Application of machine learning in anaerobic digestion: Perspectives and challenges

[Display omitted] •Machine learning assisted decision-making is an emerging approach.•Various machine learning models have been applied for prediction and optimization.•Anaerobic digestion instability can be reduced using machine learning algorithms.•Further research on practical application and alg...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Bioresource technology Ročník 345; s. 126433
Hlavní autoři: Andrade Cruz, Ianny, Chuenchart, Wachiranon, Long, Fei, Surendra, K.C., Renata Santos Andrade, Larissa, Bilal, Muhammad, Liu, Hong, Tavares Figueiredo, Renan, Khanal, Samir Kumar, Fernando Romanholo Ferreira, Luiz
Médium: Journal Article
Jazyk:angličtina
Vydáno: England Elsevier Ltd 01.02.2022
Témata:
ISSN:0960-8524, 1873-2976, 1873-2976
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract [Display omitted] •Machine learning assisted decision-making is an emerging approach.•Various machine learning models have been applied for prediction and optimization.•Anaerobic digestion instability can be reduced using machine learning algorithms.•Further research on practical application and algorithm combination is needed. Anaerobic digestion (AD) is widely adopted for remediating diverse organic wastes with simultaneous production of renewable energy and nutrient-rich digestate. AD process, however, suffers from instability, thereby adversely affecting biogas production. There have been significant efforts in developing strategies to control the AD process to maintain process stability and predict AD performance. Among these strategies, machine learning (ML) has gained significant interest in recent years in AD process optimization, prediction of uncertain parameters, detection of perturbations, and real-time monitoring. ML uses inductive inference to generalize correlations between input and output data, subsequently used to make informed decisions in new circumstances. This review aims to critically examine ML as applied to the AD process and provides an in-depth assessment of important algorithms (ANN, ANFIS, SVM, RF, GA, and PSO) and their applications in AD modeling. The review also outlines some challenges and perspectives of ML, and highlights future research directions.
AbstractList [Display omitted] •Machine learning assisted decision-making is an emerging approach.•Various machine learning models have been applied for prediction and optimization.•Anaerobic digestion instability can be reduced using machine learning algorithms.•Further research on practical application and algorithm combination is needed. Anaerobic digestion (AD) is widely adopted for remediating diverse organic wastes with simultaneous production of renewable energy and nutrient-rich digestate. AD process, however, suffers from instability, thereby adversely affecting biogas production. There have been significant efforts in developing strategies to control the AD process to maintain process stability and predict AD performance. Among these strategies, machine learning (ML) has gained significant interest in recent years in AD process optimization, prediction of uncertain parameters, detection of perturbations, and real-time monitoring. ML uses inductive inference to generalize correlations between input and output data, subsequently used to make informed decisions in new circumstances. This review aims to critically examine ML as applied to the AD process and provides an in-depth assessment of important algorithms (ANN, ANFIS, SVM, RF, GA, and PSO) and their applications in AD modeling. The review also outlines some challenges and perspectives of ML, and highlights future research directions.
Anaerobic digestion (AD) is widely adopted for remediating diverse organic wastes with simultaneous production of renewable energy and nutrient-rich digestate. AD process, however, suffers from instability, thereby adversely affecting biogas production. There have been significant efforts in developing strategies to control the AD process to maintain process stability and predict AD performance. Among these strategies, machine learning (ML) has gained significant interest in recent years in AD process optimization, prediction of uncertain parameters, detection of perturbations, and real-time monitoring. ML uses inductive inference to generalize correlations between input and output data, subsequently used to make informed decisions in new circumstances. This review aims to critically examine ML as applied to the AD process and provides an in-depth assessment of important algorithms (ANN, ANFIS, SVM, RF, GA, and PSO) and their applications in AD modeling. The review also outlines some challenges and perspectives of ML, and highlights future research directions.
Anaerobic digestion (AD) is widely adopted for remediating diverse organic wastes with simultaneous production of renewable energy and nutrient-rich digestate. AD process, however, suffers from instability, thereby adversely affecting biogas production. There have been significant efforts in developing strategies to control the AD process to maintain process stability and predict AD performance. Among these strategies, machine learning (ML) has gained significant interest in recent years in AD process optimization, prediction of uncertain parameters, detection of perturbations, and real-time monitoring. ML uses inductive inference to generalize correlations between input and output data, subsequently used to make informed decisions in new circumstances. This review aims to critically examine ML as applied to the AD process and provides an in-depth assessment of important algorithms (ANN, ANFIS, SVM, RF, GA, and PSO) and their applications in AD modeling. The review also outlines some challenges and perspectives of ML, and highlights future research directions.Anaerobic digestion (AD) is widely adopted for remediating diverse organic wastes with simultaneous production of renewable energy and nutrient-rich digestate. AD process, however, suffers from instability, thereby adversely affecting biogas production. There have been significant efforts in developing strategies to control the AD process to maintain process stability and predict AD performance. Among these strategies, machine learning (ML) has gained significant interest in recent years in AD process optimization, prediction of uncertain parameters, detection of perturbations, and real-time monitoring. ML uses inductive inference to generalize correlations between input and output data, subsequently used to make informed decisions in new circumstances. This review aims to critically examine ML as applied to the AD process and provides an in-depth assessment of important algorithms (ANN, ANFIS, SVM, RF, GA, and PSO) and their applications in AD modeling. The review also outlines some challenges and perspectives of ML, and highlights future research directions.
ArticleNumber 126433
Author Renata Santos Andrade, Larissa
Andrade Cruz, Ianny
Long, Fei
Bilal, Muhammad
Chuenchart, Wachiranon
Tavares Figueiredo, Renan
Surendra, K.C.
Khanal, Samir Kumar
Liu, Hong
Fernando Romanholo Ferreira, Luiz
Author_xml – sequence: 1
  givenname: Ianny
  surname: Andrade Cruz
  fullname: Andrade Cruz, Ianny
  organization: Graduate Program in Process Engineering, Tiradentes University, Av. Murilo Dantas, 300, Farolândia, 49032-490 Aracaju, SE, Brazil
– sequence: 2
  givenname: Wachiranon
  surname: Chuenchart
  fullname: Chuenchart, Wachiranon
  organization: Department of Civil and Environmental Engineering, University of Hawaiʻi at Mānoa, 2540 Dole Street, Honolulu, HI 96822, USA
– sequence: 3
  givenname: Fei
  surname: Long
  fullname: Long, Fei
  organization: Department of Biological and Ecological Engineering, Oregon State University, Corvallis, OR 97333, USA
– sequence: 4
  givenname: K.C.
  surname: Surendra
  fullname: Surendra, K.C.
