The 206 kbp mitochondrial genome of Phanerochaete carnosa reveals dynamics of introns, accumulation of repeat sequences and plasmid-derived genes

In this study, the mitogenome of Phanerochaete carnosa was sequenced and assembled by the next-generation sequencing. The P. carnosa mitogenome was composed of circular DNA molecules, with a total size of 206,437 bp. Intron sequence, repeat sequence and plasmid-derived genes together promoted the P....

Full description

Saved in:
Bibliographic Details
Published in:International journal of biological macromolecules Vol. 162; pp. 209 - 219
Main Authors: Wang, Xu, Song, Andong, Wang, Fengqin, Chen, Mingyue, Li, Xiao, Li, Qiang, Liu, Na
Format: Journal Article
Language:English
Published: Netherlands Elsevier B.V 01.11.2020
Subjects:
ISSN:0141-8130, 1879-0003, 1879-0003
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this study, the mitogenome of Phanerochaete carnosa was sequenced and assembled by the next-generation sequencing. The P. carnosa mitogenome was composed of circular DNA molecules, with a total size of 206,437 bp. Intron sequence, repeat sequence and plasmid-derived genes together promoted the P. carnosa mitogenome to become the second largest mitogenome in Basidiomycota. Gene arrangement analysis revealed large-scale gene rearrangements between Polyporales mitogenomes, and P. carnosa contained a unique gene order. The number and position classes of introns varied between 14 Polyporales species tested, indicated numerous intron loss/gain events occurred in the evolution of Polyporales. Most core PCGs in the 14 Polyporales species we tested were found subjected to purifying selection. However, the Ka/Ks values of rps3 gene were found >1 between some Polyporales species, indicating pressure of positive selection may exist. Phylogenetic analysis based on the combined mitochondrial gene set obtained well-supported tree topologies, and P. carnosa was identified as a sister species to Phlebia radiata. This study served as the first report on the mitogenome in the family Phanerochaetaceae, which will promote the understanding of the phylogeny, population genetics, and evolution of this white-rot fungus and related fungi.
AbstractList In this study, the mitogenome of Phanerochaete carnosa was sequenced and assembled by the next-generation sequencing. The P. carnosa mitogenome was composed of circular DNA molecules, with a total size of 206,437 bp. Intron sequence, repeat sequence and plasmid-derived genes together promoted the P. carnosa mitogenome to become the second largest mitogenome in Basidiomycota. Gene arrangement analysis revealed large-scale gene rearrangements between Polyporales mitogenomes, and P. carnosa contained a unique gene order. The number and position classes of introns varied between 14 Polyporales species tested, indicated numerous intron loss/gain events occurred in the evolution of Polyporales. Most core PCGs in the 14 Polyporales species we tested were found subjected to purifying selection. However, the Ka/Ks values of rps3 gene were found >1 between some Polyporales species, indicating pressure of positive selection may exist. Phylogenetic analysis based on the combined mitochondrial gene set obtained well-supported tree topologies, and P. carnosa was identified as a sister species to Phlebia radiata. This study served as the first report on the mitogenome in the family Phanerochaetaceae, which will promote the understanding of the phylogeny, population genetics, and evolution of this white-rot fungus and related fungi.
In this study, the mitogenome of Phanerochaete carnosa was sequenced and assembled by the next-generation sequencing. The P. carnosa mitogenome was composed of circular DNA molecules, with a total size of 206,437 bp. Intron sequence, repeat sequence and plasmid-derived genes together promoted the P. carnosa mitogenome to become the second largest mitogenome in Basidiomycota. Gene arrangement analysis revealed large-scale gene rearrangements between Polyporales mitogenomes, and P. carnosa contained a unique gene order. The number and position classes of introns varied between 14 Polyporales species tested, indicated numerous intron loss/gain events occurred in the evolution of Polyporales. Most core PCGs in the 14 Polyporales species we tested were found subjected to purifying selection. However, the Ka/Ks values of rps3 gene were found >1 between some Polyporales species, indicating pressure of positive selection may exist. Phylogenetic analysis based on the combined mitochondrial gene set obtained well-supported tree topologies, and P. carnosa was identified as a sister species to Phlebia radiata. This study served as the first report on the mitogenome in the family Phanerochaetaceae, which will promote the understanding of the phylogeny, population genetics, and evolution of this white-rot fungus and related fungi.In this study, the mitogenome of Phanerochaete carnosa was sequenced and assembled by the next-generation sequencing. The P. carnosa mitogenome was composed of circular DNA molecules, with a total size of 206,437 bp. Intron sequence, repeat sequence and plasmid-derived genes together promoted the P. carnosa mitogenome to become the second largest mitogenome in Basidiomycota. Gene arrangement analysis revealed large-scale gene rearrangements between Polyporales mitogenomes, and P. carnosa contained a unique gene order. The number and position classes of introns varied between 14 Polyporales species tested, indicated numerous intron loss/gain events occurred in the evolution of Polyporales. Most core PCGs in the 14 Polyporales species we tested were found subjected to purifying selection. However, the Ka/Ks values of rps3 gene were found >1 between some Polyporales species, indicating pressure of positive selection may exist. Phylogenetic analysis based on the combined mitochondrial gene set obtained well-supported tree topologies, and P. carnosa was identified as a sister species to Phlebia radiata. This study served as the first report on the mitogenome in the family Phanerochaetaceae, which will promote the understanding of the phylogeny, population genetics, and evolution of this white-rot fungus and related fungi.
In this study, the mitogenome of Phanerochaete carnosa was sequenced and assembled by the next-generation sequencing. The P. carnosa mitogenome was composed of circular DNA molecules, with a total size of 206,437 bp. Intron sequence, repeat sequence and plasmid-derived genes together promoted the P. carnosa mitogenome to become the second largest mitogenome in Basidiomycota. Gene arrangement analysis revealed large-scale gene rearrangements between Polyporales mitogenomes, and P. carnosa contained a unique gene order. The number and position classes of introns varied between 14 Polyporales species tested, indicated numerous intron loss/gain events occurred in the evolution of Polyporales. Most core PCGs in the 14 Polyporales species we tested were found subjected to purifying selection. However, the Ka/Ks values of rps3 gene were found >1 between some Polyporales species, indicating pressure of positive selection may exist. Phylogenetic analysis based on the combined mitochondrial gene set obtained well-supported tree topologies, and P. carnosa was identified as a sister species to Phlebia radiata. This study served as the first report on the mitogenome in the family Phanerochaetaceae, which will promote the understanding of the phylogeny, population genetics, and evolution of this white-rot fungus and related fungi.
