Effects of structural and conformational characteristics of citrus pectin on its functional properties

•Ultrasound remarkably changed the structural and conformational features of pectin.•Ultrasound reduced the rheological properties and gel-formation capacity of pectin.•Ultrasonic-treated pectins had better emulsifying properties than untreated pectin.•Functional properties of pectin were largely de...

Full description

Saved in:
Bibliographic Details
Published in:Food chemistry Vol. 339; p. 128064
Main Authors: Wang, Chun, Qiu, Wen-Yi, Chen, Ting-Ting, Yan, Jing-Kun
Format: Journal Article
Language:English
Published: England Elsevier Ltd 01.03.2021
Subjects:
ISSN:0308-8146, 1873-7072, 1873-7072
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •Ultrasound remarkably changed the structural and conformational features of pectin.•Ultrasound reduced the rheological properties and gel-formation capacity of pectin.•Ultrasonic-treated pectins had better emulsifying properties than untreated pectin.•Functional properties of pectin were largely determined by its Mw and conformation. Ultrasonic degradation has become a fascinating strategy for preparing modified pectin, contributing to the improvement of pectin’s functional characteristics. In this study, the impacts of structural and conformational characteristics of original and ultrasound-treated citrus pectins on their functional properties were examined. The results showed that compared with ultrasound-treated pectins, untreated pectin presented higher rheological and gelling properties primarily attributed to its larger weight-average molecular weight (Mw), degree of methoxylation, amount of neutral sugar side chains, and z-average radius of gyration, as well as the more extended flexible-chain conformation. However, the ultrasound-treated pectins had better emulsifying properties than untreated pectin in an oil-in-water emulsion system. These properties, visually suggested by morphology analysis, including enhanced emulsifying capacity, emulsifying stability, reduced mean droplet size and negatively charged zeta potential. Moreover, the Mw and chain conformation of untreated and ultrasound-treated pectins played more decisive roles in their functional properties than the others.
AbstractList Ultrasonic degradation has become a fascinating strategy for preparing modified pectin, contributing to the improvement of pectin's functional characteristics. In this study, the impacts of structural and conformational characteristics of original and ultrasound-treated citrus pectins on their functional properties were examined. The results showed that compared with ultrasound-treated pectins, untreated pectin presented higher rheological and gelling properties primarily attributed to its larger weight-average molecular weight (M ), degree of methoxylation, amount of neutral sugar side chains, and z-average radius of gyration, as well as the more extended flexible-chain conformation. However, the ultrasound-treated pectins had better emulsifying properties than untreated pectin in an oil-in-water emulsion system. These properties, visually suggested by morphology analysis, including enhanced emulsifying capacity, emulsifying stability, reduced mean droplet size and negatively charged zeta potential. Moreover, the M and chain conformation of untreated and ultrasound-treated pectins played more decisive roles in their functional properties than the others.
Ultrasonic degradation has become a fascinating strategy for preparing modified pectin, contributing to the improvement of pectin's functional characteristics. In this study, the impacts of structural and conformational characteristics of original and ultrasound-treated citrus pectins on their functional properties were examined. The results showed that compared with ultrasound-treated pectins, untreated pectin presented higher rheological and gelling properties primarily attributed to its larger weight-average molecular weight (Mw), degree of methoxylation, amount of neutral sugar side chains, and z-average radius of gyration, as well as the more extended flexible-chain conformation. However, the ultrasound-treated pectins had better emulsifying properties than untreated pectin in an oil-in-water emulsion system. These properties, visually suggested by morphology analysis, including enhanced emulsifying capacity, emulsifying stability, reduced mean droplet size and negatively charged zeta potential. Moreover, the Mw and chain conformation of untreated and ultrasound-treated pectins played more decisive roles in their functional properties than the others.Ultrasonic degradation has become a fascinating strategy for preparing modified pectin, contributing to the improvement of pectin's functional characteristics. In this study, the impacts of structural and conformational characteristics of original and ultrasound-treated citrus pectins on their functional properties were examined. The results showed that compared with ultrasound-treated pectins, untreated pectin presented higher rheological and gelling properties primarily attributed to its larger weight-average molecular weight (Mw), degree of methoxylation, amount of neutral sugar side chains, and z-average radius of gyration, as well as the more extended flexible-chain conformation. However, the ultrasound-treated pectins had better emulsifying properties than untreated pectin in an oil-in-water emulsion system. These properties, visually suggested by morphology analysis, including enhanced emulsifying capacity, emulsifying stability, reduced mean droplet size and negatively charged zeta potential. Moreover, the Mw and chain conformation of untreated and ultrasound-treated pectins played more decisive roles in their functional properties than the others.
Ultrasonic degradation has become a fascinating strategy for preparing modified pectin, contributing to the improvement of pectin’s functional characteristics. In this study, the impacts of structural and conformational characteristics of original and ultrasound-treated citrus pectins on their functional properties were examined. The results showed that compared with ultrasound-treated pectins, untreated pectin presented higher rheological and gelling properties primarily attributed to its larger weight-average molecular weight (Mw), degree of methoxylation, amount of neutral sugar side chains, and z-average radius of gyration, as well as the more extended flexible-chain conformation. However, the ultrasound-treated pectins had better emulsifying properties than untreated pectin in an oil-in-water emulsion system. These properties, visually suggested by morphology analysis, including enhanced emulsifying capacity, emulsifying stability, reduced mean droplet size and negatively charged zeta potential. Moreover, the Mw and chain conformation of untreated and ultrasound-treated pectins played more decisive roles in their functional properties than the others.
