Effects of structural and conformational characteristics of citrus pectin on its functional properties
•Ultrasound remarkably changed the structural and conformational features of pectin.•Ultrasound reduced the rheological properties and gel-formation capacity of pectin.•Ultrasonic-treated pectins had better emulsifying properties than untreated pectin.•Functional properties of pectin were largely de...
Saved in:
| Published in: | Food chemistry Vol. 339; p. 128064 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
England
Elsevier Ltd
01.03.2021
|
| Subjects: | |
| ISSN: | 0308-8146, 1873-7072, 1873-7072 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | •Ultrasound remarkably changed the structural and conformational features of pectin.•Ultrasound reduced the rheological properties and gel-formation capacity of pectin.•Ultrasonic-treated pectins had better emulsifying properties than untreated pectin.•Functional properties of pectin were largely determined by its Mw and conformation.
Ultrasonic degradation has become a fascinating strategy for preparing modified pectin, contributing to the improvement of pectin’s functional characteristics. In this study, the impacts of structural and conformational characteristics of original and ultrasound-treated citrus pectins on their functional properties were examined. The results showed that compared with ultrasound-treated pectins, untreated pectin presented higher rheological and gelling properties primarily attributed to its larger weight-average molecular weight (Mw), degree of methoxylation, amount of neutral sugar side chains, and z-average radius of gyration, as well as the more extended flexible-chain conformation. However, the ultrasound-treated pectins had better emulsifying properties than untreated pectin in an oil-in-water emulsion system. These properties, visually suggested by morphology analysis, including enhanced emulsifying capacity, emulsifying stability, reduced mean droplet size and negatively charged zeta potential. Moreover, the Mw and chain conformation of untreated and ultrasound-treated pectins played more decisive roles in their functional properties than the others. |
|---|---|
| AbstractList | Ultrasonic degradation has become a fascinating strategy for preparing modified pectin, contributing to the improvement of pectin's functional characteristics. In this study, the impacts of structural and conformational characteristics of original and ultrasound-treated citrus pectins on their functional properties were examined. The results showed that compared with ultrasound-treated pectins, untreated pectin presented higher rheological and gelling properties primarily attributed to its larger weight-average molecular weight (M
), degree of methoxylation, amount of neutral sugar side chains, and z-average radius of gyration, as well as the more extended flexible-chain conformation. However, the ultrasound-treated pectins had better emulsifying properties than untreated pectin in an oil-in-water emulsion system. These properties, visually suggested by morphology analysis, including enhanced emulsifying capacity, emulsifying stability, reduced mean droplet size and negatively charged zeta potential. Moreover, the M
and chain conformation of untreated and ultrasound-treated pectins played more decisive roles in their functional properties than the others. Ultrasonic degradation has become a fascinating strategy for preparing modified pectin, contributing to the improvement of pectin's functional characteristics. In this study, the impacts of structural and conformational characteristics of original and ultrasound-treated citrus pectins on their functional properties were examined. The results showed that compared with ultrasound-treated pectins, untreated pectin presented higher rheological and gelling properties primarily attributed to its larger weight-average molecular weight (Mw), degree of methoxylation, amount of neutral sugar side chains, and z-average radius of gyration, as well as the more extended flexible-chain conformation. However, the ultrasound-treated pectins had better emulsifying properties than untreated pectin in an oil-in-water emulsion system. These properties, visually suggested by morphology analysis, including enhanced emulsifying capacity, emulsifying stability, reduced mean droplet size and negatively charged zeta potential. Moreover, the Mw and chain conformation of untreated and ultrasound-treated pectins played more decisive roles in their functional properties than the others.Ultrasonic degradation has become a fascinating strategy for preparing modified pectin, contributing to the improvement of pectin's functional characteristics. In this study, the impacts of structural and conformational characteristics of original and ultrasound-treated citrus pectins on their functional properties were examined. The results showed that compared with ultrasound-treated pectins, untreated pectin presented higher rheological and gelling properties primarily attributed to its larger weight-average molecular weight (Mw), degree of methoxylation, amount of neutral sugar side chains, and z-average radius of gyration, as well as the