Author Chen, Mingyue
Li, Qiang
Wang, Xu
Liu, Na
Song, Andong
Li, Xiao
Wang, Fengqin
Author_xml – sequence: 1
  givenname: Xu
  surname: Wang
  fullname: Wang, Xu
  organization: College of Life Sciences, Henan Agricultural University, Zhengzhou, Henan 450002, China
– sequence: 2
  givenname: Andong
  surname: Song
  fullname: Song, Andong
  organization: College of Life Sciences, Henan Agricultural University, Zhengzhou, Henan 450002, China
– sequence: 3
  givenname: Fengqin
  surname: Wang
  fullname: Wang, Fengqin
  organization: College of Life Sciences, Henan Agricultural University, Zhengzhou, Henan 450002, China
– sequence: 4
  givenname: Mingyue
  surname: Chen
  fullname: Chen, Mingyue
  organization: College of Life Sciences, Henan Agricultural University, Zhengzhou, Henan 450002, China
– sequence: 5
  givenname: Xiao
  surname: Li
  fullname: Li, Xiao
  organization: College of Life Sciences, Henan Agricultural University, Zhengzhou, Henan 450002, China
– sequence: 6
  givenname: Qiang
  surname: Li
  fullname: Li, Qiang
  email: leeq110@126.com
  organization: College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, Sichuan 610106, China
– sequence: 7
  givenname: Na
  surname: Liu
  fullname: Liu, Na
  email: naliu@henau.edu.cn
  organization: College of Life Sciences, Henan Agricultural University, Zhengzhou, Henan 450002, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32562727$$D View this record in MEDLINE/PubMed
BookMark eNqFUcuO1DAQtNAidnbgF1Y-ciCh7ThOInEArXhJK8FhOVuO3WE8JPZgJyPtZ_DHOMzOhcvIh5bcVdXdVTfkygePhNwyKBkw-XZfun3vwqRNyYFDCbJkgj8jG9Y2XQEA1RXZABOsaFkF1-QmpX3-lTVrX5DriteSN7zZkD8PO6QcJP3VH-jk5mB2wdvo9Eh_og8T0jDQ7zvtMeaWxhmp0dGHpGnEI-oxUfvo9eRMWpHOzzH49IZqY5ZpGfXsgl8bEQ-oZ5rw94LeYKLaW3oYdZqcLSxGd0S7TsT0kjwfsiy-eqpb8uPTx4e7L8X9t89f7z7cF0YAmwuJtWR1ZbWRbSd0DWCgFyAEDBKGBkWLjKHhYpCsM7yxXdfzZmjq7AnrWVNtyeuT7iGGvFSa1eSSwXHMt4YlKV43oqpEI-rLUJE3gYrltyW3T9Cln9CqQ3STjo_q7HgGvDsBTAwpRRyUcfM_m-ao3agYqDVgtVfngNUasAKpcsCZLv-jnydcJL4_ETF7enQYVTJujcK6iGZWNrhLEn8B-87EWA
CitedBy_id crossref_primary_10_3389_fmicb_2020_01970
crossref_primary_10_3389_fgene_2021_534871
crossref_primary_10_1080_23802359_2021_1970643
crossref_primary_10_1080_23802359_2024_2389914
crossref_primary_10_1186_s43008_023_00112_x
crossref_primary_10_1007_s00253_021_11153_w
crossref_primary_10_1080_23802359_2021_1994890
crossref_primary_10_3897_imafungus_16_140572
crossref_primary_10_1080_23802359_2021_1945967
crossref_primary_10_1038_s41598_020_73461_x
crossref_primary_10_1080_23802359_2020_1815602
crossref_primary_10_3389_fmicb_2020_591453
crossref_primary_10_1080_23802359_2021_2008832
crossref_primary_10_1080_23802359_2025_2478128
crossref_primary_10_3390_jof8080781
crossref_primary_10_1186_s43008_020_00047_7
crossref_primary_10_1016_j_ijbiomac_2021_01_087
crossref_primary_10_1080_23802359_2021_1917312
crossref_primary_10_1080_23802359_2021_1935343
crossref_primary_10_1080_23802359_2021_1882912
crossref_primary_10_1080_23802359_2021_1915197
crossref_primary_10_1080_23802359_2021_1950066
crossref_primary_10_1016_j_csbj_2020_12_041
crossref_primary_10_1080_23802359_2025_2509806
crossref_primary_10_1186_s43008_024_00149_6
crossref_primary_10_3389_fmicb_2021_583129
crossref_primary_10_3389_fmicb_2021_646567
crossref_primary_10_1080_23802359_2020_1790327
crossref_primary_10_1080_23802359_2020_1797581
crossref_primary_10_1038_s41598_021_82040_7
crossref_primary_10_1080_23802359_2021_1944383
crossref_primary_10_1186_s43008_022_00100_7
crossref_primary_10_3390_ani12182449
crossref_primary_10_1080_23802359_2022_2039081
crossref_primary_10_3390_microorganisms12102053
crossref_primary_10_1186_s43008_024_00164_7
crossref_primary_10_1080_23802359_2021_1945508
crossref_primary_10_3897_imafungus_16_138363
crossref_primary_10_1186_s43008_022_00094_2
crossref_primary_10_1080_23802359_2024_2410449
crossref_primary_10_3389_fpls_2025_1532782
Cites_doi 10.1093/nar/gkv784
10.1002/jez.b.22852
10.1073/pnas.89.14.6575
10.1111/1574-6968.12387
10.1007/s00253-010-2516-4
10.3390/ijms20205167
10.1186/1471-2164-8-137
10.1093/nar/gku1266
10.1093/molbev/msx248
10.3389/fmicb.2018.02079
10.1186/s12864-018-5210-z
10.1093/molbev/msw074
10.1094/MPMI-05-19-0128-R
10.1016/j.ijbiomac.2018.07.197
10.1093/nar/gkw413
10.1371/journal.pone.0086683
10.1016/j.mib.2010.09.003
10.1016/j.ympev.2017.08.001
10.1093/nar/27.8.1767
10.1089/cmb.2012.0021
10.1093/oxfordjournals.molbev.a004068
10.1371/journal.pone.0072038
10.1038/s41598-018-27489-9
10.1093/gbe/evu028
10.1038/nature18618
10.1371/journal.pone.0107536
10.1016/j.fgb.2013.01.009
10.1016/j.ympev.2012.08.023
10.1016/j.ijbiomac.2019.09.188
10.1016/j.ijbiomac.2018.10.037
10.1016/j.ijbiomac.2018.06.129
10.1007/s00294-014-0436-z
10.1007/s00253-018-9082-6
10.1093/nar/29.22.4633
10.2144/00286ir01
10.1186/s13104-016-1900-2
10.1093/bioinformatics/btu033
10.1002/iub.2231
10.1093/sysbio/sys029
10.1016/j.ijbiomac.2019.08.003
10.1093/bib/bbx108
10.7717/peerj.3661
10.1556/amicr.49.2002.2-3.22
10.1371/journal.pone.0014048
10.1186/s12862-018-1246-6
10.1093/nar/gkw1071
10.1002/jcp.27375
10.1371/journal.pone.0097141
10.1016/j.ijbiomac.2019.12.056
10.1186/s12864-019-5732-z
10.1186/1471-2164-13-444
10.1093/protein/3.3.153
10.1016/j.ijbiomac.2018.10.029
10.1093/nar/27.2.573
10.1111/j.1096-0031.2010.00329.x
10.1111/j.1574-6968.2010.01979.x
10.1128/AEM.02490-10
10.1083/jcb.91.3.227s
10.1093/nar/gkt289
10.1016/j.cub.2006.06.054
10.1371/journal.pone.0156104
10.1186/s12864-016-3309-7
10.1093/oxfordjournals.molbev.a004084
10.1093/nar/gkt371
10.1186/1471-2105-6-31
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright © 2020 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2020 Elsevier B.V.
– notice: Copyright © 2020 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.ijbiomac.2020.06.142
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1879-0003
EndPage 219
ExternalDocumentID 32562727
10_1016_j_ijbiomac_2020_06_142
S0141813020335868
Genre Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFRF
ABGSF
ABJNI
ABMAC
ABUDA
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LX3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SPCBC
SSU
SSZ
T5K
UNMZH
~02
~G-
29J
9DU
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AGRDE
AHHHB
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HLW
HVGLF
HZ~
R2-
SBG
SEW
UHS
WUQ
~HD
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c401t-6e56153dac6894a500c0b40440f60f7e48e11ec24f619c27d99b27f751411b173
ISICitedReferencesCount 41
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000577936100020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0141-8130
1879-0003
IngestDate Sat Sep 27 23:06:51 EDT 2025
Thu Oct 02 11:15:59 EDT 2025
Wed Feb 19 02:28:03 EST 2025
Sat Nov 29 07:28:00 EST 2025