  organization: Department of Molecular Biosciences and Bioengineering, University of Hawaiʻi at Manoa, 1955 East-West Road, Honolulu, HI 96822, USA
– sequence: 5
  givenname: Larissa
  surname: Renata Santos Andrade
  fullname: Renata Santos Andrade, Larissa
  organization: Graduate Program in Process Engineering, Tiradentes University, Av. Murilo Dantas, 300, Farolândia, 49032-490 Aracaju, SE, Brazil
– sequence: 6
  givenname: Muhammad
  surname: Bilal
  fullname: Bilal, Muhammad
  organization: School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
– sequence: 7
  givenname: Hong
  surname: Liu
  fullname: Liu, Hong
  organization: Department of Biological and Ecological Engineering, Oregon State University, Corvallis, OR 97333, USA
– sequence: 8
  givenname: Renan
  surname: Tavares Figueiredo
  fullname: Tavares Figueiredo, Renan
  organization: Graduate Program in Process Engineering, Tiradentes University, Av. Murilo Dantas, 300, Farolândia, 49032-490 Aracaju, SE, Brazil
– sequence: 9
  givenname: Samir Kumar
  surname: Khanal
  fullname: Khanal, Samir Kumar
  email: khanal@hawaii.edu
  organization: Department of Civil and Environmental Engineering, University of Hawaiʻi at Mānoa, 2540 Dole Street, Honolulu, HI 96822, USA
– sequence: 10
  givenname: Luiz
  surname: Fernando Romanholo Ferreira
  fullname: Fernando Romanholo Ferreira, Luiz
  organization: Graduate Program in Process Engineering, Tiradentes University, Av. Murilo Dantas, 300, Farolândia, 49032-490 Aracaju, SE, Brazil
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34848330$$D View this record in MEDLINE/PubMed
BookMark eNqNkU1P3DAQhq2Kqiy0fwHlyCWLv-NUHIpQC0hIrdT2bDnjCetV1k7tLBL_nizLXrjQ01yed2b0PifkKKaIhJwxumSU6Yv1sgspTwirJaecLRnXUogPZMFMI2reNvqILGiraW0Ul8fkpJQ1pVSwhn8ix0IaaYSgC_L7ahyHAG4KKVaprzYOViFiNaDLMcSHKsTKRYc5dQEqHx6w7NCv1S_MZUSYwiOWmfAVrNwwYJyBz-Rj74aCX17nKfn74_uf69v6_ufN3fXVfQ2SsqmWveo8tB3z2GkOUrvGdNCiEIp7rRwF7TrRm0ahEqCE8y1jXigvudGtouKUnO_3jjn9286P2U0ogMPgIqZtsVwLLWVLzf-gVHHBDFUzevaKbrsNejvmsHH5yR46m4HLPQA5lZKxtxCmlwKn7MJgGbU7RXZtD4rsTpHdK5rj-k38cOHd4Ld9EOdOHwNmWyBgBPQhzyKsT-G9Fc8WbK65
CitedBy_id crossref_primary_10_63095_NBSEH_25_458899
crossref_primary_10_1007_s11356_024_34471_8
crossref_primary_10_1016_j_scitotenv_2023_168279
crossref_primary_10_1016_j_renene_2024_121211
crossref_primary_10_51583_IJLTEMAS_2025_140400037
crossref_primary_10_1016_j_rser_2025_116101
crossref_primary_10_1088_1402_4896_ad3e3c
crossref_primary_10_1515_tsd_2024_2636
crossref_primary_10_1016_j_cej_2024_157018
crossref_primary_10_1016_j_apenergy_2023_122024
crossref_primary_10_1007_s10532_025_10152_2
crossref_primary_10_1038_s44296_024_00009_9
crossref_primary_10_1016_j_apenergy_2024_124447
crossref_primary_10_1016_j_jenvman_2023_119968
crossref_primary_10_1016_j_biortech_2024_130496
crossref_primary_10_1038_s41545_025_00440_y
crossref_primary_10_3390_math12152317
crossref_primary_10_1016_j_biortech_2022_128274
crossref_primary_10_1016_j_fuel_2025_134787
crossref_primary_10_21303_2461_4262_2025_003593
crossref_primary_10_1016_j_cej_2023_146069
crossref_primary_10_1016_j_jclepro_2024_140679
crossref_primary_10_1007_s11783_023_1735_8
crossref_primary_10_1016_j_biortech_2022_126812
crossref_primary_10_1016_j_csite_2024_105116
crossref_primary_10_1039_D3RA05811E
crossref_primary_10_1016_j_biortech_2024_130665
crossref_primary_10_1016_j_cjche_2025_06_010
crossref_primary_10_1016_j_bej_2024_109221
crossref_primary_10_1016_j_biortech_2024_130549
crossref_primary_10_1088_2515_7620_ade03b
crossref_primary_10_1007_s12155_025_10858_4
crossref_primary_10_1016_j_biortech_2022_128501
crossref_primary_10_1016_j_scitotenv_2024_175461
crossref_primary_10_1016_j_biortech_2023_129953
crossref_primary_10_1007_s11274_025_04494_5
crossref_primary_10_1016_j_scitotenv_2023_162797
crossref_primary_10_3390_w15040614
crossref_primary_10_1016_j_biombioe_2023_106997
crossref_primary_10_29333_ejosdr_14637
crossref_primary_10_3390_fluids7120366
crossref_primary_10_1016_j_biortech_2023_129829
crossref_primary_10_1080_21655979_2023_2252191
crossref_primary_10_3390_app13095317
crossref_primary_10_1016_j_supcon_2022_100017
crossref_primary_10_1016_j_biortech_2024_130793
crossref_primary_10_1016_j_biortech_2024_131762
crossref_primary_10_1016_j_cej_2023_144671
crossref_primary_10_1016_j_biortech_2025_132758
crossref_primary_10_1016_j_dwt_2024_100257
crossref_primary_10_1016_j_rser_2024_115264
crossref_primary_10_1016_j_biortech_2022_128451
crossref_primary_10_3390_bioengineering10121410
crossref_primary_10_1007_s11157_023_09677_w
crossref_primary_10_1016_j_jechem_2023_02_020
crossref_primary_10_3390_pr13020294
crossref_primary_10_1016_j_biortech_2023_128629
crossref_primary_10_1016_j_jwpe_2023_104758
crossref_primary_10_1080_10643389_2023_2252313
crossref_primary_10_1016_j_biortech_2025_132369
crossref_primary_10_4491_eer_2022_037
crossref_primary_10_3390_fermentation11030130
crossref_primary_10_1016_j_biortech_2025_132508
crossref_primary_10_1016_j_cej_2024_151743
crossref_primary_10_1177_0734242X241294247
crossref_primary_10_3390_fermentation8020065
crossref_primary_10_1016_j_cej_2024_150496
crossref_primary_10_1002_bit_28503
crossref_primary_10_1016_j_jwpe_2023_104752
crossref_primary_10_1016_j_scitotenv_2024_172291
crossref_primary_10_3390_su142416467
crossref_primary_10_1016_j_ijhydene_2024_06_166
crossref_primary_10_3390_fermentation10120639
crossref_primary_10_1016_j_biortech_2022_128518
crossref_primary_10_3390_su151712875
crossref_primary_10_1016_j_biortech_2024_131421
crossref_primary_10_1016_j_jece_2025_116293