more extended flexible-chain conformation. However, the ultrasound-treated pectins had better emulsifying properties than untreated pectin in an oil-in-water emulsion system. These properties, visually suggested by morphology analysis, including enhanced emulsifying capacity, emulsifying stability, reduced mean droplet size and negatively charged zeta potential. Moreover, the Mw and chain conformation of untreated and ultrasound-treated pectins played more decisive roles in their functional properties than the others. Ultrasonic degradation has become a fascinating strategy for preparing modified pectin, contributing to the improvement of pectin’s functional characteristics. In this study, the impacts of structural and conformational characteristics of original and ultrasound-treated citrus pectins on their functional properties were examined. The results showed that compared with ultrasound-treated pectins, untreated pectin presented higher rheological and gelling properties primarily attributed to its larger weight-average molecular weight (Mw), degree of methoxylation, amount of neutral sugar side chains, and z-average radius of gyration, as well as the more extended flexible-chain conformation. However, the ultrasound-treated pectins had better emulsifying properties than untreated pectin in an oil-in-water emulsion system. These properties, visually suggested by morphology analysis, including enhanced emulsifying capacity, emulsifying stability, reduced mean droplet size and negatively charged zeta potential. Moreover, the Mw and chain conformation of untreated and ultrasound-treated pectins played more decisive roles in their functional properties than the others. •Ultrasound remarkably changed the structural and conformational features of pectin.•Ultrasound reduced the rheological properties and gel-formation capacity of pectin.•Ultrasonic-treated pectins had better emulsifying properties than untreated pectin.•Functional properties of pectin were largely determined by its Mw and conformation. Ultrasonic degradation has become a fascinating strategy for preparing modified pectin, contributing to the improvement of pectin’s functional characteristics. In this study, the impacts of structural and conformational characteristics of original and ultrasound-treated citrus pectins on their functional properties were examined. The results showed that compared with ultrasound-treated pectins, untreated pectin presented higher rheological and gelling properties primarily attributed to its larger weight-average molecular weight (Mw), degree of methoxylation, amount of neutral sugar side chains, and z-average radius of gyration, as well as the more extended flexible-chain conformation. However, the ultrasound-treated pectins had better emulsifying properties than untreated pectin in an oil-in-water emulsion system. These properties, visually suggested by morphology analysis, including enhanced emulsifying capacity, emulsifying stability, reduced mean droplet size and negatively charged zeta potential. Moreover, the Mw and chain conformation of untreated and ultrasound-treated pectins played more decisive roles in their functional properties than the others. |
| ArticleNumber | 128064 |
| Author | Yan, Jing-Kun Wang, Chun Qiu, Wen-Yi Chen, Ting-Ting |
| Author_xml | – sequence: 1 givenname: Chun surname: Wang fullname: Wang, Chun – sequence: 2 givenname: Wen-Yi surname: Qiu fullname: Qiu, Wen-Yi – sequence: 3 givenname: Ting-Ting surname: Chen fullname: Chen, Ting-Ting – sequence: 4 givenname: Jing-Kun surname: Yan fullname: Yan, Jing-Kun email: jkyan27@ujs.edu.cn |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32950902$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkUFLHDEYhoNY6qr9CzLHXmZNMslMAj1UxLaC4KWeQ_abL5hlJlmTjNB_3-iuPfSip8DH87yB9z0lxyEGJOSC0TWjrL_crl2MIzzivOaU1yNXtBdHZMXU0LUDHfgxWdGOqlYx0Z-Q05y3lFaSqc_kpONaUk35irgb5xBKbqJrckkLlCXZqbFhbCAGF9Nsi4-hnuDRJgsFk8_Fw6sAvhq52dUAH5oYGl-D3BLgoOxS3GEqHvM5-eTslPHL4T0jDz9ufl__au_uf95eX921ICgrrRxQbtD2zikmtdNOWqpkJ5XDzQgWUY9WcIVacdlZ3XcCNNNWwKCVUMC7M_J1n1u_flowFzP7DDhNNmBcsuGSi04wNnwAFUL0tGeKVfTigC6bGUezS3626Y95q7EC_R6AFHNO6P4hjJqXvczWvO1lXvYy-72q-O0_sXb62nhJ1k_v69_3OtZOnz0mk8FjABx9qqOYMfr3Iv4C_IK2ww |
| CitedBy_id | crossref_primary_10_3390_polym17030408 crossref_primary_10_1016_j_foodhyd_2021_107287 crossref_primary_10_1016_j_ijbiomac_2023_125712 crossref_primary_10_3390_foods14152644 crossref_primary_10_1002_efd2_97 crossref_primary_10_1016_j_foodhyd_2024_110973 crossref_primary_10_1016_j_foodres_2024_114432 crossref_primary_10_1016_j_foodhyd_2025_112004 crossref_primary_10_1007_s10068_022_01083_2 crossref_primary_10_1016_j_ijbiomac_2023_123924 crossref_primary_10_1016_j_ijbiomac_2024_129361 crossref_primary_10_1016_j_carbpol_2022_119949 crossref_primary_10_1016_j_foodres_2025_117421 crossref_primary_10_1007_s13399_024_05963_x crossref_primary_10_1016_j_foodhyd_2024_109997 crossref_primary_10_1016_j_ijbiomac_2023_124335 crossref_primary_10_1111_ijfs_16766 crossref_primary_10_3390_foods10071586 crossref_primary_10_1016_j_prenap_2025_100214 crossref_primary_10_3390_ijms26178341 crossref_primary_10_1016_j_foodres_2025_116298 crossref_primary_10_1016_j_crfs_2025_101014 