Tue Nov 18 21:46:37 EST 2025
Fri Feb 23 02:36:40 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Phylogenetic analysis
Repeat sequence
Phanerochaete carnosa
Protein coding gene
Mitochondrial genome
Gene rearrangement
Language English
License Copyright © 2020 Elsevier B.V. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c401t-6e56153dac6894a500c0b40440f60f7e48e11ec24f619c27d99b27f751411b173
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 32562727
PQID 2415303131
PQPubID 23479
PageCount 11
ParticipantIDs proquest_miscellaneous_2574334745
proquest_miscellaneous_2415303131
pubmed_primary_32562727
crossref_citationtrail_10_1016_j_ijbiomac_2020_06_142
crossref_primary_10_1016_j_ijbiomac_2020_06_142
elsevier_sciencedirect_doi_10_1016_j_ijbiomac_2020_06_142
PublicationCentury 2000
PublicationDate 2020-11-01
2020-11-00
2020-Nov-01
20201101
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle International journal of biological macromolecules
PublicationTitleAlternate Int J Biol Macromol
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Himmelstrand, Olson, Brandstrom Durling, Karlsson, Stenlid (bb0100) 2014; 60
Kolesnikova, Putintseva, Simonov, Biriukov, Oreshkova, Pavlov, Sharov, Kuzmin, Anderson, Krutovsky (bb0265) 2019; 20
van de Vossenberg, Brankovics, Nguyen, van Gent-Pelzer, Smith, Dadej, Przetakiewicz, Kreuze, Boerma, van Leeuwen, Andre Levesque, van der Lee (bb0310) 2018; 18
Salavirta, Oksanen, Kuuskeri, Makela, Laine, Paulin, Lundell (bb0280) 2014; 9
Ernster, Schatz (bb0045) 1981; 91
Mardanov, Beletsky, Kadnikov, Ignatov, Ravin (bb0105) 2014; 9
Lohse, Drechsel, Kahlau, Bock (bb0165) 2013; 41
Hamari, Juhasz, Kevei (bb0090) 2002; 49
Barbhuiya, Uddin, Chakraborty (bb0180) 2019; 332
Li, Wang, Chen, Jin, Chen, Xiong, Li, Zhao, Huang (bb0075) 2018; 119
Lavrov, Boore, Brown (bb0320) 2002; 19
Latorre-Pellicer, Moreno-Loshuertos, Lechuga-Vieco, Sanchez-Cabo, Torroja, Acin-Perez, Calvo, Aix, Gonzalez-Guerra, Logan, Bernad-Miana, Romanos, Cruz, Cogliati, Sobrino, Carracedo, Perez-Martos, Fernandez-Silva, Ruiz-Cabello, Murphy, Flores, Vazquez, Enriquez (bb0035) 2016; 535
Li, Zhang, Chen, Chen, Lan, Liu (bb0260) 2013; 8
Basse (bb0065) 2010; 13
Bleasby, Wootton (bb0150) 1990; 3
Lowe, Chan (bb0160) 2016; 44
Mahajan, Master (bb0025) 2010; 86
Poliseno, Feregrino, Sartoretto, Aurelle, Worheide, McFadden, Vargas (bb0055) 2017; 115
Schubert, Lindgreen, Orlando (bb0110) 2016; 9
Forget, Ustinova, Wang, Huss, Lang (bb0285) 2002; 19
Wyatt, Richards, Brueggeman, Friesen (bb0300) 2020; 33
Bernt, Donath, Juhling, Externbrink, Florentz, Fritzsch, Putz, Middendorf, Stadler (bb0140) 2013; 69
Deng, Hsiang, Li, Lin, Wang, Chen, Xie, Ming (bb0225) 2018; 9
Sankoff, Leduc, Antoine, Paquin, Lang, Cedergren (bb0050) 1992; 89
Benson (bb0210) 1999; 27
Suzuki, MacDonald, Syed, Salamov, Hori, Aerts, Henrissat, Wiebenga, VanKuyk, Barry, Lindquist, LaButti, Lapidus, Lucas, Coutinho, Gong, Samejima, Mahadevan, Abou-Zaid, de Vries, Igarashi, Yadav, Grigoriev, Master (bb0020) 2012; 13
Li, Chen, Xiong, Jin, Chen, Huang (bb0130) 2018; 102
Slater, Birney (bb0155) 2005; 6
Haridas, Gantt (bb0255) 2010; 308
MacDonald, Doering, Canam, Gong, Guttman, Campbell, Master (bb0010) 2011; 77
Ferandon, Xu, Barroso (bb0275) 2013; 55
Losada, Pakala, Fedorova, Joardar, Shabalina, Hostetler, Pakala, Zafar, Thomas, Rodriguez-Carres, Dean, Vilgalys, Nierman, Cubeta (bb0305) 2014; 352
Li, Yang, Chen, Xiong, Jin, Pu, Huang (bb0125) 2018; 8
Kurtz, Choudhuri, Ohlebusch, Schleiermacher, Stoye, Giegerich (bb0215) 2001; 29
Stothard (bb0175) 2000; 28
Li, Wang, Jin, Chen, Xiong, Li, Zhao, Huang (bb0335) 2019; 121
Caspermeyer (bb0200) 2016; 33
Rozas, Ferrer-Mata, Sanchez-DelBarrio, Guirao-Rico, Librado, Ramos-Onsins, Sanchez-Gracia (bb0195) 2017; 34
Stamatakis (bb0250) 2014; 30
Hahn, Bachmann, Chevreux (bb0120) 2013; 41
Wang, Zhang, Zhang, Zhou, Wang, Yang, Yuan (bb0170) 2017; 5
Chen, Ye, Zhang, Xu (bb0205) 2015; 43
Boore (bb0040) 1999; 27
Katoh, Rozewicki, Yamada (bb0230) 2019; 20
Bankevich, Nurk, Antipov, Gurevich, Dvorkin, Kulikov, Lesin, Nikolenko, Pham, Prjibelski, Pyshkin, Sirotkin, Vyahhi, Tesler, Alekseyev, Pevzner (bb0115) 2012; 19
N.R. Coordinators (bb0145) 2017; 45
Turmel, Otis, Lemieux (bb0290) 2007; 8
Kanzi, Wingfield, Steenkamp, Naidoo, van der Merwe (bb0095) 2016; 11
Uddin, Mazumder, Barbhuiya, Chakraborty (bb0185) 2020; 72
Lanfear, Frandsen, Wright, Senfeld, Calcott (bb0240) 2017; 34
Li, Ren, Shi, Peng, Zhao, Song, Zhao (bb0325) 2019; 20
Jurak, Suzuki, van Erven, Gandier, Wong, Chan, Ho, Gong, Tillier, Rosso, Kabel, Miyauchi, Master (bb0005) 2018; 19
Li, Wang, Jin, Chen, Xiong, Li, Liu, Huang (bb0085) 2019; 121
McBride, Neuspiel, Wasiak (bb0030) 2006; 16
Vaidya, Lohman, Meier (bb0235) 2011; 27
Syed, Shale, Pagadala, Tuszynski (bb0015) 2014; 9
Uddin, Mazumder, Chakraborty (bb0190) 2019; 234
Li, Xiang, Wan, Wu, Wu, Ma, Song, Zhao, Huang (bb0080) 2019; 139
Ferandon, Moukha, Callac, Benedetto, Castroviejo, Barroso (bb0220) 2010; 5
Liu, Cai, Zhang, Chen, Shu, Ma, Bian (bb0295) 2019; 143
Xia, Zheng, Murphy, Zeng (bb0315) 2016; 17
Aguileta, de Vienne, Ross, Hood, Giraud, Petit, Gabaldon (bb0070) 2014; 6
Li, He, Ren, Xiong, Jin, Peng, Huang (bb0270) 2020
Li, Yang, Xiang, Wan, Wu, Huang, Zhao (bb0330) 2020; 145
Li, Liao, Yang, Xiong, Jin, Chen, Huang (bb0060) 2018; 118
Valach, Burger, Gray, Lang (bb0135) 2014; 42
Ronquist, Teslenko, van der Mark, Ayres, Darling, Hohna, Larget, Liu, Suchard, Huelsenbeck (bb0245) 2012; 61
Li (10.1016/j.ijbiomac.2020.06.142_bb0335) 2019; 121
Kanzi (10.1016/j.ijbiomac.2020.06.142_bb0095) 2016; 11
Wang (10.1016/j.ijbiomac.2020.06.142_bb0170) 2017; 5
Caspermeyer (10.1016/j.ijbiomac.2020.06.142_bb0200) 2016; 33
Li (10.1016/j.ijbiomac.2020.06.142_bb0125) 2018; 8
Li (10.1016/j.ijbiomac.2020.06.142_bb0330) 2020; 145
N.R. Coordinators (10.1016/j.ijbiomac.2020.06.142_bb0145) 2017; 45
Aguileta (10.1016/j.ijbiomac.2020.06.142_bb0070) 2014; 6
Hamari (10.1016/j.ijbiomac.2020.06.142_bb0090) 2002; 49
Mardanov (10.1016/j.ijbiomac.2020.06.142_bb0105) 2014; 9
McBride (10.1016/j.ijbiomac.2020.06.142_bb0030) 2006; 16
Katoh (10.1016/j.ijbiomac.2020.06.142_bb0230) 2019; 20
Li (10.1016/j.ijbiomac.2020.06.142_bb0130) 2018; 102
Himmelstrand (10.1016/j.ijbiomac.2020.06.142_bb0100) 2014; 60
Valach (10.1016/j.ijbiomac.2020.06.142_bb0135) 2014; 42
Boore (10.1016/j.ijbiomac.2020.06.142_bb0040) 1999; 27
Ferandon (10.1016/j.ijbiomac.2020.06.142_bb0275) 2013; 55
Lohse (10.1016/j.ijbiomac.2020.06.142_bb0165) 2013; 41
Barbhuiya (10.1016/j.ijbiomac.2020.06.142_bb0180) 2019; 332
Sankoff (10.1016/j.ijbiomac.2020.06.142_bb0050) 1992; 89
Li (10.1016/j.ijbiomac.2020.06.142_bb0260) 2013; 8
Losada (10.1016/j.ijbiomac.2020.06.142_bb0305) 2014; 352