crossref_primary_10_1016_j_biortech_2022_128076
crossref_primary_10_1016_j_biortech_2022_127023
crossref_primary_10_1016_j_watres_2023_120891
crossref_primary_10_1016_j_bcab_2023_102653
crossref_primary_10_1007_s11227_023_05569_6
crossref_primary_10_1007_s13399_023_04506_0
crossref_primary_10_1016_j_heliyon_2024_e28221
crossref_primary_10_1002_bbb_2596
crossref_primary_10_1016_j_jenvman_2024_122386
crossref_primary_10_61435_ijred_2024_60387
crossref_primary_10_1016_j_biortech_2024_130983
crossref_primary_10_1038_s41598_025_07124_0
crossref_primary_10_1002_wer_10893
crossref_primary_10_1016_j_biortech_2023_129235
crossref_primary_10_1016_j_jclepro_2022_135074
crossref_primary_10_1007_s12649_025_03206_2
crossref_primary_10_1016_j_biortech_2022_128421
crossref_primary_10_1016_j_jece_2025_118138
crossref_primary_10_1016_j_biortech_2023_129519
crossref_primary_10_1016_j_biteb_2024_101845
crossref_primary_10_1016_j_ijhydene_2022_09_274
crossref_primary_10_1007_s12155_022_10500_7
crossref_primary_10_1016_j_jenvman_2025_124627
crossref_primary_10_1016_j_scitotenv_2023_161656
crossref_primary_10_1109_JIOT_2024_3445965
crossref_primary_10_1016_j_biortech_2022_128419
crossref_primary_10_1016_j_biortech_2025_133263
crossref_primary_10_1016_j_fuel_2024_131545
crossref_primary_10_3390_su17093783
crossref_primary_10_1007_s11783_025_2090_8
crossref_primary_10_1016_j_jenvman_2024_120135
crossref_primary_10_1016_j_jece_2025_118829
crossref_primary_10_1016_j_biortech_2022_128539
crossref_primary_10_1016_j_biortech_2023_128952
crossref_primary_10_1016_j_scitotenv_2023_161923
crossref_primary_10_1007_s10668_023_04326_2
crossref_primary_10_1016_j_arabjc_2023_104785
Cites_doi 10.1016/j.biortech.2021.125829
10.1016/j.bej.2018.09.010
10.1016/j.wasman.2020.12.003
10.1016/j.jece.2020.103742
10.1016/j.jenvman.2018.06.092
10.1007/978-3-319-41192-7
10.1016/j.renene.2017.07.050
10.1016/B978-0-12-813526-6.00004-0
10.1016/j.biortech.2020.124138
10.1016/j.biortech.2017.08.181
10.1007/978-3-030-29513-4_36
10.1016/j.wasman.2017.11.057
10.1016/j.jece.2017.04.007
10.1007/s11356-018-2224-7
10.1016/B978-0-12-818634-3.50127-2
10.1016/j.neucom.2019.10.118
10.1016/j.bej.2015.06.015
10.1016/j.rser.2018.10.021
10.1016/j.wasman.2016.11.024
10.1007/s11356-019-04671-8
10.1007/BF00369576
10.1016/j.dss.2021.113561
10.1016/j.psep.2020.07.045
10.1016/j.chemosphere.2018.10.056
10.3390/pr7120953
10.1016/j.scitotenv.2014.01.001
10.1016/j.ijheatmasstransfer.2018.07.123
10.1007/s10098-020-01816-z
10.1524/auto.2009.0809
10.1016/j.resconrec.2018.02.025
10.1016/j.matpr.2020.02.882
10.1016/B978-0-444-63289-0.00005-3
10.1016/j.energy.2020.119173
10.1016/j.jclepro.2018.07.027
10.1016/j.ultsonch.2020.105428
10.1007/s00477-019-01732-9
10.1016/j.scs.2020.102325
10.1016/j.resconrec.2009.08.012
10.1016/j.ecoinf.2018.01.003
10.1016/j.biortech.2019.02.033
10.1007/s11606-018-4316-y
10.1016/j.wasman.2017.03.044
10.1016/j.jclepro.2019.04.232
10.1016/j.biortech.2018.09.085
10.1016/j.jenvman.2021.112875
10.1007/s10706-017-0356-z
10.3390/pr8010067
10.1016/j.psep.2020.12.016
10.1002/er.5446
10.1016/j.strusafe.2014.09.002
10.1016/j.jclepro.2019.01.031
10.1016/j.rser.2020.109784
10.1016/j.cej.2019.123502
10.1016/j.jwpe.2021.102033
10.1016/j.envsoft.2004.09.006
10.1016/j.biortech.2020.124114
10.1016/j.jclepro.2020.121787
10.1007/s13042-018-00913-2
10.1016/j.watres.2011.08.059
10.1007/s12649-015-9392-1
10.1016/j.jclepro.2021.125840
10.1007/0-387-27705-6_6
10.1016/j.psep.2018.04.013
10.1016/j.biombioe.2020.105661
10.1016/j.biortech.2015.08.017
10.1021/acs.jpcc.9b10766
10.1016/j.fuel.2018.05.051
10.1016/j.biortech.2020.124118
10.1007/s11157-015-9376-4
10.1016/j.jes.2016.03.004
10.1016/j.asoc.2014.08.025
10.1016/j.biortech.2007.11.035
10.1016/j.ins.2012.10.039
10.1016/j.renene.2012.03.027
10.1016/j.biortech.2021.125001
10.1016/j.fuel.2016.03.031
10.2166/wst.2020.026
10.1007/s12393-016-9141-7
10.1016/j.jclepro.2017.04.042
10.1016/j.biortech.2019.122495
10.1016/j.biortech.2016.04.068
10.1016/j.seta.2017.10.006
10.1016/j.scitotenv.2020.140314
10.1016/S0304-3800(02)00064-9
10.1016/j.scitotenv.2019.134574
10.1007/s12649-016-9482-8
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright © 2021 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Copyright © 2021 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.biortech.2021.126433
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE
AGRICOLA
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Agriculture
EISSN 1873-2976
ExternalDocumentID 34848330
10_1016_j_biortech_2021_126433
S0960852421017752
Genre Journal Article
Review
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
9JN
AAAJQ
AABNK
AACTN
AAEDT
AAEDW
AAHBH
AAHCO
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AARKO
AATLK
AAXKI
AAXUO
ABFNM
ABFYP
ABGRD
ABGSF
ABJNI
ABLST
ABMAC
ABNUV
ABUDA
ABXDB
ACDAQ
ACGFS
ACIUM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADQTV
ADUVX
AEBSH
AEHWI
AEKER
AENEX
AEQOU
AFJKZ
AFKWA
AFTJW
AFXIZ
AGEKW
AGHFR
AGRDE
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
AKRWK
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLECG
BLXMC
CJTIS
CS3
DU5
EBS
EFJIC
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMC
HVGLF
HZ~
IHE
J1W
JARJE
KCYFY
KOM
LUGTX
LW9
LY6
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SAC
SDF
SDG
SDP
SEN
SES
SEW
SPC
SPCBC
SSA
SSG
SSI
SSJ
SSR
SSU
SSZ
T5K
VH1
WUQ
Y6R
~02
~G-
~KM
9DU
AATTM
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEGFY
AEIPS
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c401t-4f5bdc9b1deb62c46a78bc9e3352d65a0c6ab3f875e53c53ad911d35d42869503