crossref_primary_10_1016_j_foodchem_2023_136618 crossref_primary_10_1007_s11694_025_03543_9 crossref_primary_10_1016_j_colsurfa_2022_128511 crossref_primary_10_1007_s13399_022_03362_8 crossref_primary_10_1016_j_foodchem_2022_134373 crossref_primary_10_1016_j_foodchem_2024_139703 crossref_primary_10_1007_s11947_024_03538_2 crossref_primary_10_1016_j_tifs_2020_11_018 crossref_primary_10_1016_j_foodchem_2024_139397 crossref_primary_10_1016_j_foodchem_2025_145683 crossref_primary_10_1016_j_foodhyd_2024_110292 crossref_primary_10_3390_foods12051020 crossref_primary_10_1038_s41598_024_77936_z crossref_primary_10_3389_fsufs_2024_1395730 crossref_primary_10_1016_j_carbpol_2022_120121 crossref_primary_10_1016_j_jfutfo_2024_04_009 crossref_primary_10_1016_j_carbpol_2021_118314 crossref_primary_10_1016_j_postharvbio_2021_111740 crossref_primary_10_3390_polym14132667 crossref_primary_10_1016_j_jclepro_2022_131587 crossref_primary_10_1016_j_foodhyd_2025_111891 crossref_primary_10_1016_j_foodhyd_2023_109536 crossref_primary_10_1016_j_foodhyd_2022_107738 crossref_primary_10_1016_j_fbio_2024_105803 crossref_primary_10_1016_j_ijbiomac_2025_146344 crossref_primary_10_1016_j_ifset_2025_104030 crossref_primary_10_1016_j_ijbiomac_2025_147331 crossref_primary_10_1016_j_ijbiomac_2023_127523 crossref_primary_10_1016_j_foodchem_2024_139408 crossref_primary_10_3390_polym14101962 crossref_primary_10_1016_j_foodchem_2022_133625 crossref_primary_10_1016_j_foodhyd_2024_110428 crossref_primary_10_1016_j_ijbiomac_2024_130432 crossref_primary_10_1016_j_ijbiomac_2025_140775 crossref_primary_10_1016_j_ijbiomac_2021_03_202 crossref_primary_10_1111_1541_4337_12820 crossref_primary_10_1016_j_lwt_2024_116445 crossref_primary_10_1016_j_foodchem_2025_143123 crossref_primary_10_1016_j_ijbiomac_2022_10_091 crossref_primary_10_1016_j_carbpol_2022_119535 crossref_primary_10_1016_j_fbio_2023_102769 crossref_primary_10_1016_j_foodhyd_2021_107000 crossref_primary_10_1016_j_ultsonch_2025_107502 crossref_primary_10_1016_j_ijbiomac_2024_134463 crossref_primary_10_1016_j_foodhyd_2023_109272 crossref_primary_10_1016_j_foodchem_2024_141152 crossref_primary_10_1002_jsfa_70085 crossref_primary_10_3390_foods14010117 crossref_primary_10_1016_j_ijbiomac_2023_128594 crossref_primary_10_1016_j_ijbiomac_2023_125360 crossref_primary_10_1016_j_foodhyd_2021_106824 crossref_primary_10_1016_j_ifset_2025_104095 crossref_primary_10_1016_j_memsci_2020_118993 crossref_primary_10_1016_j_foodchem_2021_129022 crossref_primary_10_1016_j_foodchem_2022_132834 crossref_primary_10_1016_j_foodhyd_2025_111879 crossref_primary_10_1016_j_carbpol_2024_122872 crossref_primary_10_1016_j_biortech_2021_126635 crossref_primary_10_1016_j_ultsonch_2022_106242 crossref_primary_10_3390_foods13233941 crossref_primary_10_1016_j_ijbiomac_2023_124801 crossref_primary_10_1016_j_foodchem_2023_136819 crossref_primary_10_1016_j_focha_2023_100192 crossref_primary_10_1016_j_ultsonch_2022_106080 crossref_primary_10_1016_j_ijbiomac_2023_125650 crossref_primary_10_3390_md22080367 crossref_primary_10_1016_j_foodhyd_2020_106495 crossref_primary_10_1016_j_foodhyd_2024_110118 crossref_primary_10_1016_j_foodhyd_2025_111177 crossref_primary_10_1016_j_ifset_2023_103343 crossref_primary_10_1016_j_ijbiomac_2022_09_082 crossref_primary_10_1016_j_foodhyd_2022_108246 crossref_primary_10_1016_j_foodhyd_2021_106968 crossref_primary_10_1007_s11103_023_01344_6 crossref_primary_10_1016_j_scienta_2024_113240 crossref_primary_10_1016_j_ijbiomac_2024_132890 crossref_primary_10_3390_fermentation10110556 |
| Cites_doi | 10.1016/j.foodhyd.2014.10.018 10.1016/S0268-005X(01)00095-9 10.1121/1.4806648 10.1016/S0268-005X(02)00051-6 10.1016/j.foodhyd.2014.12.012 10.1016/j.jfoodeng.2018.03.009 10.1016/j.tifs.2015.04.001 10.1016/j.carbpol.2017.03.058 10.1016/j.foodhyd.2016.07.026 10.1016/j.carbpol.2016.12.033 10.1080/10408398.2012.753029 10.1016/j.foodhyd.2016.12.015 10.1016/S0144-8617(01)00170-9 10.1016/j.foodhyd.2019.105459 10.1016/j.foodhyd.2013.05.010 10.1016/j.ultsonch.2012.07.021 10.1016/j.foodhyd.2018.07.014 10.1016/j.tifs.2011.11.002 10.1016/j.ijbiomac.2019.03.077 10.1016/j.foodhyd.2014.01.006 10.1016/j.foodchem.2010.03.121 10.1080/10408399709527767 10.1016/j.ijbiomac.2016.06.011 10.1016/j.carbpol.2008.12.015 10.1016/j.foodchem.2019.125021 10.1016/j.foodchem.2018.12.059 10.1016/j.foodhyd.2008.07.023 10.1016/j.foodhyd.2019.105454 10.1016/j.foodchem.2020.126647 10.1111/1541-4337.12160 10.1016/j.jnim.2015.12.189 10.1016/j.foodhyd.2016.08.016 10.1016/j.pbi.2008.03.006 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier Ltd Copyright © 2020 Elsevier Ltd. All rights reserved. |
| Copyright_xml | – notice: 2020 Elsevier Ltd – notice: Copyright © 2020 Elsevier Ltd. All rights reserved. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
| DOI | 10.1016/j.foodchem.2020.128064 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic AGRICOLA |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics Chemistry Diet & Clinical Nutrition |
| EISSN | 1873-7072 |
| ExternalDocumentID | 32950902 10_1016_j_foodchem_2020_128064 S0308814620319269 |
| Genre | Journal Article |
| GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AARLI AATLK AAXUO ABFNM ABFRF ABGRD ABGSF ABJNI ABMAC ABUDA ABYKQ ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADECG ADEZE ADQTV ADUVX AEBSH AEFWE AEHWI AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AFZHZ AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CBWCG CS3 DOVZS DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W K-O KOM KZ1 LW9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SAB SCC SDF SDG SDP SES SPC SPCBC SSA SSK SSU SSZ T5K WH7 ~G- ~KM 29H 53G 9DU AAHBH AALCJ AAQXK AATTM AAXKI AAYJJ AAYWO AAYXX ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGHFR AGQPQ AGRDE AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HLV HVGLF HZ~ R2- SCB SEW VH1 WUQ Y6R ~HD CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
| ID | FETCH-LOGICAL-c401t-57e5bea6ff8159f9f5a085358febdcaee9da428e98253a9634c919a4c79848c23 |
| ISICitedReferencesCount | 113 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000582793900047&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0308-8146 1873-7072 |
| IngestDate | Thu Oct 02 04:18:57 EDT 2025 Thu Oct 02 21:18:05 EDT 2025 Wed Feb 19 02:30:24 EST 2025 Sat Nov 29 07:17:07 EST 2025 Tue Nov 18 22:02:24 EST 2025 Fri Feb 23 02:46:30 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Functional properties Chain conformation Structural characterization Citrus pectin |
| Language | English |
| License | Copyright © 2020 Elsevier Ltd. All rights reserved. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c401t-57e5bea6ff8159f9f5a085358febdcaee9da428e98253a9634c919a4c79848c23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 32950902 |
| PQID | 2444606181 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2524341172 proquest_miscellaneous_2444606181 pubmed_primary_32950902 crossref_primary_10_1016_j_foodchem_2020_128064 crossref_citationtrail_10_1016_j_foodchem_2020_128064 elsevier_sciencedirect_doi_10_1016_j_foodchem_2020_128064 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-03-01 2021-03-00 2021-Mar-01 20210301 |
| PublicationDateYYYYMMDD | 2021-03-01 |
| PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Food chemistry |
| PublicationTitleAlternate | Food Chem |
| PublicationYear | 2021 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Alba, Kontogiorgos (b0010) 2016; 68 Zhang, Xu, Zhang (b0175) 2015; 44 Akhtar, Dickinson, Mazoyer, Langendorff (b0005) 2002; 16 Hu, Chen, Wu, Zheng, Ye (b0045) 2019; 58 Shanmugam, Ashokkumar (b0125) 2014; 39 Maxwell, Belshaw, Waldron, Morris (b0075) 2012; 24 Schmeltera, Wientjesb, Vreekera, Klaffke (b0115) 2002; 47 Wang, Huang, Fan, Zhao, Hu, Xu, Liu (b0140) 2016; 91 Chen, Qi, Zhu, Wang (b0025) 2019; 131 Zheng, Zeng, Kan, Zhang (b0180) 2018; 231 Chan, Choo, Young, Loh (b0020) 2017; 161 Mills, Maackerras (b0080) 2016; 4 Lin, Yu, Ai, Zhang, Guo (b0065) 2020; 101 Guo, Zhao, Pang, Liao, Hu, Wu (b0040) 2014; 35 Kermani, Shpigelman, Pham, Van Loey, Hendrickx (b0050) 2015; 44 Ngouemazong, Christiaens, Shpigelman, Van Loey, Hendrickx (b0095) 2015; 14 Seshadri, Weiss, Hulbert, Mount (b0120) 2003; 17 Thakur, Singh, Handa (b0130) 1997; 37 Mohnen (b0085) 2008; 11 Cai, Qiu, Ding, Wu, Yan (b0015) 2019; 280 Schmidt, Schmidt, Kurz, Endreß, Schuchmann (b0110) 2015; 46 Liu, Zhang, Xu, Zhang (b0070) 2013; 133 Verkempinck, Kyomugasho, Salvia-Trujillo, Denis, Bourgeois, Van Loey, Grauwet (b0135) 2018; 85 Wang, Chen, Zou, Lv, Wang, Hou, Liu (b0145) 2018; 234 Zhang, Fan, Gu, Gong, Wu, Wang, Wang (b0165) 2020; 100 Li, Hu, Yan, Li, Ma, Liu (b0060) 2018; 76 Qiu, Cai, Wang, Yan (b0100) 2019; 297 Cortés-Muñoz, Chevalier-Lucia, Dumay (b0035) 2009; 23 Zhang, Ye, Ding, Sun, Xu, Liu (b0170) 2013; 20 Wang, Yu, Chen, Wang, Yan (b0150) 2020; 320 Schmidt, Schutz, Schuchmann (b0105) 2017; 62 Yang, Zhang (b0155) 2009; 76 Yust, Pedroche, Millán-Linares, Alcaide-Hidalgo, Millán (b0160) 2010; 122 Christiaens, Van Buggenhout, Houben, Jamsazzadeh Kermani, Moelants, Ngouemazong, Hendrickx (b0030) 2015; 56 Naqash, Masoodi, Rather, Wani, Gani (b0090) 2017; 168 Alba (10.1016/j.foodchem.2020.128064_b0010) 2016; 68 Yust (10.1016/j.foodchem.2020.128064_b0160) 2010; 122 Chan (10.1016/j.foodchem.2020.128064_b0020) 2017; 161 Li (10.1016/j.foodchem.2020.128064_b0060) 2018; 76 Kermani (10.1016/j.foodchem.2020.128064_b0050) 2015; 44 Wang (10.1016/j.foodchem.2020.128064_b0145) 2018; 234 Christiaens (10.1016/j.foodchem.2020.128064_b0030) 2015; 56 Chen (10.1016/j.foodchem.2020.128064_b0025) 2019; 131 Zhang (10.1016/j.foodchem.2020.128064_b0165) 2020; 100 Zhang (10.1016/j.foodchem.2020.128064_b0175) 2015; 44 Liu (10.1016/j.foodchem.2020.128064_b0070) 2013; 133 Maxwell (10.1016/j.foodchem.2020.128064_b0075) 2012; 24 Hu (10.1016/j.foodchem.2020.128064_b0045) 2019; 58 Zhang (10.1016/j.foodchem.2020.128064_b0170) 2013; 20 Zheng (10.1016/j.foodchem.2020.128064_b0180) 2018; 231 Yang (10.1016/j.foodchem.2020.128064_b0155) 2009; 76 Ngouemazong (10.1016/j.foodchem.2020.128064_b0095) 2015; 14 Wang (10.1016/j.foodchem.2020.128064_b0140) 2016; 91 Verkempinck (10.1016/j.foodchem.2020.128064_b0135) 2018; 85 Shanmugam (10.1016/j.foodchem.2020.128064_b0125) 2014; 39 Cai (10.1016/j.foodchem.2020.128064_b0015) 2019; 280 Naqash (10.1016/j.foodchem.2020.128064_b0090) 2017; 168 Qiu (10.1016/j.foodchem.2020.128064_b0100) 2019; 297 Schmidt (10.1016/j.foodchem.2020.128064_b0105) 2017; 62 Schmidt (10.1016/j.foodchem.2020.128064_b0110) 2015; 46 Seshadri (10.1016/j.foodchem.2020.128064_b0120) 2003; 17 Akhtar (10.1016/j.foodchem.2020.128064_b0005) 2002; 16 Guo (10.1016/j.foodchem.2020.128064_b0040) 2014; 35 Mills (10.1016/j.foodchem.2020.128064_b0080) 2016; 4 Wang (10.1016/j.foodchem.2020.128064_b0150) 2020; 320 Mohnen (10.1016/j.foodchem.2020.128064_b0085) 2008; 11 Thakur (10.1016/j.foodchem.2020.128064_b0130) 1997; 37 Lin (10.1016/j.foodchem.2020.128064_b0065) 2020; 101 Schmeltera (10.1016/j.foodchem.2020.128064_b0115) 2002; 47 Cortés-Muñoz (10.1016/j.foodchem.2020.128064_b0035) 2009; 23 |