Ferandon (10.1016/j.ijbiomac.2020.06.142_bb0220) 2010; 5
Latorre-Pellicer (10.1016/j.ijbiomac.2020.06.142_bb0035) 2016; 535
Kurtz (10.1016/j.ijbiomac.2020.06.142_bb0215) 2001; 29
Suzuki (10.1016/j.ijbiomac.2020.06.142_bb0020) 2012; 13
Jurak (10.1016/j.ijbiomac.2020.06.142_bb0005) 2018; 19
MacDonald (10.1016/j.ijbiomac.2020.06.142_bb0010) 2011; 77
Bankevich (10.1016/j.ijbiomac.2020.06.142_bb0115) 2012; 19
Li (10.1016/j.ijbiomac.2020.06.142_bb0080) 2019; 139
Syed (10.1016/j.ijbiomac.2020.06.142_bb0015) 2014; 9
Liu (10.1016/j.ijbiomac.2020.06.142_bb0295) 2019; 143
Poliseno (10.1016/j.ijbiomac.2020.06.142_bb0055) 2017; 115
Li (10.1016/j.ijbiomac.2020.06.142_bb0325) 2019; 20
Ronquist (10.1016/j.ijbiomac.2020.06.142_bb0245) 2012; 61
Benson (10.1016/j.ijbiomac.2020.06.142_bb0210) 1999; 27
Rozas (10.1016/j.ijbiomac.2020.06.142_bb0195) 2017; 34
Salavirta (10.1016/j.ijbiomac.2020.06.142_bb0280) 2014; 9
Wyatt (10.1016/j.ijbiomac.2020.06.142_bb0300) 2020; 33
Hahn (10.1016/j.ijbiomac.2020.06.142_bb0120) 2013; 41
Chen (10.1016/j.ijbiomac.2020.06.142_bb0205) 2015; 43
van de Vossenberg (10.1016/j.ijbiomac.2020.06.142_bb0310) 2018; 18
Stothard (10.1016/j.ijbiomac.2020.06.142_bb0175) 2000; 28
Lanfear (10.1016/j.ijbiomac.2020.06.142_bb0240) 2017; 34
Schubert (10.1016/j.ijbiomac.2020.06.142_bb0110) 2016; 9
Lowe (10.1016/j.ijbiomac.2020.06.142_bb0160) 2016; 44
Lavrov (10.1016/j.ijbiomac.2020.06.142_bb0320) 2002; 19
Li (10.1016/j.ijbiomac.2020.06.142_bb0085) 2019; 121
Li (10.1016/j.ijbiomac.2020.06.142_bb0060) 2018; 118
Bernt (10.1016/j.ijbiomac.2020.06.142_bb0140) 2013; 69
Bleasby (10.1016/j.ijbiomac.2020.06.142_bb0150) 1990; 3
Kolesnikova (10.1016/j.ijbiomac.2020.06.142_bb0265) 2019; 20
Uddin (10.1016/j.ijbiomac.2020.06.142_bb0190) 2019; 234
Xia (10.1016/j.ijbiomac.2020.06.142_bb0315) 2016; 17
Li (10.1016/j.ijbiomac.2020.06.142_bb0270) 2020
Turmel (10.1016/j.ijbiomac.2020.06.142_bb0290) 2007; 8
Ernster (10.1016/j.ijbiomac.2020.06.142_bb0045) 1981; 91
Vaidya (10.1016/j.ijbiomac.2020.06.142_bb0235) 2011; 27
Slater (10.1016/j.ijbiomac.2020.06.142_bb0155) 2005; 6
Li (10.1016/j.ijbiomac.2020.06.142_bb0075) 2018; 119
Stamatakis (10.1016/j.ijbiomac.2020.06.142_bb0250) 2014; 30
Forget (10.1016/j.ijbiomac.2020.06.142_bb0285) 2002; 19
Deng (10.1016/j.ijbiomac.2020.06.142_bb0225) 2018; 9
Uddin (10.1016/j.ijbiomac.2020.06.142_bb0185) 2020; 72
Basse (10.1016/j.ijbiomac.2020.06.142_bb0065) 2010; 13
Mahajan (10.1016/j.ijbiomac.2020.06.142_bb0025) 2010; 86
Haridas (10.1016/j.ijbiomac.2020.06.142_bb0255) 2010; 308
References_xml – volume: 9
  year: 2014
  ident: bb0015
  article-title: Systematic identification and evolutionary analysis of catalytically versatile cytochrome p450 monooxygenase families enriched in model basidiomycete fungi
  publication-title: PLoS One
– volume: 33
  start-page: 173
  year: 2020
  end-page: 188
  ident: bb0300
  article-title: A comparative genomic analysis of the Barley pathogen
  publication-title: Mol. Plant-Microbe Interact.
– volume: 118
  start-page: 756
  year: 2018
  end-page: 769
  ident: bb0060
  article-title: Characterization of the mitochondrial genomes of three species in the ectomycorrhizal genus
  publication-title: Int. J. Biol. Macromol.
– volume: 6
  start-page: 31
  year: 2005
  ident: bb0155
  article-title: Automated generation of heuristics for biological sequence comparison
  publication-title: BMC Bioinformatics
– volume: 91
  start-page: 227s
  year: 1981
  end-page: 255s
  ident: bb0045
  article-title: Mitochondria: a historical review
  publication-title: J. Cell Biol.
– volume: 5
  start-page: e3661
  year: 2017
  ident: bb0170
  article-title: Comparative mitogenomic analysis of mirid bugs (Hemiptera: Miridae) and evaluation of potential DNA barcoding markers
  publication-title: PeerJ
– volume: 332
  start-page: 99
  year: 2019
  end-page: 112
  ident: bb0180
  article-title: Genome-wide comparison of codon usage dynamics in mitochondrial genes across different species of amphibian genus
  publication-title: J. Exp. Zool. Part B
– volume: 34
  start-page: 772
  year: 2017
  end-page: 773
  ident: bb0240
  article-title: PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses
  publication-title: Mol. Biol. Evol.
– volume: 33
  start-page: 1887
  year: 2016
  ident: bb0200
  article-title: MEGA evolutionary software re-engineered to handle today’s big data demands
  publication-title: Mol. Biol. Evol.
– volume: 145
  start-page: 974
  year: 2020
  end-page: 984
  ident: bb0330
  article-title: The complete mitochondrial genomes of two model ectomycorrhizal fungi (
  publication-title: Int. J. Biol. Macromol.
– volume: 69
  start-page: 313
  year: 2013
  end-page: 319
  ident: bb0140
  article-title: MITOS: improved de novo metazoan mitochondrial genome annotation
  publication-title: Mol. Phylogenet. Evol.
– volume: 27
  start-page: 1767
  year: 1999
  end-page: 1780
  ident: bb0040
  article-title: Animal mitochondrial genomes
  publication-title: Nucleic Acids Res.
– volume: 60
  start-page: 303
  year: 2014
  end-page: 313
  ident: bb0100
  article-title: Intronic and plasmid-derived regions contribute to the large mitochondrial genome sizes of Agaricomycetes
  publication-title: Curr. Genet.
– volume: 9
  start-page: 2079
  year: 2018
  ident: bb0225
  article-title: Comparison of the mitochondrial genome sequences of six
  publication-title: Front. Microbiol.
– volume: 77
  start-page: 3211
  year: 2011
  end-page: 3218
  ident: bb0010
  article-title: Transcriptomic responses of the softwood-degrading white-rot fungus
  publication-title: Appl. Environ. Microbiol.
– volume: 72
  start-page: 899
  year: 2020
  end-page: 914
  ident: bb0185
  article-title: Similarities and dissimilarities of codon usage in mitochondrial ATP genes among fishes, aves, and mammals
  publication-title: IUBMB Life
– volume: 535
  start-page: 561
  year: 2016
  end-page: 565
  ident: bb0035
  article-title: Mitochondrial and nuclear DNA matching shapes metabolism and healthy ageing
  publication-title: Nature
– year: 2020
  ident: bb0270
  article-title: Comparative mitogenome analysis reveals mitochondrial genome differentiation in ectomycorrhizal and asymbiotic
  publication-title: Front. Microbiol.
– volume: 5
  year: 2010
  ident: bb0220
  article-title: The
  publication-title: PLoS One
– volume: 20
  start-page: 5167
  year: 2019
  ident: bb0325
  article-title: Comparative mitochondrial genome analysis of two ectomycorrhizal fungi (
  publication-title: Int. J. Mol. Sci.
– volume: 121
  start-page: 364
  year: 2019
  end-page: 372
  ident: bb0335
  article-title: Characterization and comparison of the mitochondrial genomes from two
  publication-title: Int. J. Biol. Macromol.