•Ultrasound remarkably changed the structural and conformational features of pectin.•Ultrasound reduced the rheological properties and gel-formation capacity of pectin.•Ultrasonic-treated pectins had better emulsifying properties than untreated pectin.•Functional properties of pectin were largely determined by its Mw and conformation. Ultrasonic degradation has become a fascinating strategy for preparing modified pectin, contributing to the improvement of pectin’s functional characteristics. In this study, the impacts of structural and conformational characteristics of original and ultrasound-treated citrus pectins on their functional properties were examined. The results showed that compared with ultrasound-treated pectins, untreated pectin presented higher rheological and gelling properties primarily attributed to its larger weight-average molecular weight (Mw), degree of methoxylation, amount of neutral sugar side chains, and z-average radius of gyration, as well as the more extended flexible-chain conformation. However, the ultrasound-treated pectins had better emulsifying properties than untreated pectin in an oil-in-water emulsion system. These properties, visually suggested by morphology analysis, including enhanced emulsifying capacity, emulsifying stability, reduced mean droplet size and negatively charged zeta potential. Moreover, the Mw and chain conformation of untreated and ultrasound-treated pectins played more decisive roles in their functional properties than the others.
ArticleNumber 128064
Author Yan, Jing-Kun
Wang, Chun
Qiu, Wen-Yi
Chen, Ting-Ting
Author_xml – sequence: 1
  givenname: Chun
  surname: Wang
  fullname: Wang, Chun
– sequence: 2
  givenname: Wen-Yi
  surname: Qiu
  fullname: Qiu, Wen-Yi
– sequence: 3
  givenname: Ting-Ting
  surname: Chen
  fullname: Chen, Ting-Ting
– sequence: 4
  givenname: Jing-Kun
  surname: Yan
  fullname: Yan, Jing-Kun
  email: jkyan27@ujs.edu.cn
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32950902$$D View this record in MEDLINE/PubMed
BookMark eNqNkUFLHDEYhoNY6qr9CzLHXmZNMslMAj1UxLaC4KWeQ_abL5hlJlmTjNB_3-iuPfSip8DH87yB9z0lxyEGJOSC0TWjrL_crl2MIzzivOaU1yNXtBdHZMXU0LUDHfgxWdGOqlYx0Z-Q05y3lFaSqc_kpONaUk35irgb5xBKbqJrckkLlCXZqbFhbCAGF9Nsi4-hnuDRJgsFk8_Fw6sAvhq52dUAH5oYGl-D3BLgoOxS3GEqHvM5-eTslPHL4T0jDz9ufl__au_uf95eX921ICgrrRxQbtD2zikmtdNOWqpkJ5XDzQgWUY9WcIVacdlZ3XcCNNNWwKCVUMC7M_J1n1u_flowFzP7DDhNNmBcsuGSi04wNnwAFUL0tGeKVfTigC6bGUezS3626Y95q7EC_R6AFHNO6P4hjJqXvczWvO1lXvYy-72q-O0_sXb62nhJ1k_v69_3OtZOnz0mk8FjABx9qqOYMfr3Iv4C_IK2ww
CitedBy_id crossref_primary_10_3390_polym17030408
crossref_primary_10_1016_j_foodhyd_2021_107287
crossref_primary_10_1016_j_ijbiomac_2023_125712
crossref_primary_10_3390_foods14152644
crossref_primary_10_1002_efd2_97
crossref_primary_10_1016_j_foodhyd_2024_110973
crossref_primary_10_1016_j_foodres_2024_114432
crossref_primary_10_1016_j_foodhyd_2025_112004
crossref_primary_10_1007_s10068_022_01083_2
crossref_primary_10_1016_j_ijbiomac_2023_123924
crossref_primary_10_1016_j_ijbiomac_2024_129361
crossref_primary_10_1016_j_carbpol_2022_119949
crossref_primary_10_1016_j_foodres_2025_117421
crossref_primary_10_1007_s13399_024_05963_x
crossref_primary_10_1016_j_foodhyd_2024_109997
crossref_primary_10_1016_j_ijbiomac_2023_124335
crossref_primary_10_1111_ijfs_16766
crossref_primary_10_3390_foods10071586
crossref_primary_10_1016_j_prenap_2025_100214
crossref_primary_10_3390_ijms26178341
crossref_primary_10_1016_j_foodres_2025_116298
crossref_primary_10_1016_j_crfs_2025_101014
crossref_primary_10_1016_j_foodchem_2023_136618
crossref_primary_10_1007_s11694_025_03543_9
crossref_primary_10_1016_j_colsurfa_2022_128511
crossref_primary_10_1007_s13399_022_03362_8
crossref_primary_10_1016_j_foodchem_2022_134373
crossref_primary_10_1016_j_foodchem_2024_139703
crossref_primary_10_1007_s11947_024_03538_2
crossref_primary_10_1016_j_tifs_2020_11_018
crossref_primary_10_1016_j_foodchem_2024_139397
crossref_primary_10_1016_j_foodchem_2025_145683
crossref_primary_10_1016_j_foodhyd_2024_110292
crossref_primary_10_3390_foods12051020
crossref_primary_10_1038_s41598_024_77936_z
crossref_primary_10_3389_fsufs_2024_1395730
crossref_primary_10_1016_j_carbpol_2022_120121
crossref_primary_10_1016_j_jfutfo_2024_04_009
crossref_primary_10_1016_j_carbpol_2021_118314
crossref_primary_10_1016_j_postharvbio_2021_111740
crossref_primary_10_3390_polym14132667
crossref_primary_10_1016_j_jclepro_2022_131587
crossref_primary_10_1016_j_foodhyd_2025_111891
crossref_primary_10_1016_j_foodhyd_2023_109536
crossref_primary_10_1016_j_foodhyd_2022_107738
crossref_primary_10_1016_j_fbio_2024_105803
crossref_primary_10_1016_j_ijbiomac_2025_146344
crossref_primary_10_1016_j_ifset_2025_104030
crossref_primary_10_1016_j_ijbiomac_2025_147331
crossref_primary_10_1016_j_ijbiomac_2023_127523
crossref_primary_10_1016_j_foodchem_2024_139408
crossref_primary_10_3390_polym14101962
crossref_primary_10_1016_j_foodchem_2022_133625
crossref_primary_10_1016_j_foodhyd_2024_110428
crossref_primary_10_1016_j_ijbiomac_2024_130432