| References_xml | – volume: 56 start-page: 1021 year: 2015 end-page: 1042 ident: b0030 article-title: Process-structure-function relations of pectin in food publication-title: Critical Reviews in Food Science and Nutrition – volume: 24 start-page: 64 year: 2012 end-page: 73 ident: b0075 article-title: Pectin – An emerging new bioactive food polysaccharide publication-title: Trends in Food Science & Technology – volume: 62 start-page: 288 year: 2017 end-page: 298 ident: b0105 article-title: Interfacial and emulsifying properties of citrus pectin: Interaction of pH, ionic strength and degree of esterification publication-title: Food Hydrocolloids – volume: 4 start-page: 11 year: 2016 ident: b0080 article-title: Does daily consumption of pectin lower cholesterol concentration? A systematic review and meta-analysis publication-title: Journal of Nutrition & Intermediary Metabolism – volume: 100 year: 2020 ident: b0165 article-title: Emulsifying properties of pectic polysaccharides obtained by sequential extraction from black tomato pomace publication-title: Food Hydrocolloids – volume: 20 start-page: 222 year: 2013 end-page: 231 ident: b0170 article-title: Ultrasound effects on the degradation kinetics, structure and rheological properties of apple pectin publication-title: Ultrasonics Sonochemistry – volume: 46 start-page: 59 year: 2015 end-page: 66 ident: b0110 article-title: Pectins of different origin and their performance in forming and stabilizing oi-in-water-emulsions publication-title: Food Hydrocolloids – volume: 37 start-page: 47 year: 1997 end-page: 73 ident: b0130 article-title: Chemistry and uses of pectin – a review publication-title: Critical Reviews in Food Science and Nutrition – volume: 133 start-page: 3595 year: 2013 ident: b0070 article-title: The influence of ultrasound on the structure, rheological properties and degradation path of citrus pectin publication-title: The Journal of the Acoustical Society of America – volume: 76 start-page: 349 year: 2009 end-page: 1261 ident: b0155 article-title: Chemical structural and chain conformational characterization of some bioactive polysaccharides isolated from natural sources publication-title: Carbohydrate Polymers – volume: 68 start-page: 211 year: 2016 end-page: 218 ident: b0010 article-title: Pectin at the oil-water interface: Relationship of molecular composition and structure to functionality publication-title: Food Hydrocolloids – volume: 168 start-page: 227 year: 2017 end-page: 239 ident: b0090 article-title: Emerging concepts in the nutraceutical and functional properties of pectin – A review publication-title: Carbohydrtae Polymers – volume: 76 start-page: 158 year: 2018 end-page: 163 ident: b0060 article-title: Effects of hydrolysis by xylanase on the emulsifying properties of publication-title: Food Hydrocolloids – volume: 161 start-page: 118 year: 2017 end-page: 139 ident: b0020 article-title: Pectin as a rheology modifier: Origin, structure, commercial production and rheology publication-title: Carbohydrate Polymers – volume: 231 start-page: 83 year: 2018 end-page: 90 ident: b0180 article-title: Effects of ultrasonic treatment on gel rheological properties and gel formation of high-methoxyl pectin publication-title: Journal of Food Engineering – volume: 14 start-page: 705 year: 2015 end-page: 718 ident: b0095 article-title: The emulsifying and emulsion-stabilizing properties of pectin: A review publication-title: Comprehensive Reviews in Food Science and Food Safety – volume: 39 start-page: 151 year: 2014 end-page: 162 ident: b0125 article-title: Ultrasonic preparation of stable flax seed oil emulsions in dairy systems – Physicochemical characterization publication-title: Food Hydrocolloids – volume: 58 year: 2019 ident: b0045 article-title: Ultrasonic-assisted citrus pectin modification in the bicarbonate-activated hydrogen peroxide system: Chemical and microstructural analysis publication-title: Food Hydrocolloids – volume: 297 year: 2019 ident: b0100 article-title: Effect of ultrasonic intensity on the conformation changes in citrus pectin under ultrasonic processing publication-title: Food Chemistry – volume: 16 start-page: 249 year: 2002 end-page: 256 ident: b0005 article-title: Emulsion stabilizing properties of depolymerized pectin publication-title: Food Hydrocolloids – volume: 47 start-page: 99 year: 2002 end-page: 108 ident: b0115 article-title: Enzymatic modifications of pectins and the impact on their rheological properties publication-title: Carbohydrate Polymers – volume: 320 year: 2020 ident: b0150 article-title: Innovative preparation, physicochemical characteristics and functional properties of bioactive polysaccharides from fresh okra ( publication-title: Food Chemistry – volume: 17 start-page: 191 year: 2003 end-page: 197 ident: b0120 article-title: Ultrasonic processing influences rheological and optical properties of high-methoxyl pectin dispersions publication-title: Food Hydrocolloids – volume: 91 start-page: 794 year: 2016 end-page: 803 ident: b0140 article-title: Characterization and functional properties of mango peel pectin extracted by ultrasonic assisted citric acid publication-title: International Journal of Biological Macromolecules – volume: 44 start-page: 424 year: 2015 end-page: 434 ident: b0050 article-title: Functional properties of citric acid extracted mango peel pectin as related to its chemical structure publication-title: Food Hydrocolloids – volume: 23 start-page: 640 year: 2009 end-page: 654 ident: b0035 article-title: Characteristics of submicron emulsions prepared by ultra-high pressure homogenisation: Effect of chilled or frozen storage publication-title: Food Hydrocolloids – volume: 35 start-page: 217 year: 2014 end-page: 225 ident: b0040 article-title: Emulsion stabilizing properties of pectins extracted by high hydrostatic pressure, high-speed shearing homogenization and traditional thermal methods: A comparative study publication-title: Food Hydrocolloids – volume: 122 start-page: 1212 year: 2010 end-page: 1217 ident: b0160 article-title: Improvement of functional properties of chickpea proteins by hydrolysis with immobilised Alcalase publication-title: Food Chemistry – volume: 131 start-page: 273 year: 2019 end-page: 281 ident: b0025 article-title: Effect of ultrasound on the properties and antioxidant activity of hawthorn pectin publication-title: International Journal of Biological Macromolecules – volume: 11 start-page: 266 year: 2008 end-page: 277 ident: b0085 article-title: Pectin structure and biosynthesis publication-title: Current Opinion in Plant Biology – volume: 85 start-page: 144 year: 2018 end-page: 157 ident: b0135 article-title: Emulsion stabilizing properties of citrus pectin and its interactions with conventional emulsifiers in oil-in-water emulsions publication-title: Food Hydrocolloids – volume: 234 start-page: 98 year: 2018 end-page: 107 ident: b0145 article-title: Applications of power ultrasound in oriented modification and degradation of pectin: A review publication-title: Journal of Engineering – volume: 44 start-page: 258 year: 2015 end-page: 271 ident: b0175 article-title: Pectin in cancer therapy: A review publication-title: Trends in Food Science & Technology – volume: 280 start-page: 130 year: 2019 end-page: 138 ident: b0015 article-title: Conformational and rheological properties of a quaternary ammonium salt of curdlan publication-title: Food Chemistry – volume: 101 year: 2020 ident: b0065 article-title: Emulsion stability of sugar beet pectin increased by genipin crosslinking publication-title: Food Hydrocolloids – volume: 44 start-page: 424 year: 2015 ident: 10.1016/j.foodchem.2020.128064_b0050 article-title: Functional properties of citric acid extracted mango peel pectin as related to its chemical structure publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2014.10.018 – volume: 16 start-page: 249 issue: 3 year: 2002 ident: 10.1016/j.foodchem.2020.128064_b0005 article-title: Emulsion stabilizing properties of depolymerized pectin publication-title: Food Hydrocolloids doi: 10.1016/S0268-005X(01)00095-9 – volume: 133 start-page: 3595 year: 2013 ident: 10.1016/j.foodchem.2020.128064_b0070 article-title: The influence of ultrasound on the structure, rheological properties and degradation path of citrus pectin publication-title: The Journal of the Acoustical Society of America doi: 10.1121/1.4806648 – volume: 17 start-page: 191 year: 2003 ident: 10.1016/j.foodchem.2020.128064_b0120 article-title: Ultrasonic processing influences rheological and optical properties of high-methoxyl pectin dispersions publication-title: Food Hydrocolloids doi: 10.1016/S0268-005X(02)00051-6 – volume: 46 start-page: 59 year: 2015 ident: 10.1016/j.foodchem.2020.128064_b0110 article-title: Pectins of different origin and their performance in forming and stabilizing oi-in-water-emulsions publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2014.12.012 – volume: 231 start-page: 83 year: 2018 ident: 10.1016/j.foodchem.2020.128064_b0180 article-title: Effects of ultrasonic treatment on gel rheological properties and gel formation of high-methoxyl pectin publication-title: Journal of Food Engineering doi: 10.1016/j.jfoodeng.2018.03.009 – volume: 44 start-page: 258 year: 2015 ident: 10.1016/j.foodchem.2020.128064_b0175 article-title: Pectin in cancer therapy: A review publication-title: Trends in Food Science & Technology doi: 10.1016/j.tifs.2015.04.001 – volume: 168 start-page: 227 year: 2017 ident: 10.1016/j.foodchem.2020.128064_b0090 article-title: Emerging concepts in the nutraceutical and functional properties of pectin – A review publication-title: Carbohydrtae Polymers doi: 10.1016/j.carbpol.2017.03.058 – volume: 68 start-page: 211 year: 2016 ident: 10.1016/j.foodchem.2020.128064_b0010 article-title: Pectin at the oil-water interface: Relationship of molecular composition and structure to functionality publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2016.07.026 – volume: 234 start-page: 98 year: 2018 ident: 10.1016/j.foodchem.2020.128064_b0145 article-title: Applications of power ultrasound in oriented modification and degradation of pectin: A review publication-title: Journal of Engineering – volume: 161 start-page: 118 year: 2017 ident: 10.1016/j.foodchem.2020.128064_b0020 article-title: Pectin as a rheology modifier: Origin, structure, commercial production and rheology publication-title: Carbohydrate Polymers doi: 10.1016/j.carbpol.2016.12.033 – volume: 56 start-page: 1021 issue: 6 year: 2015 ident: 10.1016/j.foodchem.2020.128064_b0030 article-title: Process-structure-function relations of pectin in food publication-title: Critical Reviews in Food Science and Nutrition doi: 10.1080/10408398.2012.753029 – volume: 76 start-page: 158 year: 2018 ident: 10.1016/j.foodchem.2020.128064_b0060 article-title: Effects of hydrolysis by xylanase on the emulsifying properties of Artemisia sphaerocephala Krasch. polysaccharide publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2016.12.015 – volume: 47 start-page: 99 issue: 2 year: 2002 ident: 10.1016/j.foodchem.2020.128064_b0115 article-title: Enzymatic modifications of pectins and the impact on their rheological properties publication-title: Carbohydrate Polymers doi: 10.1016/S0144-8617(01)00170-9 – volume: 101 year: 2020 ident: 10.1016/j.foodchem.2020.128064_b0065 article-title: Emulsion stability of sugar beet pectin increased by genipin crosslinking publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2019.105459 – volume: 35 start-page: 217 year: 2014 ident: 10.1016/j.foodchem.2020.128064_b0040 article-title: Emulsion stabilizing properties of pectins extracted by high hydrostatic pressure, high-speed shearing homogenization and traditional thermal methods: A comparative study publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2013.05.010 – volume: 20 start-page: 222 year: 2013 ident: 10.1016/j.foodchem.2020.128064_b0170 article-title: Ultrasound effects on the degradation kinetics, structure and rheological properties of apple pectin publication-title: Ultrasonics Sonochemistry doi: 10.1016/j.ultsonch.2012.07.021 – volume: 85 start-page: 144 year: 2018 ident: 10.1016/j.foodchem.2020.128064_b0135 article-title: Emulsion stabilizing properties of citrus pectin and its interactions with conventional emulsifiers in oil-in-water emulsions publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2018.07.014 – volume: 24 start-page: 64 year: 2012 ident: 10.1016/j.foodchem.2020.128064_b0075 article-title: Pectin – An emerging new bioactive food polysaccharide publication-title: Trends in Food Science & Technology doi: 10.1016/j.tifs.2011.11.002 – volume: 131 start-page: 273 year: 2019 ident: 10.1016/j.foodchem.2020.128064_b0025 article-title: Effect of ultrasound on the properties and antioxidant activity of hawthorn pectin publication-title: International Journal of Biological Macromolecules doi: 10.1016/j.ijbiomac.2019.03.077 – volume: 39 start-page: 151 year: 2014 ident: 10.1016/j.foodchem.2020.128064_b0125 article-title: Ultrasonic preparation of stable flax seed oil emulsions in dairy systems – Physicochemical characterization publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2014.01.006 – volume: 122 start-page: 1212 issue: 4 year: 2010 ident: 10.1016/j.foodchem.2020.128064_b0160 article-title: Improvement of functional properties of chickpea proteins by hydrolysis with immobilised Alcalase publication-title: Food Chemistry doi: 10.1016/j.foodchem.2010.03.121 – volume: 37 start-page: 47 issue: 1 year: 1997 ident: 10.1016/j.foodchem.2020.128064_b0130 article-title: Chemistry and uses of pectin – a review publication-title: Critical Reviews in Food Science and Nutrition doi: 10.1080/10408399709527767 – volume: 91 start-page: 794 year: 2016 ident: 10.1016/j.foodchem.2020.128064_b0140 article-title: Characterization and functional properties of mango peel pectin extracted by ultrasonic assisted citric acid publication-title: International Journal of Biological Macromolecules doi: 10.1016/j.ijbiomac.2016.06.011 – volume: 76 start-page: 349 year: 2009 ident: 10.1016/j.foodchem.2020.128064_b0155 article-title: Chemical structural and chain conformational characterization of some bioactive polysaccharides isolated from natural sources publication-title: Carbohydrate Polymers doi: 10.1016/j.carbpol.2008.12.015 – volume: 297 year: 2019 ident: 10.1016/j.foodchem.2020.128064_b0100 article-title: Effect of ultrasonic intensity on the conformation changes in citrus pectin under ultrasonic processing publication-title: Food Chemistry doi: 10.1016/j.foodchem.2019.125021 – volume: 280 start-page: 130 year: 2019 ident: 10.1016/j.foodchem.2020.128064_b0015 article-title: Conformational and rheological properties of a quaternary ammonium salt of curdlan publication-title: Food Chemistry doi: 10.1016/j.foodchem.2018.12.059 – volume: 23 start-page: 