ISICitedReferencesCount 180
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000733151000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0960-8524
1873-2976
IngestDate Sat Sep 27 21:19:26 EDT 2025
Wed Oct 01 14:52:02 EDT 2025
Wed Feb 19 02:28:03 EST 2025
Sat Nov 29 05:19:11 EST 2025
Tue Nov 18 22:18:27 EST 2025
Sat Nov 23 15:54:46 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords TAN
FVW
DL
CHP
AHR
HRT
ZVI
FFN
DT
MLP
TVS
PNN
RNN
OLR
RBF
ANFIS
ML
RFR
AD
VFAs
PSO
RSM
PCA
GIS
BPA
AT
FCMC
GEP
RF
VS
OFMSW
ANN
GRN
ENN
FL
KNN
NNET
SVM
MNN
ORP
FS
Modeling
BP
Anaerobic digestion
Process instability
CBP
SC
LS-SVM
SRT
C:N
XGBoost
COD
GMLET
GA
WFM
COM
Process optimization
AcoD
GP
CM
RMSE
MSS
ACO
LMM
CSTR
Machine learning
FOS/TAC
FF-BPNN
MFs
UASB
ICV
TS
Language English
License Copyright © 2021 Elsevier Ltd. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c401t-4f5bdc9b1deb62c46a78bc9e3352d65a0c6ab3f875e53c53ad911d35d42869503
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
PMID 34848330
PQID 2605231805
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2636449080
proquest_miscellaneous_2605231805
pubmed_primary_34848330
crossref_citationtrail_10_1016_j_biortech_2021_126433
crossref_primary_10_1016_j_biortech_2021_126433
elsevier_sciencedirect_doi_10_1016_j_biortech_2021_126433
PublicationCentury 2000
PublicationDate February 2022
2022-02-00
2022-Feb
20220201
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: February 2022
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Bioresource technology
PublicationTitleAlternate Bioresour Technol
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Beltramo, Klocke, Hitzmann (b0080) 2019; 6
Batstone, Puyol, Flores-Alsina, Rodríguez (b0070) 2015; 14
Chojaczyk, Teixeira, Neves, Cardoso, Guedes Soares (b0115) 2015; 52
Hajihassani, Jahed Armaghani, Kalatehjari (b0230) 2018; 36
Zareei, Khodaei (b0550) 2017; 114
Torregrossa, Leopold, Hernández-Sancho, Hansen (b0480) 2018; 223
Gueguim Kana, Oloke, Lateef, Adesiyan (b0220) 2012; 46
Alejo, Atkinson, Guzmán-Fierro, Roeckel (b0025) 2018; 25
Şenol (b0445) 2021; 215
Hu, Yang, Dan, Pu, Yang (b0240) 2017; 5
Puig-Arnavat, Bruno (b0390) 2015
Song, Choi, Bae, Lee, Han, Kim, Kwon, Myung, Kim, Yoon (b0455) 2020
Strik, Domnanovich, Zani, Braun, Holubar (b0460) 2005; 20
Bai, Liu, Yin, Ma, Chen (b0060) 2017; 52
Vendruscolo, Mesa, Rissi, Meyer, Oliveira, Souza, Cruz (b0500) 2020; 742
Kennedy, J., 2006. Swarm Intelligence, in: Handbook of Nature-Inspired and Innovative Computing. pp. 187–219.
Cipullo, Snapir, Prpich, Campo, Coulon (b0125) 2019; 215
Tan, Poh, Gouwanda (b0475) 2018; 198
Rodriguez-galiano, Paula, Garcia-soldado, Chica-olmo, Ribeiro (b0415) 2014; 476–477
Cruz, Andrade, Bharagava, Nadda, Bilal, Figueiredo, Ferreira (b0140) 2021; 4
Ghofrani-Isfahani, Valverde-Pérez, Alvarado-Morales, Shahrokhi, Vossoughi, Angelidaki (b0215) 2020; 391
Zhou, Li (b0560) 2019; 33
Mehrdad, Abbasi, Yeganeh, Kamalan (b0325) 2021
Matin, Chelgani (b0320) 2016; 177
Zaghloul, Hamza, Iorhemen, Tay (b0545) 2020; 8
Fanourgakis, Gkagkas, Tylianakis, Froudakis (b0190) 2020; 124
Xing, Cheng, Shan (b0520) 2019
Nguyen, Jeon, Jeung, Rene, Banu, Ravindran, Vu, Ngo, Guo, Chang (b0340) 2019; 280
Barik, Murugan (b0065) 2015; 6
Piri, Pirzadeh, Keshtegar, Givehchi (b0380) 2021; 145
Marsland (b0315) 2015
Pasini (b0370) 2015; 7
Rios, J.D., Alanis, A.Y., Arana-Daniel, N., Lopez-Franco, Ca., 2020. Artificial Neural Networks, in: Press, A. (Ed.), Neural Networks Modeling and Control: Applications for Unknown Nonlinear Delayed Systems in Discrete Time. pp. 117–124.
Asadi, McPhedran (b0045) 2021; 293
Ramachandran, Rustum, Adeloye (b0395) 2019; 7
Rego, Leite, Leite, Grillo, Santos (b0405) 2019; 74
Pandey, Chaudhary, Mehrotra (b0365) 2014; 24
Liu, Wan, Ma, Wang (b0300) 2019; 26
You, Ma, Tang, Wang, Yan, Ni, Cen, Huang (b0535) 2017; 68
Gaida, D., Brito, A.L.S., Wolf, C., Back, T., Bongards, M., McLoone, S., 2011. Optimal Control of Biogas Plants using Nonlinear Model Predictive Control.
Ghatak, Ghatak (b0210) 2018; 232
Niu, Yi, Chen, Li, Han, Yan, Huang, Ying (b0345) 2020; 265
Kannangara, Dua, Ahmadi, Bensebaa (b0255) 2018; 74
Alrashed, Karimipour, Bagherzadeh, Safaei, Afrand (b0030) 2018; 127
Tan, Gouwanda, Poh (b0470) 2018; 117
Lovato, Alvarado-Morales, Kovalovszki, Peprah, Kougias, Rodrigues, Angelidaki (b0310) 2017; 245
Yu, Zhang, De Jaegher, Liu, Sui, Zheng, Wei (b0540) 2021; 319
Bokossa, Krastanov, Rochkova, Angelov (b0085) 1993; 9
Choi, Kim, Lee (b0110) 2021; 319
Saghouri, Abdi, Ebrahimi-Nik, Rohani, Maysami (b0420) 2020; 00
Tsuchiya, Yamauchi, Yamashita, Fujiyoshi (b0485) 2015; 760–764
De Clercq, Jalota, Shang, Ni, Zhang (b0150) 2019; 218
Kormi, Mhadhebi, Bel, Ali, Abichou, Green (b0290) 2018; 72
Abu Qdais, Bani Hani, Shatnawi (b0005) 2010; 54
Al-Mahasneh, Aljarrah, Rababah, Alu’datt (b0020) 2016; 8
Wolf, McLoone, Bongards (b0515) 2009; 57
Fatolahi, Arab, Razaviarani (b0200) 2020; 139
Tufaner, Demirci (b0490) 2020; 22
Sahni, Simon, Arora (b0425) 2018; 33
Etuwe, Momoh, Iyagba (b0185) 2016; 7
de Canete, del Saz-Orozco, Gómez-de-Gabriel, Baratti, Ruano, Rivas-Blanco (b0095) 2021; 144
Bagherzadeh, Mehrani, Basirifard, Roostaei (b0050) 2021; 41
Ye, Xiong (b0530) 2007; 2
Ranade, Nagarajan, Sarvothaman, Ranade (b0400) 2021; 72
De Clercq, Wen, Fei, Caicedo, Yuan, Shang (b0155) 2020; 712
Akinade, Oyedele (b0015) 2019; 229
Akbaş, Bilgen, Turhan (b0010) 2015; 196
Haykin, S., 2009. Neural Networks and Learning Machines, 3rd ed, Encyclopedia of Bioinformatics and Computational Biology: ABC of Bioinformatics. Pearson.