– volume: 9
  start-page: 88
  year: 2016
  ident: bb0110
  article-title: AdapterRemoval v2: rapid adapter trimming, identification, and read merging
  publication-title: BMC Res Notes
– volume: 119
  start-page: 792
  year: 2018
  end-page: 802
  ident: bb0075
  article-title: Characterization and comparative mitogenomic analysis of six newly sequenced mitochondrial genomes from ectomycorrhizal fungi (
  publication-title: Int. J. Biol. Macromol.
– volume: 121
  start-page: 249
  year: 2019
  end-page: 260
  ident: bb0085
  article-title: Characterization and comparative analysis of six complete mitochondrial genomes from ectomycorrhizal fungi of the
  publication-title: Int. J. Biol. Macromol.
– volume: 30
  start-page: 1312
  year: 2014
  end-page: 1313
  ident: bb0250
  article-title: RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies
  publication-title: Bioinformatics
– volume: 18
  start-page: 136
  year: 2018
  ident: bb0310
  article-title: The linear mitochondrial genome of the quarantine chytrid
  publication-title: BMC Evol. Biol.
– volume: 41
  start-page: e129
  year: 2013
  ident: bb0120
  article-title: Reconstructing mitochondrial genomes directly from genomic next-generation sequencing reads—a baiting and iterative mapping approach
  publication-title: Nucleic Acids Res.
– volume: 44
  start-page: W54
  year: 2016
  end-page: W57
  ident: bb0160
  article-title: tRNAscan-SE on-line: integrating search and context for analysis of transfer RNA genes
  publication-title: Nucleic Acids Res.
– volume: 308
  start-page: 29
  year: 2010
  end-page: 34
  ident: bb0255
  article-title: The mitochondrial genome of the wood-degrading basidiomycete
  publication-title: FEMS Microbiol. Lett.
– volume: 89
  start-page: 6575
  year: 1992
  end-page: 6579
  ident: bb0050
  article-title: Gene order comparisons for phylogenetic inference: evolution of the mitochondrial genome
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 234
  start-page: 6397
  year: 2019
  end-page: 6413
  ident: bb0190
  article-title: Understanding molecular biology of codon usage in mitochondrial complex IV genes of electron transport system: relevance to mitochondrial diseases
  publication-title: J. Cell. Physiol.
– volume: 61
  start-page: 539
  year: 2012
  end-page: 542
  ident: bb0245
  article-title: MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space
  publication-title: Syst. Biol.
– volume: 29
  start-page: 4633
  year: 2001
  end-page: 4642
  ident: bb0215
  article-title: REPuter: the manifold applications of repeat analysis on a genomic scale
  publication-title: Nucleic Acids Res.
– volume: 6
  start-page: 451
  year: 2014
  end-page: 465
  ident: bb0070
  article-title: High variability of mitochondrial gene order among fungi
  publication-title: Genome Biol. Evol.
– volume: 28
  start-page: 1102, 1104
  year: 2000
  ident: bb0175
  article-title: The sequence manipulation suite: JavaScript programs for analyzing and formatting protein and DNA sequences
  publication-title: Biotechniques
– volume: 13
  start-page: 712
  year: 2010
  end-page: 719
  ident: bb0065
  article-title: Mitochondrial inheritance in fungi
  publication-title: Curr. Opin. Microbiol.
– volume: 19
  start-page: 163
  year: 2002
  end-page: 169
  ident: bb0320
  article-title: Complete mtDNA sequences of two millipedes suggest a new model for mitochondrial gene rearrangements: duplication and nonrandom loss
  publication-title: Mol. Biol. Evol.
– volume: 13
  start-page: 444
  year: 2012
  ident: bb0020
  article-title: Comparative genomics of the white-rot fungi,
  publication-title: BMC Genomics
– volume: 27
  start-page: 573
  year: 1999
  end-page: 580
  ident: bb0210
  article-title: Tandem repeats finder: a program to analyze DNA sequences
  publication-title: Nucleic Acids Res.
– volume: 34
  start-page: 3299
  year: 2017
  end-page: 3302
  ident: bb0195
  article-title: DnaSP 6: DNA sequence polymorphism analysis of large data sets
  publication-title: Mol. Biol. Evol.
– volume: 20
  start-page: 1160
  year: 2019
  end-page: 1166
  ident: bb0230
  article-title: MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization
  publication-title: Brief. Bioinform.
– volume: 19
  start-page: 815
  year: 2018
  ident: bb0005
  article-title: Dynamics of the
  publication-title: BMC Genomics
– volume: 139
  start-page: 397
  year: 2019
  end-page: 408
  ident: bb0080
  article-title: The complete mitochondrial genomes of five important medicinal
  publication-title: Int. J. Biol. Macromol.
– volume: 9
  year: 2014
  ident: bb0280
  article-title: Mitochondrial genome of
  publication-title: PLoS One
– volume: 17
  start-page: 965
  year: 2016
  ident: bb0315
  article-title: Intraspecific rearrangement of mitochondrial genome suggests the prevalence of the tandem duplication-random loss (TDLR) mechanism in
  publication-title: BMC Genomics
– volume: 8
  start-page: 9104
  year: 2018
  ident: bb0125
  article-title: Characterization and phylogenetic analysis of the complete mitochondrial genome of the medicinal fungus
  publication-title: Sci. Rep.
– volume: 27
  start-page: 171
  year: 2011
  end-page: 180
  ident: bb0235
  article-title: SequenceMatrix: concatenation software for the fast assembly of multi-gene datasets with character set and codon information
  publication-title: Cladistics
– volume: 49
  start-page: 331
  year: 2002
  end-page: 335
  ident: bb0090
  article-title: Role of mobile introns in mitochondrial genome diversity of fungi (a mini review)
  publication-title: Acta Microbiol. Immunol. Hung.
– volume: 352
  start-page: 165
  year: 2014
  end-page: 173
  ident: bb0305
  article-title: Mobile elements and mitochondrial genome expansion in the soil fungus and potato pathogen
  publication-title: FEMS Microbiol. Lett.
– volume: 43
  start-page: 7762
  year: 2015
  end-page: 7768
  ident: bb0205
  article-title: High speed BLASTN: an accelerated MegaBLAST search tool
  publication-title: Nucleic Acids Res.
– volume: 16
  start-page: R551
  year: 2006
  end-page: R560
  ident: bb0030
  article-title: Mitochondria: more than just a powerhouse
  publication-title: Curr. Biol.
– volume: 9
  year: 2014
  ident: bb0105
  article-title: The 203 kbp mitochondrial genome of the phytopathogenic fungus
  publication-title: PLoS One
– volume: 11
  year: 2016
  ident: bb0095
  article-title: Intron derived size polymorphism in the mitochondrial genomes of closely related
  publication-title: PLoS One
– volume: 20
  start-page: 351
  year: 2019
  ident: bb0265
  article-title: Mobile genetic elements explain size variation in the mitochondrial genomes of four closely-related
  publication-title: BMC Genomics
– volume: 8
  start-page: 137
  year: 2007
  ident: bb0290
  article-title: An unexpectedly large and loosely packed mitochondrial genome in the charophycean green alga
  publication-title: BMC Genomics
– volume: 143
  start-page: 373
  year: 2019
  end-page: 381
  ident: bb0295
  article-title: The mitochondrial genome of
  publication-title: Int. J. Biol. Macromol.
– volume: 102
  start-page: 6143
  year: 2018
  end-page: 6153
  ident: bb0130
  article-title: Comparative mitogenomics reveals large-scale gene rearrangements in the mitochondrial genome of two
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 19
  start-page: 310
  year: 2002
  end-page: 319
  ident: bb0285
  article-title: : a linear mitochondrial genome, tRNA editing, and an evolutionary link to lower fungi
  publication-title: Mol. Biol. Evol.
– volume: 42
  start-page: 13764
  year: 2014
  end-page: 13777
  ident: bb0135
  article-title: Widespread occurrence of organelle genome-encoded 5S rRNAs including permuted molecules
  publication-title: Nucleic Acids Res.
– volume: 45
  start-page: D12
  year: 2017
  end-page: D17
  ident: bb0145
  article-title: Database resources of the National Center for Biotechnology Information
  publication-title: Nucleic Acids Res.
– volume: 19
  start-page: 455
  year: 2012
  end-page: 477
  ident: bb0115
  article-title: SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing
  publication-title: J. Comput. Biol.