crossref_primary_10_1016_j_ijbiomac_2025_140775
crossref_primary_10_1016_j_ijbiomac_2021_03_202
crossref_primary_10_1111_1541_4337_12820
crossref_primary_10_1016_j_lwt_2024_116445
crossref_primary_10_1016_j_foodchem_2025_143123
crossref_primary_10_1016_j_ijbiomac_2022_10_091
crossref_primary_10_1016_j_carbpol_2022_119535
crossref_primary_10_1016_j_fbio_2023_102769
crossref_primary_10_1016_j_foodhyd_2021_107000
crossref_primary_10_1016_j_ultsonch_2025_107502
crossref_primary_10_1016_j_ijbiomac_2024_134463
crossref_primary_10_1016_j_foodhyd_2023_109272
crossref_primary_10_1016_j_foodchem_2024_141152
crossref_primary_10_1002_jsfa_70085
crossref_primary_10_3390_foods14010117
crossref_primary_10_1016_j_ijbiomac_2023_128594
crossref_primary_10_1016_j_ijbiomac_2023_125360
crossref_primary_10_1016_j_foodhyd_2021_106824
crossref_primary_10_1016_j_ifset_2025_104095
crossref_primary_10_1016_j_memsci_2020_118993
crossref_primary_10_1016_j_foodchem_2021_129022
crossref_primary_10_1016_j_foodchem_2022_132834
crossref_primary_10_1016_j_foodhyd_2025_111879
crossref_primary_10_1016_j_carbpol_2024_122872
crossref_primary_10_1016_j_biortech_2021_126635
crossref_primary_10_1016_j_ultsonch_2022_106242
crossref_primary_10_3390_foods13233941
crossref_primary_10_1016_j_ijbiomac_2023_124801
crossref_primary_10_1016_j_foodchem_2023_136819
crossref_primary_10_1016_j_focha_2023_100192
crossref_primary_10_1016_j_ultsonch_2022_106080
crossref_primary_10_1016_j_ijbiomac_2023_125650
crossref_primary_10_3390_md22080367
crossref_primary_10_1016_j_foodhyd_2020_106495
crossref_primary_10_1016_j_foodhyd_2024_110118
crossref_primary_10_1016_j_foodhyd_2025_111177
crossref_primary_10_1016_j_ifset_2023_103343
crossref_primary_10_1016_j_ijbiomac_2022_09_082
crossref_primary_10_1016_j_foodhyd_2022_108246
crossref_primary_10_1016_j_foodhyd_2021_106968
crossref_primary_10_1007_s11103_023_01344_6
crossref_primary_10_1016_j_scienta_2024_113240
crossref_primary_10_1016_j_ijbiomac_2024_132890
crossref_primary_10_3390_fermentation10110556
Cites_doi 10.1016/j.foodhyd.2014.10.018
10.1016/S0268-005X(01)00095-9
10.1121/1.4806648
10.1016/S0268-005X(02)00051-6
10.1016/j.foodhyd.2014.12.012
10.1016/j.jfoodeng.2018.03.009
10.1016/j.tifs.2015.04.001
10.1016/j.carbpol.2017.03.058
10.1016/j.foodhyd.2016.07.026
10.1016/j.carbpol.2016.12.033
10.1080/10408398.2012.753029
10.1016/j.foodhyd.2016.12.015
10.1016/S0144-8617(01)00170-9
10.1016/j.foodhyd.2019.105459
10.1016/j.foodhyd.2013.05.010
10.1016/j.ultsonch.2012.07.021
10.1016/j.foodhyd.2018.07.014
10.1016/j.tifs.2011.11.002
10.1016/j.ijbiomac.2019.03.077
10.1016/j.foodhyd.2014.01.006
10.1016/j.foodchem.2010.03.121
10.1080/10408399709527767
10.1016/j.ijbiomac.2016.06.011
10.1016/j.carbpol.2008.12.015
10.1016/j.foodchem.2019.125021
10.1016/j.foodchem.2018.12.059
10.1016/j.foodhyd.2008.07.023
10.1016/j.foodhyd.2019.105454
10.1016/j.foodchem.2020.126647
10.1111/1541-4337.12160
10.1016/j.jnim.2015.12.189
10.1016/j.foodhyd.2016.08.016
10.1016/j.pbi.2008.03.006
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright © 2020 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright © 2020 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.foodchem.2020.128064
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
AGRICOLA

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Chemistry
Diet & Clinical Nutrition
EISSN 1873-7072
ExternalDocumentID 32950902
10_1016_j_foodchem_2020_128064
S0308814620319269
Genre Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARLI
AATLK
AAXUO
ABFNM
ABFRF
ABGRD
ABGSF
ABJNI
ABMAC
ABUDA
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADECG
ADEZE
ADQTV
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AFZHZ
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CBWCG
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KOM
KZ1
LW9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SAB
SCC
SDF
SDG
SDP
SES
SPC
SPCBC
SSA
SSK
SSU
SSZ
T5K
WH7
~G-
~KM
29H
53G
9DU
AAHBH
AALCJ
AAQXK
AATTM
AAXKI
AAYJJ
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGHFR
AGQPQ
AGRDE
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HLV
HVGLF
HZ~
R2-
SCB
SEW
VH1
WUQ
Y6R
~HD
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c401t-57e5bea6ff8159f9f5a085358febdcaee9da428e98253a9634c919a4c79848c23
ISICitedReferencesCount 113
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000582793900047&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0308-8146
1873-7072
IngestDate Thu Oct 02 04:18:57 EDT 2025
Thu Oct 02 21:18:05 EDT 2025
Wed Feb 19 02:30:24 EST 2025
Sat Nov 29 07:17:07 EST 2025
Tue Nov 18 22:02:24 EST 2025
Fri Feb 23 02:46:30 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Functional properties
Chain conformation
Structural characterization
Citrus pectin
Language English
License Copyright © 2020 Elsevier Ltd. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c401t-57e5bea6ff8159f9f5a085358febdcaee9da428e98253a9634c919a4c79848c23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 32950902