Bai, Liu, Yin, Ma (b0055) 2015; 103
Najafi, Ardabili (b0335) 2018; 133
Sakiewicz, Piotrowski, Ober, Karwot (b0435) 2020; 124
Alzubi, Nayyar, Kumar (b0035) 2018; 1142
Karki, Chuenchart, Surendra, Shrestha, Raskin, Sung, Hashimoto, Kumar Khanal (b0260) 2021; 330
Cortes, Vapnik (b0130) 1995
Wang, Bai, Li, Zhou, Cheng, Sun, Liu (b0510) 2018; 140
Beltramo, Hitzmann (b0075) 2019; 12
Pérez, Fernández, Balsera, Álvarez (b0375) 2021
Sakr, Mokbel, Darwich, Hadi (b0440) 2016
Kazemi, Steyer, Bengoa, Font, Giralt (b0275) 2020; 8
Wang, Long, Liao, Liu (b0505) 2020; 298
Seo, Seo, Kim, Ji Lim, Chung (b0450) 2021; 341
Ilbeigi, Ghomeishi, Dehghanbanadaki (b0245) 2020; 61
Liu, Lei (b0295) 2018; 44
Cervantes, Garcia-Lamont, Rodríguez-Mazahua, Lopez (b0100) 2020; 408
Faris, Mirjalili, Aljarah (b0195) 2019; 10
Moreira, Chou, Velmurugan, Ouyang, Sindhgatta, Bruza (b0330) 2021; 150
Prabhu, Karthikeyan (b0385) 2018
Choldun, M.I., Santoso, Surendro (b0120) 2020
Donoso-Bravo, Mailier, Martin, Rodríguez, Aceves-Lara, Wouwer (b0170) 2011; 45
Xu, Long, Zhao, Zhang, Liang, Wang, Lesnik, Cao, Zhang, Liu (b0525) 2021; 121
Vellasco, P.C.G. da S., de Lima, L.R.O., de Andrade, S.A.L., Vellasco, M.M.B.R., da Silva, L.A.P.S., 2017. Computational Intelligence Modelling, in: Modeling Steel and Composite Structures. pp. 383–432.
Oloko-Oba, Taiwo, Ajala, Solomon, Betiku (b0360) 2018; 26
Cheng, Zhao (b0105) 2019; 46
Olden, Jackson (b0355) 2002; 154
Cortez, Embrechts (b0135) 2013; 225
Jacob, Banerjee (b0250) 2016; 214
Dahunsi, Oranusi, Efeovbokhan (b0145) 2017; 156
Long, Wang, Cai, Lesnik, Liu (b0305) 2021; 117182
Zhang, Loh, Lim, Zhang (b0555) 2019; 100
Dong, Chen (b0165) 2019; 271
Olabi, Nassef, Rodriguez, Abdelkareem, Rezk (b0350) 2020; 44
Araromi, Majekodunmi, Adeniran, Salawudeen (b0040) 2018
Kazemi, Bengoa, Steyer, Giralt (b0265) 2021; 146
Du, K.L., Swamy, M.N.S., 2016. Search and Optimization by Metaheuristics, Techniques and Algorithms Inspired by Nature.
Kazemi, Giralt, Bengoa (b0270) 2020; 81
Boubaker, Ridha (b0090) 2008; 99
Struk-Sokolowska, Miodonski, Muszynski-Huhajlo, Janiak, Ofman, Mielcarek, Rodziewicz (b0465) 2020
Ebrahimzade, Ebrahimi-Nik, Rohani, Tedesco (b0180) 2021; 290
Saini, Kaur (b0430) 2014; 5
Guo, H. nan, Wu, S. biao, Tian, Y. jie, Zhang, J., Liu, H. tao, 2021. Application of machine learning methods for the prediction of organic solid waste treatment and recycling processes: A review. Bioresour. Technol. 319, 124114.
Khanal (b0285) 2008
Deep, Mishra, Das (b0160) 2020; 33
Choldun (10.1016/j.biortech.2021.126433_b0120) 2020
10.1016/j.biortech.2021.126433_b0410
Puig-Arnavat (10.1016/j.biortech.2021.126433_b0390) 2015
Seo (10.1016/j.biortech.2021.126433_b0450) 2021; 341
10.1016/j.biortech.2021.126433_b0495
Najafi (10.1016/j.biortech.2021.126433_b0335) 2018; 133
Boubaker (10.1016/j.biortech.2021.126433_b0090) 2008; 99
Wolf (10.1016/j.biortech.2021.126433_b0515) 2009; 57
Ilbeigi (10.1016/j.biortech.2021.126433_b0245) 2020; 61
Prabhu (10.1016/j.biortech.2021.126433_b0385) 2018
Hu (10.1016/j.biortech.2021.126433_b0240) 2017; 5
Fatolahi (10.1016/j.biortech.2021.126433_b0200) 2020; 139
Zaghloul (10.1016/j.biortech.2021.126433_b0545) 2020; 8
Deep (10.1016/j.biortech.2021.126433_b0160) 2020; 33
Long (10.1016/j.biortech.2021.126433_b0305) 2021; 117182
De Clercq (10.1016/j.biortech.2021.126433_b0150) 2019; 218
Lovato (10.1016/j.biortech.2021.126433_b0310) 2017; 245
Akinade (10.1016/j.biortech.2021.126433_b0015) 2019; 229
Ghofrani-Isfahani (10.1016/j.biortech.2021.126433_b0215) 2020; 391
Yu (10.1016/j.biortech.2021.126433_b0540) 2021; 319
Pérez (10.1016/j.biortech.2021.126433_b0375) 2021
Marsland (10.1016/j.biortech.2021.126433_b0315) 2015
Olden (10.1016/j.biortech.2021.126433_b0355) 2002; 154
Sakr (10.1016/j.biortech.2021.126433_b0440) 2016
Alrashed (10.1016/j.biortech.2021.126433_b0030) 2018; 127
Jacob (10.1016/j.biortech.2021.126433_b0250) 2016; 214
Alzubi (10.1016/j.biortech.2021.126433_b0035) 2018; 1142
Cortes (10.1016/j.biortech.2021.126433_b0130) 1995
Liu (10.1016/j.biortech.2021.126433_b0300) 2019; 26
Song (10.1016/j.biortech.2021.126433_b0455) 2020
Bagherzadeh (10.1016/j.biortech.2021.126433_b0050) 2021; 41
Piri (10.1016/j.biortech.2021.126433_b0380) 2021; 145
Sahni (10.1016/j.biortech.2021.126433_b0425) 2018; 33
Bai (10.1016/j.biortech.2021.126433_b0060) 2017; 52
Tsuchiya (10.1016/j.biortech.2021.126433_b0485) 2015; 760–764
Tan (10.1016/j.biortech.2021.126433_b0475) 2018; 198
Torregrossa (10.1016/j.biortech.2021.126433_b0480) 2018; 223
Cheng (10.1016/j.biortech.2021.126433_b0105) 2019; 46
Choi (10.1016/j.biortech.2021.126433_b0110) 2021; 319
Şenol (10.1016/j.biortech.2021.126433_b0445) 2021; 215
Vendruscolo (10.1016/j.biortech.2021.126433_b0500) 2020; 742
Alejo (10.1016/j.biortech.2021.126433_b0025) 2018; 25
Araromi (10.1016/j.biortech.2021.126433_b0040) 2018
10.1016/j.biortech.2021.126433_b0280
Niu (10.1016/j.biortech.2021.126433_b0345) 2020; 265
Ranade (10.1016/j.biortech.2021.126433_b0400) 2021; 72
Batstone (10.1016/j.biortech.2021.126433_b0070) 2015; 14
Xu (10.1016/j.biortech.2021.126433_b0525) 2021; 121
Xing (10.1016/j.biortech.2021.126433_b0520) 2019
Asadi (10.1016/j.biortech.2021.126433_b0045) 2021; 293
10.1016/j.biortech.2021.126433_b0205
Saghouri (10.1016/j.biortech.2021.126433_b0420) 2020; 00