– volume: 8
  start-page: e72038
  year: 2013
  ident: bb0260
  article-title: Complete mitochondrial genome of the medicinal mushroom
  publication-title: PLoS One
– volume: 3
  start-page: 153
  year: 1990
  end-page: 159
  ident: bb0150
  article-title: Construction of validated, non-redundant composite protein sequence databases
  publication-title: Protein Eng.
– volume: 86
  start-page: 1903
  year: 2010
  end-page: 1914
  ident: bb0025
  article-title: Proteomic characterization of lignocellulose-degrading enzymes secreted by
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 115
  start-page: 181
  year: 2017
  end-page: 189
  ident: bb0055
  article-title: Comparative mitogenomics, phylogeny and evolutionary history of
  publication-title: Mol. Phylogenet. Evol.
– volume: 41
  start-page: W575
  year: 2013
  end-page: W581
  ident: bb0165
  article-title: OrganellarGenomeDRAW--a suite of tools for generating physical maps of plastid and mitochondrial genomes and visualizing expression data sets
  publication-title: Nucleic Acids Res.
– volume: 55
  start-page: 85
  year: 2013
  end-page: 91
  ident: bb0275
  article-title: The 135 kbp mitochondrial genome of
  publication-title: Fungal Genet. Biol.
– volume: 43
  start-page: 7762
  issue: 16
  year: 2015
  ident: 10.1016/j.ijbiomac.2020.06.142_bb0205
  article-title: High speed BLASTN: an accelerated MegaBLAST search tool
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkv784
– volume: 332
  start-page: 99
  issue: 3–4
  year: 2019
  ident: 10.1016/j.ijbiomac.2020.06.142_bb0180
  article-title: Genome-wide comparison of codon usage dynamics in mitochondrial genes across different species of amphibian genus Bombina
  publication-title: J. Exp. Zool. Part B
  doi: 10.1002/jez.b.22852
– volume: 89
  start-page: 6575
  issue: 14
  year: 1992
  ident: 10.1016/j.ijbiomac.2020.06.142_bb0050
  article-title: Gene order comparisons for phylogenetic inference: evolution of the mitochondrial genome
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.89.14.6575
– volume: 352
  start-page: 165
  issue: 2
  year: 2014
  ident: 10.1016/j.ijbiomac.2020.06.142_bb0305
  article-title: Mobile elements and mitochondrial genome expansion in the soil fungus and potato pathogen Rhizoctonia solani AG-3
  publication-title: FEMS Microbiol. Lett.
  doi: 10.1111/1574-6968.12387
– volume: 86
  start-page: 1903
  issue: 6
  year: 2010
  ident: 10.1016/j.ijbiomac.2020.06.142_bb0025
  article-title: Proteomic characterization of lignocellulose-degrading enzymes secreted by Phanerochaete carnosa grown on spruce and microcrystalline cellulose
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-010-2516-4
– volume: 20
  start-page: 5167
  issue: 20
  year: 2019
  ident: 10.1016/j.ijbiomac.2020.06.142_bb0325
  article-title: Comparative mitochondrial genome analysis of two ectomycorrhizal fungi (Rhizopogon) reveals dynamic changes of intron and phylogenetic relationships of the subphylum Agaricomycotina
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms20205167
– volume: 8
  start-page: 137
  year: 2007
  ident: 10.1016/j.ijbiomac.2020.06.142_bb0290
  article-title: An unexpectedly large and loosely packed mitochondrial genome in the charophycean green alga Chlorokybus atmophyticus
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-8-137
– volume: 42
  start-page: 13764
  issue: 22
  year: 2014
  ident: 10.1016/j.ijbiomac.2020.06.142_bb0135
  article-title: Widespread occurrence of organelle genome-encoded 5S rRNAs including permuted molecules
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gku1266
– volume: 34
  start-page: 3299
  issue: 12
  year: 2017
  ident: 10.1016/j.ijbiomac.2020.06.142_bb0195
  article-title: DnaSP 6: DNA sequence polymorphism analysis of large data sets
  publication-title: Mol. Biol. Evol.
  doi: 10.1093/molbev/msx248
– volume: 9
  start-page: 2079
  year: 2018
  ident: 10.1016/j.ijbiomac.2020.06.142_bb0225
  article-title: Comparison of the mitochondrial genome sequences of six Annulohypoxylon stygium isolates suggests short fragment insertions as a potential factor leading to larger genomic size
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2018.02079
– volume: 19
  start-page: 815
  issue: 1
  year: 2018
  ident: 10.1016/j.ijbiomac.2020.06.142_bb0005
  article-title: Dynamics of the Phanerochaete carnosa transcriptome during growth on aspen and spruce
  publication-title: BMC Genomics
  doi: 10.1186/s12864-018-5210-z
– volume: 33
  start-page: 1887
  issue: 7
  year: 2016
  ident: 10.1016/j.ijbiomac.2020.06.142_bb0200
  article-title: MEGA evolutionary software re-engineered to handle today’s big data demands
  publication-title: Mol. Biol. Evol.
  doi: 10.1093/molbev/msw074
– volume: 33
  start-page: 173
  issue: 2
  year: 2020
  ident: 10.1016/j.ijbiomac.2020.06.142_bb0300
  article-title: A comparative genomic analysis of the Barley pathogen Pyrenophora teres f. teres identifies subtelomeric regions as drivers of virulence
  publication-title: Mol. Plant-Microbe Interact.
  doi: 10.1094/MPMI-05-19-0128-R
– volume: 119
  start-page: 792
  year: 2018
  ident: 10.1016/j.ijbiomac.2020.06.142_bb0075
  article-title: Characterization and comparative mitogenomic analysis of six newly sequenced mitochondrial genomes from ectomycorrhizal fungi (Russula) and phylogenetic analysis of the Agaricomycetes
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2018.07.197
– volume: 44
  start-page: W54
  issue: W1
  year: 2016
  ident: 10.1016/j.ijbiomac.2020.06.142_bb0160
  article-title: tRNAscan-SE on-line: integrating search and context for analysis of transfer RNA genes
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkw413
– volume: 9
  issue: 1
  year: 2014
  ident: 10.1016/j.ijbiomac.2020.06.142_bb0015
  article-title: Systematic identification and evolutionary analysis of catalytically versatile cytochrome p450 monooxygenase families enriched in model basidiomycete fungi
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0086683
– volume: 13
  start-page: 712
  issue: 6
  year: 2010
  ident: 10.1016/j.ijbiomac.2020.06.142_bb0065
  article-title: Mitochondrial inheritance in fungi
  publication-title: Curr. Opin. Microbiol.
  doi: 10.1016/j.mib.2010.09.003
– volume: 115
  start-page: 181
  year: 2017
  ident: 10.1016/j.ijbiomac.2020.06.142_bb0055
  article-title: Comparative mitogenomics, phylogeny and evolutionary history of Leptogorgia (Gorgoniidae)
  publication-title: Mol. Phylogenet. Evol.
  doi: 10.1016/j.ympev.2017.08.001
– volume: 27
  start-page: 1767
  issue: 8
  year: 1999
  ident: 10.1016/j.ijbiomac.2020.06.142_bb0040
  article-title: Animal mitochondrial genomes
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/27.8.1767
– volume: 19
  start-page: 455
  issue: 5
  year: 2012
  ident: 10.1016/j.ijbiomac.2020.06.142_bb0115
  article-title: SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing
  publication-title: J. Comput. Biol.
  doi: 10.1089/cmb.2012.0021
– volume: 19
  start-page: 163
  issue: 2
  year: 2002
  ident: 10.1016/j.ijbiomac.2020.06.142_bb0320
  article-title: Complete mtDNA sequences of two millipedes suggest a new model for mitochondrial gene rearrangements: duplication and nonrandom loss
  publication-title: Mol. Biol. Evol.
  doi: 10.1093/oxfordjournals.molbev.a004068
– volume: 8
  start-page: e72038
  issue: 8
  year: 2013
  ident: 10.1016/j.ijbiomac.2020.06.142_bb0260
  article-title: Complete mitochondrial genome of the medicinal mushroom Ganoderma lucidum
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0072038
– volume: 8
  start-page: 9104
  issue: 1
  year: 2018
  ident: 10.1016/j.ijbiomac.2020.06.142_bb0125
  article-title: Characterization and phylogenetic analysis of the complete mitochondrial genome of the medicinal fungus Laetiporus sulphureus
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-27489-9
– volume: 6
  start-page: 451
  issue: 2
  year: 2014
  ident: 10.1016/j.ijbiomac.2020.06.142_bb0070
  article-title: High variability of mitochondrial gene order among fungi
  publication-title: Genome Biol. Evol.
