Variable Ranking for Online Ensemble Learning
In proposing, incremental feature selection based on correlation ranking (CR) for classification problems, we develop on-line training using the random forests (RF) algorithm, then evaluate the performance of the combination based on an NIPS 2003 Feature Selection Challenge dataset. Results show tha...
Uloženo v:
| Vydáno v: | Journal of advanced computational intelligence and intelligent informatics Ročník 13; číslo 3; s. 331 - 337 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
20.05.2009
|
| ISSN: | 1343-0130, 1883-8014 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In proposing, incremental feature selection based on correlation ranking (CR) for classification problems, we develop on-line training using the random forests (RF) algorithm, then evaluate the performance of the combination based on an NIPS 2003 Feature Selection Challenge dataset. Results show that our approach achieves performance comparable to others batch learning algorithms, including RF. |
|---|---|
| ISSN: | 1343-0130 1883-8014 |
| DOI: | 10.20965/jaciii.2009.p0331 |