Bai (10.1016/j.biortech.2021.126433_b0055) 2015; 103
Kazemi (10.1016/j.biortech.2021.126433_b0270) 2020; 81
Strik (10.1016/j.biortech.2021.126433_b0460) 2005; 20
Cipullo (10.1016/j.biortech.2021.126433_b0125) 2019; 215
Zhang (10.1016/j.biortech.2021.126433_b0555) 2019; 100
You (10.1016/j.biortech.2021.126433_b0535) 2017; 68
Bokossa (10.1016/j.biortech.2021.126433_b0085) 1993; 9
Ye (10.1016/j.biortech.2021.126433_b0530) 2007; 2
10.1016/j.biortech.2021.126433_b0175
Kazemi (10.1016/j.biortech.2021.126433_b0265) 2021; 146
Ramachandran (10.1016/j.biortech.2021.126433_b0395) 2019; 7
Tan (10.1016/j.biortech.2021.126433_b0470) 2018; 117
de Canete (10.1016/j.biortech.2021.126433_b0095) 2021; 144
Etuwe (10.1016/j.biortech.2021.126433_b0185) 2016; 7
Moreira (10.1016/j.biortech.2021.126433_b0330) 2021; 150
Kazemi (10.1016/j.biortech.2021.126433_b0275) 2020; 8
Kormi (10.1016/j.biortech.2021.126433_b0290) 2018; 72
Beltramo (10.1016/j.biortech.2021.126433_b0080) 2019; 6
Pasini (10.1016/j.biortech.2021.126433_b0370) 2015; 7
Saini (10.1016/j.biortech.2021.126433_b0430) 2014; 5
10.1016/j.biortech.2021.126433_b0225
Kannangara (10.1016/j.biortech.2021.126433_b0255) 2018; 74
Ebrahimzade (10.1016/j.biortech.2021.126433_b0180) 2021; 290
Cruz (10.1016/j.biortech.2021.126433_b0140) 2021; 4
Liu (10.1016/j.biortech.2021.126433_b0295) 2018; 44
Beltramo (10.1016/j.biortech.2021.126433_b0075) 2019; 12
Struk-Sokolowska (10.1016/j.biortech.2021.126433_b0465) 2020
Cortez (10.1016/j.biortech.2021.126433_b0135) 2013; 225
Olabi (10.1016/j.biortech.2021.126433_b0350) 2020; 44
Mehrdad (10.1016/j.biortech.2021.126433_b0325) 2021
Fanourgakis (10.1016/j.biortech.2021.126433_b0190) 2020; 124
10.1016/j.biortech.2021.126433_b0235
Hajihassani (10.1016/j.biortech.2021.126433_b0230) 2018; 36
Akbaş (10.1016/j.biortech.2021.126433_b0010) 2015; 196
Matin (10.1016/j.biortech.2021.126433_b0320) 2016; 177
Rodriguez-galiano (10.1016/j.biortech.2021.126433_b0415) 2014; 476–477
Chojaczyk (10.1016/j.biortech.2021.126433_b0115) 2015; 52
Wang (10.1016/j.biortech.2021.126433_b0510) 2018; 140
Barik (10.1016/j.biortech.2021.126433_b0065) 2015; 6
Dong (10.1016/j.biortech.2021.126433_b0165) 2019; 271
Abu Qdais (10.1016/j.biortech.2021.126433_b0005) 2010; 54
Karki (10.1016/j.biortech.2021.126433_b0260) 2021; 330
Zhou (10.1016/j.biortech.2021.126433_b0560) 2019; 33
Gueguim Kana (10.1016/j.biortech.2021.126433_b0220) 2012; 46
Cervantes (10.1016/j.biortech.2021.126433_b0100) 2020; 408
Wang (10.1016/j.biortech.2021.126433_b0505) 2020; 298
De Clercq (10.1016/j.biortech.2021.126433_b0155) 2020; 712
Khanal (10.1016/j.biortech.2021.126433_b0285) 2008
Rego (10.1016/j.biortech.2021.126433_b0405) 2019; 74
Nguyen (10.1016/j.biortech.2021.126433_b0340) 2019; 280
Donoso-Bravo (10.1016/j.biortech.2021.126433_b0170) 2011; 45
Al-Mahasneh (10.1016/j.biortech.2021.126433_b0020) 2016; 8
Tufaner (10.1016/j.biortech.2021.126433_b0490) 2020; 22
Pandey (10.1016/j.biortech.2021.126433_b0365) 2014; 24
Ghatak (10.1016/j.biortech.2021.126433_b0210) 2018; 232
Zareei (10.1016/j.biortech.2021.126433_b0550) 2017; 114
Sakiewicz (10.1016/j.biortech.2021.126433_b0435) 2020; 124
Dahunsi (10.1016/j.biortech.2021.126433_b0145) 2017; 156
Faris (10.1016/j.biortech.2021.126433_b0195) 2019; 10
Oloko-Oba (10.1016/j.biortech.2021.126433_b0360) 2018; 26
References_xml – start-page: 490
  year: 2020
  end-page: 500
  ident: b0120
  article-title: Determining the number of hidden layers in neural network by using principal component analysis
  publication-title: Advances in Intelligent Systems and Computing
– volume: 44
  start-page: 33
  year: 2018
  end-page: 42
  ident: b0295
  article-title: An accurate ecological footprint analysis and prediction for Beijing based on SVM model
  publication-title: Ecol. Inform.
– start-page: 490
  year: 2019
  ident: b0520
  article-title: Dynamic soft sensing of organic pollutants in effluent from, UMIC anaerobic reactor for industrial papermaking wastewater
  publication-title: IOP Conf. Ser. Mater. Sci. Eng.
– volume: 99
  start-page: 6565
  year: 2008
  end-page: 6577
  ident: b0090
  article-title: Modelling of the mesophilic anaerobic co-digestion of olive mill wastewater with olive mill solid waste using anaerobic digestion model No. 1 (ADM1)
  publication-title: Bioresour. Technol.
– volume: 10
  start-page: 2901
  year: 2019
  end-page: 2920
  ident: b0195
  article-title: Automatic selection of hidden neurons and weights in neural networks using grey wolf optimizer based on a hybrid encoding scheme
  publication-title: Int. J. Mach. Learn. Cybern.
– volume: 44
  start-page: 9598
  year: 2020
  end-page: 9608
  ident: b0350
  article-title: Application of artificial intelligence to maximize methane production from waste paper
  publication-title: Int. J. Energy Res.
– start-page: 1
  year: 2021
  end-page: 10
  ident: b0325
  article-title: Prediction of methane emission from landfills using machine learning models
  publication-title: Environ. Prog. Sustain. Energy
– volume: 100
  start-page: 110
  year: 2019
  end-page: 126
  ident: b0555
  article-title: Bioinformatics analysis of metagenomics data of biogas-producing microbial communities in anaerobic digesters: A review
  publication-title: Renew. Sustain. Energy Rev.