  doi: 10.1093/gbe/evu028
– volume: 535
  start-page: 561
  issue: 7613
  year: 2016
  ident: 10.1016/j.ijbiomac.2020.06.142_bb0035
  article-title: Mitochondrial and nuclear DNA matching shapes metabolism and healthy ageing
  publication-title: Nature
  doi: 10.1038/nature18618
– volume: 9
  issue: 9
  year: 2014
  ident: 10.1016/j.ijbiomac.2020.06.142_bb0105
  article-title: The 203 kbp mitochondrial genome of the phytopathogenic fungus Sclerotinia borealis reveals multiple invasions of introns and genomic duplications
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0107536
– volume: 55
  start-page: 85
  year: 2013
  ident: 10.1016/j.ijbiomac.2020.06.142_bb0275
  article-title: The 135 kbp mitochondrial genome of Agaricus bisporus is the largest known eukaryotic reservoir of group I introns and plasmid-related sequences
  publication-title: Fungal Genet. Biol.
  doi: 10.1016/j.fgb.2013.01.009
– volume: 69
  start-page: 313
  issue: 2
  year: 2013
  ident: 10.1016/j.ijbiomac.2020.06.142_bb0140
  article-title: MITOS: improved de novo metazoan mitochondrial genome annotation
  publication-title: Mol. Phylogenet. Evol.
  doi: 10.1016/j.ympev.2012.08.023
– volume: 145
  start-page: 974
  year: 2020
  ident: 10.1016/j.ijbiomac.2020.06.142_bb0330
  article-title: The complete mitochondrial genomes of two model ectomycorrhizal fungi (Laccaria): features, intron dynamics and phylogenetic implications
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2019.09.188
– volume: 121
  start-page: 364
  year: 2019
  ident: 10.1016/j.ijbiomac.2020.06.142_bb0335
  article-title: Characterization and comparison of the mitochondrial genomes from two Lyophyllum fungal species and insights into phylogeny of Agaricomycetes
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2018.10.037
– volume: 118
  start-page: 756
  issue: Pt A
  year: 2018
  ident: 10.1016/j.ijbiomac.2020.06.142_bb0060
  article-title: Characterization of the mitochondrial genomes of three species in the ectomycorrhizal genus Cantharellus and phylogeny of Agaricomycetes
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2018.06.129
– volume: 60
  start-page: 303
  issue: 4
  year: 2014
  ident: 10.1016/j.ijbiomac.2020.06.142_bb0100
  article-title: Intronic and plasmid-derived regions contribute to the large mitochondrial genome sizes of Agaricomycetes
  publication-title: Curr. Genet.
  doi: 10.1007/s00294-014-0436-z
– volume: 102
  start-page: 6143
  issue: 14
  year: 2018
  ident: 10.1016/j.ijbiomac.2020.06.142_bb0130
  article-title: Comparative mitogenomics reveals large-scale gene rearrangements in the mitochondrial genome of two Pleurotus species
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-018-9082-6
– volume: 29
  start-page: 4633
  issue: 22
  year: 2001
  ident: 10.1016/j.ijbiomac.2020.06.142_bb0215
  article-title: REPuter: the manifold applications of repeat analysis on a genomic scale
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/29.22.4633
– volume: 28
  start-page: 1102, 1104
  issue: 6
  year: 2000
  ident: 10.1016/j.ijbiomac.2020.06.142_bb0175
  article-title: The sequence manipulation suite: JavaScript programs for analyzing and formatting protein and DNA sequences
  publication-title: Biotechniques
  doi: 10.2144/00286ir01
– volume: 9
  start-page: 88
  year: 2016
  ident: 10.1016/j.ijbiomac.2020.06.142_bb0110
  article-title: AdapterRemoval v2: rapid adapter trimming, identification, and read merging
  publication-title: BMC Res Notes
  doi: 10.1186/s13104-016-1900-2
– volume: 30
  start-page: 1312
  issue: 9
  year: 2014
  ident: 10.1016/j.ijbiomac.2020.06.142_bb0250
  article-title: RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu033
– volume: 72
  start-page: 899
  issue: 5
  year: 2020
  ident: 10.1016/j.ijbiomac.2020.06.142_bb0185
  article-title: Similarities and dissimilarities of codon usage in mitochondrial ATP genes among fishes, aves, and mammals
  publication-title: IUBMB Life
  doi: 10.1002/iub.2231
– volume: 61
  start-page: 539
  issue: 3
  year: 2012
  ident: 10.1016/j.ijbiomac.2020.06.142_bb0245
  article-title: MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space
  publication-title: Syst. Biol.
  doi: 10.1093/sysbio/sys029
– volume: 139
  start-page: 397
  year: 2019
  ident: 10.1016/j.ijbiomac.2020.06.142_bb0080
  article-title: The complete mitochondrial genomes of five important medicinal Ganoderma species: features, evolution, and phylogeny
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2019.08.003
– volume: 20
  start-page: 1160
  issue: 4
  year: 2019
  ident: 10.1016/j.ijbiomac.2020.06.142_bb0230
  article-title: MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization
  publication-title: Brief. Bioinform.
  doi: 10.1093/bib/bbx108
– volume: 34
  start-page: 772
  issue: 3
  year: 2017
  ident: 10.1016/j.ijbiomac.2020.06.142_bb0240
  article-title: PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses
  publication-title: Mol. Biol. Evol.
– volume: 5
  start-page: e3661
  year: 2017
  ident: 10.1016/j.ijbiomac.2020.06.142_bb0170
  article-title: Comparative mitogenomic analysis of mirid bugs (Hemiptera: Miridae) and evaluation of potential DNA barcoding markers
  publication-title: PeerJ
  doi: 10.7717/peerj.3661
– volume: 49
  start-page: 331
  issue: 2–3
  year: 2002
  ident: 10.1016/j.ijbiomac.2020.06.142_bb0090
  article-title: Role of mobile introns in mitochondrial genome diversity of fungi (a mini review)
  publication-title: Acta Microbiol. Immunol. Hung.
  doi: 10.1556/amicr.49.2002.2-3.22
– volume: 5
  issue: 11
  year: 2010
  ident: 10.1016/j.ijbiomac.2020.06.142_bb0220
  article-title: The Agaricus bisporus cox1 gene: the longest mitochondrial gene and the largest reservoir of mitochondrial group i introns
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0014048
– volume: 18
  start-page: 136
  issue: 1
  year: 2018
  ident: 10.1016/j.ijbiomac.2020.06.142_bb0310
  article-title: The linear mitochondrial genome of the quarantine chytrid Synchytrium endobioticum; insights into the evolution and recent history of an obligate biotrophic plant pathogen
  publication-title: BMC Evol. Biol.
  doi: 10.1186/s12862-018-1246-6
– year: 2020
  ident: 10.1016/j.ijbiomac.2020.06.142_bb0270
  article-title: Comparative mitogenome analysis reveals mitochondrial genome differentiation in ectomycorrhizal and asymbiotic Amanita species
  publication-title: Front. Microbiol.
– volume: 45
  start-page: D12
  issue: D1
  year: 2017
  ident: 10.1016/j.ijbiomac.2020.06.142_bb0145
  article-title: Database resources of the National Center for Biotechnology Information
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkw1071
– volume: 234
  start-page: 6397
  issue: 5
  year: 2019
  ident: 10.1016/j.ijbiomac.2020.06.142_bb0190
  article-title: Understanding molecular biology of codon usage in mitochondrial complex IV genes of electron transport system: relevance to mitochondrial diseases
  publication-title: J. Cell. Physiol.
  doi: 10.1002/jcp.27375
– volume: 9
  issue: 5
  year: 2014
  ident: 10.1016/j.ijbiomac.2020.06.142_bb0280
  article-title: Mitochondrial genome of Phlebia radiata is the second largest (156 kbp) among fungi and features signs of genome flexibility and recent recombination events
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0097141
– volume: 143
  start-page: 373
  year: 2019
  ident: 10.1016/j.ijbiomac.2020.06.142_bb0295
  article-title: The mitochondrial genome of Morchella importuna (272.2 kb) is the largest among fungi and contains numerous introns, mitochondrial non-conserved open reading frames and repetitive sequences
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2019.12.056
– volume: 20
  start-page: 351
  issue: 1
  year: 2019
  ident: 10.1016/j.ijbiomac.2020.06.142_bb0265
  article-title: Mobile genetic elements explain size variation in the mitochondrial genomes of four closely-related Armillaria species
  publication-title: BMC Genomics
  doi: 10.1186/s12864-019-5732-z
– volume: 13
  start-page: 444
  year: 2012
  ident: 10.1016/j.ijbiomac.2020.06.142_bb0020
  article-title: Comparative genomics of the white-rot fungi, Phanerochaete carnosa and P. chrysosporium, to elucidate the genetic basis of the distinct wood types they colonize
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-13-444
– volume: 3
  start-page: 153
  issue: 3
  year: 1990
  ident: 10.1016/j.ijbiomac.2020.06.142_bb0150
  article-title: Construction of validated, non-redundant composite protein sequence databases
  publication-title: Protein Eng.
