXEcOyfcCQp7NYW5btRUm3xugnBrD640agdRInO_MF5kL1eqbzetezlv7Rh3T_eDhMx_3J-GX91cF6ZGi3N8VZbpBNLw4T4Jebu-_6k_eNhSpksa7GaJZnLebKd_DSV_8m81za_ZVIM75H7pqzCN3VGLpPWrJqk63-mkjQaHj_ok1uD6RJb94mtwaqIPT3B-SHgRudFRTxRRXcKABEPzZwowg3auFGEW5Uww2HruH2en3vqWkM2CijCDYKYKMGbA_J8X5_vPfWMQU9HAHH-KWTCGABwguEzwKXY6U0V4ikiDBtJQdmkbO8J_xekblRxj0WgTjLQ-bLOGEFJg7yt8hGNavkI0J5HMe-B8JuLvNARn4GO0uE0j4LszCUYYe49idPhcl2j0VXytS6NZ6kQKUUqZRqKnXIq2ZIrVO9XNU5sHRMjayqZdAUEHjVsG1L89TwjEXqRV6MaSQjt0OeN83A5tF2xys5W2EfPwp6qGx5fI0-T8id9X9pm2ws5yv5lNwUZ8vpYv7MQPkXq7XIAQ |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mapping+of+crop+types+and+crop+sequences+with+combined+time+series+of+Sentinel-1%2C+Sentinel-2+and+Landsat+8+data+for+Germany&rft.jtitle=Remote+sensing+of+environment&rft.au=Blickensd%C3%B6rfer%2C+Lukas&rft.au=Schwieder%2C+Marcel&rft.au=Pflugmacher%2C+Dirk&rft.au=Nendel%2C+Claas&rft.date=2022-02-01&rft.issn=0034-4257&rft.volume=269+p.112831-&rft_id=info:doi/10.1016%2Fj.rse.2021.112831&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0034-4257&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0034-4257&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0034-4257&client=summon |