PQID 2444606181
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2524341172
proquest_miscellaneous_2444606181
pubmed_primary_32950902
crossref_primary_10_1016_j_foodchem_2020_128064
crossref_citationtrail_10_1016_j_foodchem_2020_128064
elsevier_sciencedirect_doi_10_1016_j_foodchem_2020_128064
PublicationCentury 2000
PublicationDate 2021-03-01
2021-03-00
2021-Mar-01
20210301
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Food chemistry
PublicationTitleAlternate Food Chem
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Alba, Kontogiorgos (b0010) 2016; 68
Zhang, Xu, Zhang (b0175) 2015; 44
Akhtar, Dickinson, Mazoyer, Langendorff (b0005) 2002; 16
Hu, Chen, Wu, Zheng, Ye (b0045) 2019; 58
Shanmugam, Ashokkumar (b0125) 2014; 39
Maxwell, Belshaw, Waldron, Morris (b0075) 2012; 24
Schmeltera, Wientjesb, Vreekera, Klaffke (b0115) 2002; 47
Wang, Huang, Fan, Zhao, Hu, Xu, Liu (b0140) 2016; 91
Chen, Qi, Zhu, Wang (b0025) 2019; 131
Zheng, Zeng, Kan, Zhang (b0180) 2018; 231
Chan, Choo, Young, Loh (b0020) 2017; 161
Mills, Maackerras (b0080) 2016; 4
Lin, Yu, Ai, Zhang, Guo (b0065) 2020; 101
Guo, Zhao, Pang, Liao, Hu, Wu (b0040) 2014; 35
Kermani, Shpigelman, Pham, Van Loey, Hendrickx (b0050) 2015; 44
Ngouemazong, Christiaens, Shpigelman, Van Loey, Hendrickx (b0095) 2015; 14
Seshadri, Weiss, Hulbert, Mount (b0120) 2003; 17
Thakur, Singh, Handa (b0130) 1997; 37
Mohnen (b0085) 2008; 11
Cai, Qiu, Ding, Wu, Yan (b0015) 2019; 280
Schmidt, Schmidt, Kurz, Endreß, Schuchmann (b0110) 2015; 46
Liu, Zhang, Xu, Zhang (b0070) 2013; 133
Verkempinck, Kyomugasho, Salvia-Trujillo, Denis, Bourgeois, Van Loey, Grauwet (b0135) 2018; 85
Wang, Chen, Zou, Lv, Wang, Hou, Liu (b0145) 2018; 234
Zhang, Fan, Gu, Gong, Wu, Wang, Wang (b0165) 2020; 100
Li, Hu, Yan, Li, Ma, Liu (b0060) 2018; 76
Qiu, Cai, Wang, Yan (b0100) 2019; 297
Cortés-Muñoz, Chevalier-Lucia, Dumay (b0035) 2009; 23
Zhang, Ye, Ding, Sun, Xu, Liu (b0170) 2013; 20
Wang, Yu, Chen, Wang, Yan (b0150) 2020; 320
Schmidt, Schutz, Schuchmann (b0105) 2017; 62
Yang, Zhang (b0155) 2009; 76
Yust, Pedroche, Millán-Linares, Alcaide-Hidalgo, Millán (b0160) 2010; 122
Christiaens, Van Buggenhout, Houben, Jamsazzadeh Kermani, Moelants, Ngouemazong, Hendrickx (b0030) 2015; 56
Naqash, Masoodi, Rather, Wani, Gani (b0090) 2017; 168
Alba (10.1016/j.foodchem.2020.128064_b0010) 2016; 68
Yust (10.1016/j.foodchem.2020.128064_b0160) 2010; 122
Chan (10.1016/j.foodchem.2020.128064_b0020) 2017; 161
Li (10.1016/j.foodchem.2020.128064_b0060) 2018; 76
Kermani (10.1016/j.foodchem.2020.128064_b0050) 2015; 44
Wang (10.1016/j.foodchem.2020.128064_b0145) 2018; 234
Christiaens (10.1016/j.foodchem.2020.128064_b0030) 2015; 56
Chen (10.1016/j.foodchem.2020.128064_b0025) 2019; 131
Zhang (10.1016/j.foodchem.2020.128064_b0165) 2020; 100
Zhang (10.1016/j.foodchem.2020.128064_b0175) 2015; 44
Liu (10.1016/j.foodchem.2020.128064_b0070) 2013; 133
Maxwell (10.1016/j.foodchem.2020.128064_b0075) 2012; 24
Hu (10.1016/j.foodchem.2020.128064_b0045) 2019; 58
Zhang (10.1016/j.foodchem.2020.128064_b0170) 2013; 20
Zheng (10.1016/j.foodchem.2020.128064_b0180) 2018; 231
Yang (10.1016/j.foodchem.2020.128064_b0155) 2009; 76
Ngouemazong (10.1016/j.foodchem.2020.128064_b0095) 2015; 14
Wang (10.1016/j.foodchem.2020.128064_b0140) 2016; 91
Verkempinck (10.1016/j.foodchem.2020.128064_b0135) 2018; 85
Shanmugam (10.1016/j.foodchem.2020.128064_b0125) 2014; 39
Cai (10.1016/j.foodchem.2020.128064_b0015) 2019; 280
Naqash (10.1016/j.foodchem.2020.128064_b0090) 2017; 168
Qiu (10.1016/j.foodchem.2020.128064_b0100) 2019; 297
Schmidt (10.1016/j.foodchem.2020.128064_b0105) 2017; 62
Schmidt (10.1016/j.foodchem.2020.128064_b0110) 2015; 46
Seshadri (10.1016/j.foodchem.2020.128064_b0120) 2003; 17
Akhtar (10.1016/j.foodchem.2020.128064_b0005) 2002; 16
Guo (10.1016/j.foodchem.2020.128064_b0040) 2014; 35
Mills (10.1016/j.foodchem.2020.128064_b0080) 2016; 4
Wang (10.1016/j.foodchem.2020.128064_b0150) 2020; 320
Mohnen (10.1016/j.foodchem.2020.128064_b0085) 2008; 11
Thakur (10.1016/j.foodchem.2020.128064_b0130) 1997; 37
Lin (10.1016/j.foodchem.2020.128064_b0065) 2020; 101
Schmeltera (10.1016/j.foodchem.2020.128064_b0115) 2002; 47
Cortés-Muñoz (10.1016/j.foodchem.2020.128064_b0035) 2009; 23
References_xml – volume: 56
  start-page: 1021
  year: 2015
  end-page: 1042
  ident: b0030
  article-title: Process-structure-function relations of pectin in food
  publication-title: Critical Reviews in Food Science and Nutrition
– volume: 24
  start-page: 64
  year: 2012
  end-page: 73
  ident: b0075
  article-title: Pectin – An emerging new bioactive food polysaccharide
  publication-title: Trends in Food Science & Technology
– volume: 62
  start-page: 288
  year: 2017
  end-page: 298
  ident: b0105
  article-title: Interfacial and emulsifying properties of citrus pectin: Interaction of pH, ionic strength and degree of esterification
  publication-title: Food Hydrocolloids
– volume: 4
  start-page: 11
  year: 2016
  ident: b0080
  article-title: Does daily consumption of pectin lower cholesterol concentration? A systematic review and meta-analysis