  doi: 10.1093/protein/3.3.153
– volume: 121
  start-page: 249
  year: 2019
  ident: 10.1016/j.ijbiomac.2020.06.142_bb0085
  article-title: Characterization and comparative analysis of six complete mitochondrial genomes from ectomycorrhizal fungi of the Lactarius genus and phylogenetic analysis of the Agaricomycetes
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2018.10.029
– volume: 27
  start-page: 573
  issue: 2
  year: 1999
  ident: 10.1016/j.ijbiomac.2020.06.142_bb0210
  article-title: Tandem repeats finder: a program to analyze DNA sequences
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/27.2.573
– volume: 27
  start-page: 171
  issue: 2
  year: 2011
  ident: 10.1016/j.ijbiomac.2020.06.142_bb0235
  article-title: SequenceMatrix: concatenation software for the fast assembly of multi-gene datasets with character set and codon information
  publication-title: Cladistics
  doi: 10.1111/j.1096-0031.2010.00329.x
– volume: 308
  start-page: 29
  issue: 1
  year: 2010
  ident: 10.1016/j.ijbiomac.2020.06.142_bb0255
  article-title: The mitochondrial genome of the wood-degrading basidiomycete Trametes cingulata
  publication-title: FEMS Microbiol. Lett.
  doi: 10.1111/j.1574-6968.2010.01979.x
– volume: 77
  start-page: 3211
  issue: 10
  year: 2011
  ident: 10.1016/j.ijbiomac.2020.06.142_bb0010
  article-title: Transcriptomic responses of the softwood-degrading white-rot fungus Phanerochaete carnosa during growth on coniferous and deciduous wood
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.02490-10
– volume: 91
  start-page: 227s
  issue: 3 Pt 2
  year: 1981
  ident: 10.1016/j.ijbiomac.2020.06.142_bb0045
  article-title: Mitochondria: a historical review
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.91.3.227s
– volume: 41
  start-page: W575
  issue: Web Server issue
  year: 2013
  ident: 10.1016/j.ijbiomac.2020.06.142_bb0165
  article-title: OrganellarGenomeDRAW--a suite of tools for generating physical maps of plastid and mitochondrial genomes and visualizing expression data sets
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkt289
– volume: 16
  start-page: R551
  issue: 14
  year: 2006
  ident: 10.1016/j.ijbiomac.2020.06.142_bb0030
  article-title: Mitochondria: more than just a powerhouse
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2006.06.054
– volume: 11
  issue: 6
  year: 2016
  ident: 10.1016/j.ijbiomac.2020.06.142_bb0095
  article-title: Intron derived size polymorphism in the mitochondrial genomes of closely related Chrysoporthe species
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0156104
– volume: 17
  start-page: 965
  issue: 1
  year: 2016
  ident: 10.1016/j.ijbiomac.2020.06.142_bb0315
  article-title: Intraspecific rearrangement of mitochondrial genome suggests the prevalence of the tandem duplication-random loss (TDLR) mechanism in Quasipaa boulengeri
  publication-title: BMC Genomics
  doi: 10.1186/s12864-016-3309-7
– volume: 19
  start-page: 310
  issue: 3
  year: 2002
  ident: 10.1016/j.ijbiomac.2020.06.142_bb0285
  article-title: Hyaloraphidium curvatum: a linear mitochondrial genome, tRNA editing, and an evolutionary link to lower fungi
  publication-title: Mol. Biol. Evol.
  doi: 10.1093/oxfordjournals.molbev.a004084
– volume: 41
  start-page: e129
  issue: 13
  year: 2013
  ident: 10.1016/j.ijbiomac.2020.06.142_bb0120
  article-title: Reconstructing mitochondrial genomes directly from genomic next-generation sequencing reads—a baiting and iterative mapping approach
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkt371
– volume: 6
  start-page: 31
  year: 2005
  ident: 10.1016/j.ijbiomac.2020.06.142_bb0155
  article-title: Automated generation of heuristics for biological sequence comparison
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-6-31
SSID ssj0006518
Score 2.47223
Snippet In this study, the mitogenome of Phanerochaete carnosa was sequenced and assembled by the next-generation sequencing. The P. carnosa mitogenome was composed of...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 209
SubjectTerms circular DNA
Codon Usage
Cyclooxygenase 1 - genetics
Evolution, Molecular
Gene Order
Gene Rearrangement
Genes, Mitochondrial
Genome, Mitochondrial
Genomics
High-Throughput Nucleotide Sequencing
Introns
mitochondrial genes
Mitochondrial genome
Phanerochaete - genetics
Phanerochaete carnosa
Phlebia
Phylogenetic analysis
Phylogeny
Plasmids - genetics
Polyporales - genetics
Protein coding gene
Repeat sequence
Repetitive Sequences, Nucleic Acid
trees
white-rot fungi
Title The 206 kbp mitochondrial genome of Phanerochaete carnosa reveals dynamics of introns, accumulation of repeat sequences and plasmid-derived genes
URI https://dx.doi.org/10.1016/j.ijbiomac.2020.06.142
https://www.ncbi.nlm.nih.gov/pubmed/32562727
https://www.proquest.com/docview/2415303131
https://www.proquest.com/docview/2574334745
Volume 162
WOSCitedRecordID wos000577936100020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-0003
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006518
  issn: 0141-8130
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELa6XSS4IN6Ux8pIiEsJJKkTx8eq6gpQKXvoQm5R4jilZZt2-9LyM_hZ_CtmYiebLiy7HLhEVWI3aefLeGZsfx8hL92UBSJJmQVjQWKxTEhLQFxisSCG0ShLgqSYwf884MNhEIbiqNH4We6F2Z7wPA_OzsTiv5oazoGxcevsP5i7-lI4AZ_B6HAEs8Px2oZ3bb_9LVm0Z_C-gn_L00KbA_lYZ0WN4OhrnCsUy4ohZkZ26ny-inEbi0I25VSr1K8MncRyrmPtWMrNzKh94aWlWmB5oVqMrTkHIBqfTVIrhZ-6hWB2jL60HgHvliBrxBWaDqrAzCwuVgkWwr3naxy_mNJ2uKnKQmY9cRclScYX24FVxqeTCvw9sw_lIwzW3zeqXu6A3Napyh1lBdSxAsdM5pQu3HfbSD4qrNIBG3dsi9rIbq79Nmjo-sX0zWSKlAcxElu6NrK6Opr4a5ele_gpOjweDKJRPxy9WpxaKGCGE_1GzWWP7LvcE0GT7Hff98MPVVjge0WxuXr-2nb1P9_6skjpskyoiIhGd8htk8rQrobgXdJQ-T1ys1cqCN4nPwCKFKBIAYp0B4pUQ5HOM7oDRWqgSA0UaQlFbGmg-JrWgYgXNBBpBUQKQKQXgEgLID4gx4f9Ue-dZSRALAmJ_9rylYcZSRpLPxAM1TuknTCUSc98O-OKBcpxlHRZ5jtCujwVInF5xiENcJzE4Z2HpJnPc_WYUF_avi0kNPMTFnMWpFzwTsJjcB5xKtMW8cq_O5KGHx9lWk6iciHkNCrNFKGZItuHxNltkbdVv4VmiLmyhyitGZk4V8evESDyyr4vSvNHYE2c3QMrzTerCEPxDjKxOn9p40HC0GGceS3ySGOneuYOJD8uZDNPrtH7Kbl1_m4-I831cqOekxtyu56slgdkj4fBgcH_L-4Q8F4
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+206+kbp+mitochondrial+genome+of+Phanerochaete+carnosa+reveals+dynamics+of+introns%2C+accumulation+of+repeat+sequences+and+plasmid-derived+genes&rft.jtitle=International+journal+of+biological+macromolecules&rft.au=Wang%2C+Xu&rft.au=Song%2C+Andong&rft.au=Wang%2C+Fengqin&rft.au=Chen%2C+Mingyue&rft.date=2020-11-01&rft.issn=0141-8130&rft.volume=162+p.209-219&rft.spage=209&rft.epage=219&rft_id=info:doi/10.1016%2Fj.ijbiomac.2020.06.142&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0141-8130&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0141-8130&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0141-8130&client=summon