640 issue: 3 year: 2009 ident: 10.1016/j.foodchem.2020.128064_b0035 article-title: Characteristics of submicron emulsions prepared by ultra-high pressure homogenisation: Effect of chilled or frozen storage publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2008.07.023 – volume: 100 year: 2020 ident: 10.1016/j.foodchem.2020.128064_b0165 article-title: Emulsifying properties of pectic polysaccharides obtained by sequential extraction from black tomato pomace publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2019.105454 – volume: 320 year: 2020 ident: 10.1016/j.foodchem.2020.128064_b0150 article-title: Innovative preparation, physicochemical characteristics and functional properties of bioactive polysaccharides from fresh okra (Abelmoschus esculentus (L.) Moench publication-title: Food Chemistry doi: 10.1016/j.foodchem.2020.126647 – volume: 58 year: 2019 ident: 10.1016/j.foodchem.2020.128064_b0045 article-title: Ultrasonic-assisted citrus pectin modification in the bicarbonate-activated hydrogen peroxide system: Chemical and microstructural analysis publication-title: Food Hydrocolloids – volume: 14 start-page: 705 issue: 6 year: 2015 ident: 10.1016/j.foodchem.2020.128064_b0095 article-title: The emulsifying and emulsion-stabilizing properties of pectin: A review publication-title: Comprehensive Reviews in Food Science and Food Safety doi: 10.1111/1541-4337.12160 – volume: 4 start-page: 11 year: 2016 ident: 10.1016/j.foodchem.2020.128064_b0080 article-title: Does daily consumption of pectin lower cholesterol concentration? A systematic review and meta-analysis publication-title: Journal of Nutrition & Intermediary Metabolism doi: 10.1016/j.jnim.2015.12.189 – volume: 62 start-page: 288 year: 2017 ident: 10.1016/j.foodchem.2020.128064_b0105 article-title: Interfacial and emulsifying properties of citrus pectin: Interaction of pH, ionic strength and degree of esterification publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2016.08.016 – volume: 11 start-page: 266 year: 2008 ident: 10.1016/j.foodchem.2020.128064_b0085 article-title: Pectin structure and biosynthesis publication-title: Current Opinion in Plant Biology doi: 10.1016/j.pbi.2008.03.006 |
| SSID | ssj0002018 |
| Score | 2.6415713 |
| Snippet | •Ultrasound remarkably changed the structural and conformational features of pectin.•Ultrasound reduced the rheological properties and gel-formation capacity... Ultrasonic degradation has become a fascinating strategy for preparing modified pectin, contributing to the improvement of pectin's functional characteristics.... Ultrasonic degradation has become a fascinating strategy for preparing modified pectin, contributing to the improvement of pectin’s functional characteristics.... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 128064 |
| SubjectTerms | Carbohydrate Conformation Chain conformation Citrus Citrus pectin degradation droplet size Emulsifying Agents - chemistry emulsions food chemistry Functional properties Molecular Conformation Molecular Weight Monosaccharides - analysis pectins Pectins - chemistry Rheology Structural characterization Sugars Ultrasonics zeta potential |
| Title | Effects of structural and conformational characteristics of citrus pectin on its functional properties |
| URI | https://dx.doi.org/10.1016/j.foodchem.2020.128064 https://www.ncbi.nlm.nih.gov/pubmed/32950902 https://www.proquest.com/docview/2444606181 https://www.proquest.com/docview/2524341172 |
| Volume | 339 |
| WOSCitedRecordID | wos000582793900047&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-7072 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002018 issn: 0308-8146 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9swED_SdLC9jK77StcVDcZehjfHtmzpsWQpWwdhgwyyJ2MrEk0JcmiS0pf97z1Zkt2Gfj7sxQThE1bup9Pd6T4APiqZxGXKoyDNimmQoMIaMJWwYIq6PO2LsCxT22wiG43YZMJ_dTr_fC7M-TzTml1c8MV_ZTWOIbNN6uwj2N1MigP4G5mOT2Q7Ph_E-GEboWGLw9aFNWz6mm5yFU1ZkI1azSbAvM7B-FxnX2pzj2CuFczR50gWxnV_tvKBh017zwon953jWhe9FSODk3UDwN-zdR3UJ3Xwd9ZGFljRN8ZTNBj7o9RIIuucPTbjP90kzkERXYnQ8olZIWs9jU7oxraEkRObfXO_m9wo0a1z4fSLwqWYlaBJH5maGJ7gegntjaOtCTj0sWynuZ8nN_Pkdp4t2I4yylkXtg9_DCfHzVGO2hGz11B2BVdSzG_-otu0m9usl1qLGe_Ac2d-kEMLmxfQkXoXng4873ah920mV-QTcfVi52Tk2zXgez6LffkSlIMZqRRpYUYQZuQ6zMgGzAyBhRmxMCOVJggz0sKMtDB7BX-OhuPB98D17AgE7u5VQDNJS1mkSjFUlBVXtEClPqZMyXIqCin5tECLV3IW0bhA6Z8I3udFIjLOEiai-DV0daXlWyC1sRGqIlQoPTilpYhCGaOJK1SMRnzYA-r_61y4gvamr8o8v5vbPfja0C1sSZd7KbhnZe4UU6tw5ojSe2k_eN7nyEpzHVdoWa2XOSrWSYrqNOvf8Q6NEtQz0crowRsLnOab44hTE1W99-j1vINn7Ubdhy7yXL6HJ-J8NVueHcBWNmEHbitcAkhK1Y0 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+structural+and+conformational+characteristics+of+citrus+pectin+on+its+functional+properties&rft.jtitle=Food+chemistry&rft.au=Wang%2C+Chun&rft.au=Qiu%2C+Wen-Yi&rft.au=Chen%2C+Ting-Ting&rft.au=Yan%2C+Jing-Kun&rft.date=2021-03-01&rft.issn=0308-8146&rft.volume=339&rft.spage=128064&rft_id=info:doi/10.1016%2Fj.foodchem.2020.128064&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_foodchem_2020_128064 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0308-8146&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0308-8146&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0308-8146&client=summon |