  publication-title: Journal of Nutrition & Intermediary Metabolism
– volume: 100
  year: 2020
  ident: b0165
  article-title: Emulsifying properties of pectic polysaccharides obtained by sequential extraction from black tomato pomace
  publication-title: Food Hydrocolloids
– volume: 20
  start-page: 222
  year: 2013
  end-page: 231
  ident: b0170
  article-title: Ultrasound effects on the degradation kinetics, structure and rheological properties of apple pectin
  publication-title: Ultrasonics Sonochemistry
– volume: 46
  start-page: 59
  year: 2015
  end-page: 66
  ident: b0110
  article-title: Pectins of different origin and their performance in forming and stabilizing oi-in-water-emulsions
  publication-title: Food Hydrocolloids
– volume: 37
  start-page: 47
  year: 1997
  end-page: 73
  ident: b0130
  article-title: Chemistry and uses of pectin – a review
  publication-title: Critical Reviews in Food Science and Nutrition
– volume: 133
  start-page: 3595
  year: 2013
  ident: b0070
  article-title: The influence of ultrasound on the structure, rheological properties and degradation path of citrus pectin
  publication-title: The Journal of the Acoustical Society of America
– volume: 76
  start-page: 349
  year: 2009
  end-page: 1261
  ident: b0155
  article-title: Chemical structural and chain conformational characterization of some bioactive polysaccharides isolated from natural sources
  publication-title: Carbohydrate Polymers
– volume: 68
  start-page: 211
  year: 2016
  end-page: 218
  ident: b0010
  article-title: Pectin at the oil-water interface: Relationship of molecular composition and structure to functionality
  publication-title: Food Hydrocolloids
– volume: 168
  start-page: 227
  year: 2017
  end-page: 239
  ident: b0090
  article-title: Emerging concepts in the nutraceutical and functional properties of pectin – A review
  publication-title: Carbohydrtae Polymers
– volume: 76
  start-page: 158
  year: 2018
  end-page: 163
  ident: b0060
  article-title: Effects of hydrolysis by xylanase on the emulsifying properties of
  publication-title: Food Hydrocolloids
– volume: 161
  start-page: 118
  year: 2017
  end-page: 139
  ident: b0020
  article-title: Pectin as a rheology modifier: Origin, structure, commercial production and rheology
  publication-title: Carbohydrate Polymers
– volume: 231
  start-page: 83
  year: 2018
  end-page: 90
  ident: b0180
  article-title: Effects of ultrasonic treatment on gel rheological properties and gel formation of high-methoxyl pectin
  publication-title: Journal of Food Engineering
– volume: 14
  start-page: 705
  year: 2015
  end-page: 718
  ident: b0095
  article-title: The emulsifying and emulsion-stabilizing properties of pectin: A review
  publication-title: Comprehensive Reviews in Food Science and Food Safety
– volume: 39
  start-page: 151
  year: 2014
  end-page: 162
  ident: b0125
  article-title: Ultrasonic preparation of stable flax seed oil emulsions in dairy systems – Physicochemical characterization
  publication-title: Food Hydrocolloids
– volume: 58
  year: 2019
  ident: b0045
  article-title: Ultrasonic-assisted citrus pectin modification in the bicarbonate-activated hydrogen peroxide system: Chemical and microstructural analysis
  publication-title: Food Hydrocolloids
– volume: 297
  year: 2019
  ident: b0100
  article-title: Effect of ultrasonic intensity on the conformation changes in citrus pectin under ultrasonic processing
  publication-title: Food Chemistry
– volume: 16
  start-page: 249
  year: 2002
  end-page: 256
  ident: b0005
  article-title: Emulsion stabilizing properties of depolymerized pectin
  publication-title: Food Hydrocolloids
– volume: 47
  start-page: 99
  year: 2002
  end-page: 108
  ident: b0115
  article-title: Enzymatic modifications of pectins and the impact on their rheological properties
  publication-title: Carbohydrate Polymers
– volume: 320
  year: 2020
  ident: b0150
  article-title: Innovative preparation, physicochemical characteristics and functional properties of bioactive polysaccharides from fresh okra (
  publication-title: Food Chemistry
– volume: 17
  start-page: 191
  year: 2003
  end-page: 197
  ident: b0120
  article-title: Ultrasonic processing influences rheological and optical properties of high-methoxyl pectin dispersions
  publication-title: Food Hydrocolloids
– volume: 91
  start-page: 794
  year: 2016
  end-page: 803
  ident: b0140
  article-title: Characterization and functional properties of mango peel pectin extracted by ultrasonic assisted citric acid
  publication-title: International Journal of Biological Macromolecules
– volume: 44
  start-page: 424
  year: 2015
  end-page: 434
  ident: b0050
  article-title: Functional properties of citric acid extracted mango peel pectin as related to its chemical structure
  publication-title: Food Hydrocolloids
– volume: 23
  start-page: 640
  year: 2009
  end-page: 654
  ident: b0035