– reference: Vellasco, P.C.G. da S., de Lima, L.R.O., de Andrade, S.A.L., Vellasco, M.M.B.R., da Silva, L.A.P.S., 2017. Computational Intelligence Modelling, in: Modeling Steel and Composite Structures. pp. 383–432.
– volume: 140
  start-page: 85
  year: 2018
  end-page: 92
  ident: b0510
  article-title: Evaluation of artificial neural network models for online monitoring of alkalinity in anaerobic co-digestion system
  publication-title: Biochem. Eng. J.
– reference: Gaida, D., Brito, A.L.S., Wolf, C., Back, T., Bongards, M., McLoone, S., 2011. Optimal Control of Biogas Plants using Nonlinear Model Predictive Control.
– volume: 117182
  year: 2021
  ident: b0305
  article-title: Predicting the Performance of Anaerobic Digestion Using Machine Learning Algorithms and Genomic Data
  publication-title: Water Res.
– volume: 139
  year: 2020
  ident: b0200
  article-title: Calibration of the Anaerobic Digestion Model No. 1 for anaerobic digestion of organic fraction of municipal solid waste under mesophilic condition
  publication-title: Biomass Bioenergy
– volume: 25
  start-page: 21149
  year: 2018
  end-page: 21163
  ident: b0025
  article-title: Effluent composition prediction of a two-stage anaerobic digestion process: machine learning and stoichiometry techniques
  publication-title: Environ. Sci. Pollut. Res.
– volume: 476–477
  start-page: 189
  year: 2014
  end-page: 206
  ident: b0415
  article-title: Predictive modeling of groundwater nitrate pollution using Random Forest and multisource variables related to intrinsic and specific vulnerability : A case study in an agricultural setting (Southern Spain)
  publication-title: Sci. Total Environ.
– volume: 293
  year: 2021
  ident: b0045
  article-title: Biogas maximization using data-driven modelling with uncertainty analysis and genetic algorithm for municipal wastewater anaerobic digestion
  publication-title: J. Environ. Manage.
– volume: 330
  year: 2021
  ident: b0260
  article-title: Anaerobic co-digestion: Current status and perspectives
  publication-title: Bioresour. Technol.
– volume: 196
  start-page: 566
  year: 2015
  end-page: 576
  ident: b0010
  article-title: An integrated prediction and optimization model of biogas production system at a wastewater treatment facility
  publication-title: Bioresour. Technol.
– start-page: 13
  year: 2021
  ident: b0375
  article-title: A random forest model for the prediction of fog content in inlet wastewater from urban wwtps
  publication-title: Water (Switzerland)
– volume: 8
  start-page: 351
  year: 2016
  end-page: 366
  ident: b0020
  article-title: Application of Hybrid Neural Fuzzy System (ANFIS) in Food Processing and Technology
  publication-title: Food Eng. Rev.
– volume: 14
  start-page: 595
  year: 2015
  end-page: 613
  ident: b0070
  article-title: Mathematical modelling of anaerobic digestion processes: applications and future needs
  publication-title: Rev. Environ. Sci. Biotechnol.
– volume: 265
  year: 2020
  ident: b0345
  article-title: A novel effluent quality predicting model based on genetic-deep belief network algorithm for cleaner production in a full-scale paper-making wastewater treatment
  publication-title: J. Clean. Prod.
– volume: 6
  start-page: 349
  year: 2019
  end-page: 356
  ident: b0080
  article-title: Prediction of the biogas production using GA and ACO input features selection method for ANN model
  publication-title: Inf. Process. Agric.
– volume: 5
  start-page: 5978
  year: 2014
  end-page: 5986
  ident: b0430
  article-title: A Novel Approach Towards K-Mean Clustering Algorithm with PSO
  publication-title: Int. J. Comput. Sci. Inf. Technol.
– volume: 290
  year: 2021
  ident: b0180
  article-title: Higher energy conversion efficiency in anaerobic degradation of bioplastic by response surface methodology
  publication-title: J. Clean. Prod.
– start-page: 273
  year: 1995
  end-page: 297
  ident: b0130
  publication-title: Suppor-Vector Networks
– volume: 1142
  year: 2018
  ident: b0035
  article-title: Machine Learning from Theory to Algorithms : An Overview Machine Learning from Theory to Algorithms : An Overview
  publication-title: J. Phys.
– volume: 215
  year: 2021
  ident: b0445
  article-title: Methane yield prediction of ultrasonic pretreated sewage sludge by means of an artificial neural network
  publication-title: Energy
– volume: 24
  start-page: 1047
  year: 2014
  end-page: 1077
  ident: b0365
  article-title: A comparative review of approaches to prevent premature convergence in GA
  publication-title: Appl. Soft Comput. J.
– volume: 121
  start-page: 59
  year: 2021
  end-page: 66
  ident: b0525
  article-title: Performance prediction of ZVI-based anaerobic digestion reactor using machine learning algorithms
  publication-title: Waste Manag.
– volume: 144
  year: 2021
  ident: b0095
  article-title: Control and soft sensing strategies for a wastewater treatment plant using a neuro-genetic approach
  publication-title: Comput. Chem. Eng.
– volume: 146
  start-page: 905
  year: 2021
  end-page: 915
  ident: b0265
  article-title: Data-driven techniques for fault detection in anaerobic digestion process
  publication-title: Process Saf. Environ. Prot.
– reference: Rios, J.D., Alanis, A.Y., Arana-Daniel, N., Lopez-Franco, Ca., 2020. Artificial Neural Networks, in: Press, A. (Ed.), Neural Networks Modeling and Control: Applications for Unknown Nonlinear Delayed Systems in Discrete Time. pp. 117–124.
– volume: 114
  start-page: 423
  year: 2017
  end-page: 427
  ident: b0550
  article-title: Modeling and optimization of biogas production from cow manure and maize straw using an adaptive neuro-fuzzy inference system
  publication-title: Renew. Energy
– volume: 117
  start-page: 92
  year: 2018
  end-page: 99
  ident: b0470
  article-title: Adaptive neural-fuzzy inference system vs. anaerobic digestion model No.1 for performance prediction of thermophilic anaerobic digestion of palm oil mill effluent
  publication-title: Process Saf. Environ. Prot.
– volume: 2
  start-page: 644
  year: 2007
  end-page: 651
  ident: b0530
  article-title: SVM versus Least Squares SVM
  publication-title: J. Mach. Learn. Res.
– volume: 408
  start-page: 189
  year: 2020
  end-page: 215
  ident: b0100
  article-title: A comprehensive survey on support vector machine classification: Applications, challenges and trends
  publication-title: Neurocomputing
– volume: 319
  year: 2021
  ident: b0110
  article-title: Long-term monitoring of a thermal hydrolysis-anaerobic co-digestion plant treating high-strength organic wastes: Process performance and microbial community dynamics
  publication-title: Bioresour. Technol.
– volume: 760–764
  year: 2015
  ident: b0485
  article-title: Transfer forest based on covariate shift
  publication-title: Proc. - 3rd IAPR Asian Conf. Pattern Recognit.
– volume: 124
  start-page: 7117
  year: 2020
  end-page: 7126
  ident: b0190
  article-title: A Generic Machine Learning Algorithm for the Prediction of Gas Adsorption in Nanoporous Materials
  publication-title: J. Phys. Chem. C
– volume: 57
  start-page: 638
  year: 2009
  end-page: 650
  ident: b0515
  article-title: Biogas Plant Control and Optimization Using Computational Intelligence Methods
  publication-title: Automatisierungstechnik
– volume: 154
  start-page: 135
  year: 2002
  end-page: 150
  ident: b0355
  article-title: Illuminating the “black box”: Understanding variable contributions in artificial neural networks
  publication-title: Ecol. Modell.