  article-title: Characteristics of submicron emulsions prepared by ultra-high pressure homogenisation: Effect of chilled or frozen storage
  publication-title: Food Hydrocolloids
– volume: 35
  start-page: 217
  year: 2014
  end-page: 225
  ident: b0040
  article-title: Emulsion stabilizing properties of pectins extracted by high hydrostatic pressure, high-speed shearing homogenization and traditional thermal methods: A comparative study
  publication-title: Food Hydrocolloids
– volume: 122
  start-page: 1212
  year: 2010
  end-page: 1217
  ident: b0160
  article-title: Improvement of functional properties of chickpea proteins by hydrolysis with immobilised Alcalase
  publication-title: Food Chemistry
– volume: 131
  start-page: 273
  year: 2019
  end-page: 281
  ident: b0025
  article-title: Effect of ultrasound on the properties and antioxidant activity of hawthorn pectin
  publication-title: International Journal of Biological Macromolecules
– volume: 11
  start-page: 266
  year: 2008
  end-page: 277
  ident: b0085
  article-title: Pectin structure and biosynthesis
  publication-title: Current Opinion in Plant Biology
– volume: 85
  start-page: 144
  year: 2018
  end-page: 157
  ident: b0135
  article-title: Emulsion stabilizing properties of citrus pectin and its interactions with conventional emulsifiers in oil-in-water emulsions
  publication-title: Food Hydrocolloids
– volume: 234
  start-page: 98
  year: 2018
  end-page: 107
  ident: b0145
  article-title: Applications of power ultrasound in oriented modification and degradation of pectin: A review
  publication-title: Journal of Engineering
– volume: 44
  start-page: 258
  year: 2015
  end-page: 271
  ident: b0175
  article-title: Pectin in cancer therapy: A review
  publication-title: Trends in Food Science & Technology
– volume: 280
  start-page: 130
  year: 2019
  end-page: 138
  ident: b0015
  article-title: Conformational and rheological properties of a quaternary ammonium salt of curdlan
  publication-title: Food Chemistry
– volume: 101
  year: 2020
  ident: b0065
  article-title: Emulsion stability of sugar beet pectin increased by genipin crosslinking
  publication-title: Food Hydrocolloids
– volume: 44
  start-page: 424
  year: 2015
  ident: 10.1016/j.foodchem.2020.128064_b0050
  article-title: Functional properties of citric acid extracted mango peel pectin as related to its chemical structure
  publication-title: Food Hydrocolloids
  doi: 10.1016/j.foodhyd.2014.10.018
– volume: 16
  start-page: 249
  issue: 3
  year: 2002
  ident: 10.1016/j.foodchem.2020.128064_b0005
  article-title: Emulsion stabilizing properties of depolymerized pectin
  publication-title: Food Hydrocolloids
  doi: 10.1016/S0268-005X(01)00095-9
– volume: 133
  start-page: 3595
  year: 2013
  ident: 10.1016/j.foodchem.2020.128064_b0070
  article-title: The influence of ultrasound on the structure, rheological properties and degradation path of citrus pectin
  publication-title: The Journal of the Acoustical Society of America
  doi: 10.1121/1.4806648
– volume: 17
  start-page: 191
  year: 2003
  ident: 10.1016/j.foodchem.2020.128064_b0120
  article-title: Ultrasonic processing influences rheological and optical properties of high-methoxyl pectin dispersions
  publication-title: Food Hydrocolloids
  doi: 10.1016/S0268-005X(02)00051-6
– volume: 46
  start-page: 59
  year: 2015
  ident: 10.1016/j.foodchem.2020.128064_b0110
  article-title: Pectins of different origin and their performance in forming and stabilizing oi-in-water-emulsions
  publication-title: Food Hydrocolloids
  doi: 10.1016/j.foodhyd.2014.12.012
– volume: 231
  start-page: 83
  year: 2018
  ident: 10.1016/j.foodchem.2020.128064_b0180
  article-title: Effects of ultrasonic treatment on gel rheological properties and gel formation of high-methoxyl pectin
  publication-title: Journal of Food Engineering
  doi: 10.1016/j.jfoodeng.2018.03.009
– volume: 44
  start-page: 258
  year: 2015
  ident: 10.1016/j.foodchem.2020.128064_b0175
  article-title: Pectin in cancer therapy: A review
  publication-title: Trends in Food Science & Technology
  doi: 10.1016/j.tifs.2015.04.001
– volume: 168
  start-page: 227
  year: 2017
  ident: 10.1016/j.foodchem.2020.128064_b0090
  article-title: Emerging concepts in the nutraceutical and functional properties of pectin – A review
  publication-title: Carbohydrtae Polymers
  doi: 10.1016/j.carbpol.2017.03.058
– volume: 68
  start-page: 211
  year: 2016
  ident: 10.1016/j.foodchem.2020.128064_b0010
  article-title: Pectin at the oil-water interface: Relationship of molecular composition and structure to functionality
  publication-title: Food Hydrocolloids
  doi: 10.1016/j.foodhyd.2016.07.026
– volume: 234
  start-page: 98
  year: 2018
  ident: 10.1016/j.foodchem.2020.128064_b0145
  article-title: Applications of power ultrasound in oriented modification and degradation of pectin: A review
  publication-title: Journal of Engineering
– volume: 161
  start-page: 118
  year: 2017
  ident: 10.1016/j.foodchem.2020.128064_b0020
  article-title: Pectin as a rheology modifier: Origin, structure, commercial production and rheology
  publication-title: Carbohydrate Polymers
  doi: 10.1016/j.carbpol.2016.12.033
– volume: 56
  start-page: 1021
  issue: 6
  year: 2015
  ident: 10.1016/j.foodchem.2020.128064_b0030
  article-title: Process-structure-function relations of pectin in food
  publication-title: Critical Reviews in Food Science and Nutrition
  doi: 10.1080/10408398.2012.753029
– volume: 76
  start-page: 158
  year: 2018
  ident: 10.1016/j.foodchem.2020.128064_b0060
  article-title: Effects of hydrolysis by xylanase on the emulsifying properties of Artemisia sphaerocephala Krasch. polysaccharide
  publication-title: Food Hydrocolloids
  doi: 10.1016/j.foodhyd.2016.12.015
– volume: 47
  start-page: 99
  issue: 2
  year: 2002
  ident: 10.1016/j.foodchem.2020.128064_b0115
  article-title: Enzymatic modifications of pectins and the impact on their rheological properties
  publication-title: Carbohydrate Polymers
  doi: 10.1016/S0144-8617(01)00170-9
– volume: 101
  year: 2020
  ident: 10.1016/j.foodchem.2020.128064_b0065
  article-title: Emulsion stability of sugar beet pectin increased by genipin crosslinking
  publication-title: Food Hydrocolloids
  doi: 10.1016/j.foodhyd.2019.105459
– volume: 35
  start-page: 217
  year: 2014
  ident: 10.1016/j.foodchem.2020.128064_b0040
  article-title: Emulsion stabilizing properties of pectins extracted by high hydrostatic pressure, high-speed shearing homogenization and traditional thermal methods: A comparative study
  publication-title: Food Hydrocolloids
  doi: 10.1016/j.foodhyd.2013.05.010
– volume: 20
  start-page: 222
  year: 2013
  ident: 10.1016/j.foodchem.2020.128064_b0170
  article-title: Ultrasound effects on the degradation kinetics, structure and rheological properties of apple pectin
  publication-title: Ultrasonics Sonochemistry
  doi: 10.1016/j.ultsonch.2012.07.021
– volume: 85
  start-page: 144
  year: 2018
  ident: 10.1016/j.foodchem.2020.128064_b0135
  article-title: Emulsion stabilizing properties of citrus pectin and its interactions with conventional emulsifiers in oil-in-water emulsions
  publication-title: Food Hydrocolloids
  doi: 10.1016/j.foodhyd.2018.07.014
– volume: 24
  start-page: 64
  year: 2012
  ident: 10.1016/j.foodchem.2020.128064_b0075
  article-title: Pectin – An emerging new bioactive food polysaccharide
  publication-title: Trends in Food Science & Technology
  doi: 10.1016/j.tifs.2011.11.002
– volume: 131
  start-page: 273
  year: 2019
  ident: 10.1016/j.foodchem.2020.128064_b0025
  article-title: Effect of ultrasound on the properties and antioxidant activity of hawthorn pectin
  publication-title: International Journal of Biological Macromolecules
  doi: 10.1016/j.ijbiomac.2019.03.077
– volume: 39
  start-page: 151
  year: 2014
  ident: 10.1016/j.foodchem.2020.128064_b0125
  article-title: Ultrasonic preparation of stable flax seed oil emulsions in dairy systems – Physicochemical characterization
  publication-title: Food Hydrocolloids
  doi: 10.1016/j.foodhyd.2014.01.006
– volume: 122
  start-page: 1212
  issue: 4
  year: 2010
  ident: 10.1016/j.foodchem.2020.128064_b0160
  article-title: Improvement of functional properties of chickpea proteins by hydrolysis with immobilised Alcalase
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2010.03.121
– volume: 37
  start-page: 47
  issue: 1
  year: 1997
  ident: 10.1016/j.foodchem.2020.128064_b0130
  article-title: Chemistry and uses of pectin – a review
  publication-title: Critical Reviews in Food Science and Nutrition
  doi: 10.1080/10408399709527767
– volume: 91
  start-page: 794
  year: 2016
  ident: 10.1016/j.foodchem.2020.128064_b0140
  article-title: Characterization and functional properties of mango peel pectin extracted by ultrasonic assisted citric acid
  publication-title: International Journal of Biological Macromolecules
  doi: 10.1016/j.ijbiomac.2016.06.011
– volume: 76
  start-page: 349
  year: 2009
  ident: 10.1016/j.foodchem.2020.128064_b0155
  article-title: Chemical structural and chain conformational characterization of some bioactive polysaccharides isolated from natural sources
  publication-title: Carbohydrate Polymers
  doi: 10.1016/j.carbpol.2008.12.015
– volume: 297
  year: 2019
  ident: 10.1016/j.foodchem.2020.128064_b0100
  article-title: Effect of ultrasonic intensity on the conformation changes in citrus pectin under ultrasonic processing
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2019.125021
– volume: 280
  start-page: 130
  year: 2019
  ident: 10.1016/j.foodchem.2020.128064_b0015
  article-title: Conformational and rheological properties of a quaternary ammonium salt of curdlan
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2018.12.059
– volume: 23
  start-page: 640
  issue: 3
  year: 2009
  ident: 10.1016/j.foodchem.2020.128064_b0035
  article-title: Characteristics of submicron emulsions prepared by ultra-high pressure homogenisation: Effect of chilled or frozen storage
  publication-title: Food Hydrocolloids
  doi: 10.1016/j.foodhyd.2008.07.023
– volume: 100
  year: 2020
  ident: 10.1016/j.foodchem.2020.128064_b0165
  article-title: Emulsifying properties of pectic polysaccharides obtained by sequential extraction from black tomato pomace
  publication-title: Food Hydrocolloids
  doi: 10.1016/j.foodhyd.2019.105454
– volume: 320
  year: 2020
  ident: 10.1016/j.foodchem.2020.128064_b0150
  article-title: Innovative preparation, physicochemical characteristics and functional properties of bioactive polysaccharides from fresh okra (Abelmoschus esculentus (L.) Moench
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2020.126647
– volume: 58
  year: 2019
  ident: 10.1016/j.foodchem.2020.128064_b0045
  article-title: Ultrasonic-assisted citrus pectin modification in the bicarbonate-activated hydrogen peroxide system: Chemical and microstructural analysis
  publication-title: Food Hydrocolloids
– volume: 14
  start-page: 705
  issue: 6
  year: 2015
  ident: 10.1016/j.foodchem.2020.128064_b0095
  article-title: The emulsifying and emulsion-stabilizing properties of pectin: A review
  publication-title: Comprehensive Reviews in Food Science and Food Safety
  doi: 10.1111/1541-4337.12160
– volume: 4
  start-page: 11
  year: 2016
  ident: 10.1016/j.foodchem.2020.128064_b0080
  article-title: Does daily consumption of pectin lower cholesterol concentration? A systematic review and meta-analysis
  publication-title: Journal of Nutrition & Intermediary Metabolism
  doi: 10.1016/j.jnim.2015.12.189
– volume: 62
  start-page: 288
  year: 2017
  ident: 10.1016/j.foodchem.2020.128064_b0105
  article-title: Interfacial and emulsifying properties of citrus pectin: Interaction of pH, ionic strength and degree of esterification
  publication-title: Food Hydrocolloids
  doi: 10.1016/j.foodhyd.2016.08.016
– volume: 11
  start-page: 266
  year: 2008
  ident: 10.1016/j.foodchem.2020.128064_b0085
  article-title: Pectin structure and biosynthesis
  publication-title: Current Opinion in Plant Biology
  doi: 10.1016/j.pbi.2008.03.006
SSID ssj0002018
Score 2.6415713
Snippet •Ultrasound remarkably changed the structural and conformational features of pectin.•Ultrasound reduced the rheological properties and gel-formation capacity...
Ultrasonic degradation has become a fascinating strategy for preparing modified pectin, contributing to the improvement of pectin's functional characteristics....
Ultrasonic degradation has become a fascinating strategy for preparing modified pectin, contributing to the improvement of pectin’s functional characteristics....
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 128064
SubjectTerms Carbohydrate Conformation
Chain conformation
Citrus
Citrus pectin
degradation
droplet size
Emulsifying Agents - chemistry
emulsions
food chemistry
Functional properties
Molecular Conformation
Molecular Weight
Monosaccharides - analysis
pectins
Pectins - chemistry
Rheology
Structural characterization
Sugars
Ultrasonics
zeta potential
Title Effects of structural and conformational characteristics of citrus pectin on its functional properties
URI https://dx.doi.org/10.1016/j.foodchem.2020.128064
https://www.ncbi.nlm.nih.gov/pubmed/32950902
https://www.proquest.com/docview/2444606181
https://www.proquest.com/docview/2524341172
Volume 339
WOSCitedRecordID wos000582793900047&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-7072
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002018
  issn: 0308-8146
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9swED_SdLC9jK77StcVDcZehjfHtmzpsWQpWwdhgwyyJ2MrEk0JcmiS0pf97z1Zkt2Gfj7sxQThE1bup9Pd6T4APiqZxGXKoyDNimmQoMIaMJWwYIq6PO2LsCxT22wiG43YZMJ_dTr_fC7M-TzTml1c8MV_ZTWOIbNN6uwj2N1MigP4G5mOT2Q7Ph_E-GEboWGLw9aFNWz6mm5yFU1ZkI1azSbAvM7B-FxnX2pzj2CuFczR50gWxnV_tvKBh017zwon953jWhe9FSODk3UDwN-zdR3UJ3Xwd9ZGFljRN8ZTNBj7o9RIIuucPTbjP90kzkERXYnQ8olZIWs9jU7oxraEkRObfXO_m9wo0a1z4fSLwqWYlaBJH5maGJ7gegntjaOtCTj0sWynuZ8nN_Pkdp4t2I4yylkXtg9_DCfHzVGO2hGz11B2BVdSzG_-otu0m9usl1qLGe_Ac2d-kEMLmxfQkXoXng4873ah920mV-QTcfVi52Tk2zXgez6LffkSlIMZqRRpYUYQZuQ6zMgGzAyBhRmxMCOVJggz0sKMtDB7BX-OhuPB98D17AgE7u5VQDNJS1mkSjFUlBVXtEClPqZMyXIqCin5tECLV3IW0bhA6Z8I3udFIjLOEiai-DV0daXlWyC1sRGqIlQoPTilpYhCGaOJK1SMRnzYA-r_61y4gvamr8o8v5vbPfja0C1sSZd7KbhnZe4UU6tw5ojSe2k_eN7nyEpzHVdoWa2XOSrWSYrqNOvf8Q6NEtQz0crowRsLnOab44hTE1W99-j1vINn7Ubdhy7yXL6HJ-J8NVueHcBWNmEHbitcAkhK1Y0
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+structural+and+conformational+characteristics+of+citrus+pectin+on+its+functional+properties&rft.jtitle=Food+chemistry&rft.au=Wang%2C+Chun&rft.au=Qiu%2C+Wen-Yi&rft.au=Chen%2C+Ting-Ting&rft.au=Yan%2C+Jing-Kun&rft.date=2021-03-01&rft.issn=0308-8146&rft.volume=339&rft.spage=128064&rft_id=info:doi/10.1016%2Fj.foodchem.2020.128064&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_foodchem_2020_128064
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0308-8146&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0308-8146&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0308-8146&client=summon