– volume: 74
  start-page: 25
  year: 2019
  end-page: 30
  ident: b0405
  article-title: Artificial neural network modelling for biogas production in biodigesters
  publication-title: Chem. Eng. Trans.
– volume: 54
  start-page: 359
  year: 2010
  end-page: 363
  ident: b0005
  article-title: Modeling and optimization of biogas production from a waste digester using artificial neural network and genetic algorithm
  publication-title: Resour. Conserv. Recycl.
– volume: 198
  start-page: 797
  year: 2018
  end-page: 805
  ident: b0475
  article-title: Resolving stability issue of thermophilic high-rate anaerobic palm oil mill effluent treatment via adaptive neuro-fuzzy inference system predictive model
  publication-title: J. Clean. Prod.
– volume: 41
  year: 2021
  ident: b0050
  article-title: Comparative study on total nitrogen prediction in wastewater treatment plant and effect of various feature selection methods on machine learning algorithms performance
  publication-title: J. Water Process Eng.
– volume: 36
  start-page: 705
  year: 2018
  end-page: 722
  ident: b0230
  article-title: Applications of Particle Swarm Optimization in Geotechnical Engineering: A Comprehensive Review
  publication-title: Geotech. Geol. Eng.
– volume: 74
  start-page: 3
  year: 2018
  end-page: 15
  ident: b0255
  article-title: Modeling and prediction of regional municipal solid waste generation and diversion in Canada using machine learning approaches
  publication-title: Waste Manage.
– volume: 72
  start-page: 313
  year: 2018
  end-page: 328
  ident: b0290
  article-title: Estimation of fugitive landfill methane emissions using surface emission monitoring and Genetic Algorithms optimization
  publication-title: Waste Manag.
– volume: 12
  start-page: 397
  year: 2019
  end-page: 403
  ident: b0075
  article-title: Evaluation of the linear and non-linear prediction models optimized with metaheuristics: Application to anaerobic digestion processes
  publication-title: Eng. Agric. Environ. Food
– volume: 52
  start-page: 58
  year: 2017
  end-page: 65
  ident: b0060
  article-title: Modified ADM1 for modeling free ammonia inhibition in anaerobic acidogenic fermentation with high-solid sludge
  publication-title: J. Environ. Sci. (China)
– volume: 177
  start-page: 274
  year: 2016
  end-page: 278
  ident: b0320
  article-title: Estimation of coal gross calorific value based on various analyses by random forest method
  publication-title: Fuel
– volume: 5
  start-page: 2142
  year: 2017
  end-page: 2150
  ident: b0240
  article-title: Modeling of expanded granular sludge bed reactor using artificial neural network
  publication-title: J. Environ. Chem. Eng.
– volume: 68
  start-page: 186
  year: 2017
  end-page: 197
  ident: b0535
  article-title: Comparison of ANN (MLP), ANFIS, SVM, and RF models for the online classification of heating value of burning municipal solid waste in circulating fluidized bed incinerators
  publication-title: Waste Manag.
– volume: 742
  year: 2020
  ident: b0500
  article-title: Microbial communities network analysis of anaerobic reactors fed with bovine and swine slurry
  publication-title: Sci. Total Environ.
– volume: 103
  start-page: 22
  year: 2015
  end-page: 31
  ident: b0055
  article-title: Modeling of enhanced VFAs production from waste activated sludge by modified ADM1 with improved particle swarm optimization for parameters estimation
  publication-title: Biochem. Eng. J.
– start-page: 133
  year: 2015
  end-page: 156
  ident: b0390
  article-title: Artificial Neural Networks for Thermochemical Conversion of Biomass
  publication-title: Recent Adv. Thermochem. Convers. Biomass
– volume: 319
  year: 2021
  ident: b0540
  article-title: Effect of proton pump inhibitor on microbial community, function, and kinetics in anaerobic digestion with ammonia stress
  publication-title: Bioresour. Technol.
– volume: 52
  start-page: 78
  year: 2015
  end-page: 89
  ident: b0115
  article-title: Review and application of Artificial Neural Networks models in reliability analysis of steel structures
  publication-title: Struct. Saf.
– volume: 8
  year: 2020
  ident: b0545
  article-title: Comparison of adaptive neuro-fuzzy inference systems (ANFIS) and support vector regression (SVR) for data-driven modelling of aerobic granular sludge reactors
  publication-title: J. Environ. Chem. Eng.
– volume: 46
  start-page: 276
  year: 2012
  end-page: 281
  ident: b0220
  article-title: Modeling and optimization of biogas production on saw dust and other co-substrates using Artificial Neural network and Genetic Algorithm
  publication-title: Renew. Energy
– volume: 20
  start-page: 803
  year: 2005
  end-page: 810
  ident: b0460
  article-title: Prediction of trace compounds in biogas from anaerobic digestion using the MATLAB Neural Network Toolbox
  publication-title: Environ. Model. Softw.
– volume: 232
  start-page: 178
  year: 2018
  end-page: 189
  ident: b0210
  article-title: Artificial neural network model to predict behavior of biogas production curve from mixed lignocellulosic co-substrates
  publication-title: Fuel
– volume: 45
  start-page: 5347
  year: 2011
  end-page: 5364
  ident: b0170
  article-title: Model selection, identification and validation in anaerobic digestion: A review
  publication-title: Water Res.
– volume: 22
  start-page: 713
  year: 2020
  end-page: 724
  ident: b0490
  article-title: Prediction of biogas production rate from anaerobic hybrid reactor by artificial neural network and nonlinear regressions models
  publication-title: Clean Technol. Environ. Policy
– volume: 4
  year: 2021
  ident: b0140
  article-title: Valorization of cassava residues for biogas production in Brazil based on the circular economy : An updated and comprehensive review
  publication-title: Clean. Eng. Technol.
– reference: Haykin, S., 2009. Neural Networks and Learning Machines, 3rd ed, Encyclopedia of Bioinformatics and Computational Biology: ABC of Bioinformatics. Pearson.
– volume: 280
  start-page: 269
  year: 2019
  end-page: 276
  ident: b0340
  article-title: Thermophilic anaerobic digestion of model organic wastes: Evaluation of biomethane production and multiple kinetic models analysis
  publication-title: Bioresour. Technol.
– volume: 26
  start-page: 12828
  year: 2019
  end-page: 12841
  ident: b0300
  article-title: Online prediction of effluent COD in the anaerobic wastewater treatment system based on PCA-LSSVM algorithm
  publication-title: Environ. Sci. Pollut. Res.
– volume: 7
  start-page: 953
  year: 2015
  end-page: 960
  ident: b0370
  article-title: Artificial neural networks for small dataset analysis
  publication-title: J. Thorac. Dis.
– start-page: 8
  year: 2020
  ident: b0465
  article-title: Impact of differences in speciation of organic compounds in wastewater from large WWTPs on technological parameters, economic efficiency and modelling of chemically assisted primary sedimentation process
  publication-title: J. Environ. Chem. Eng.
– volume: 33
  start-page: 1781
  year: 2019
  end-page: 1792
  ident: b0560
  article-title: A random forest model for inflow prediction at wastewater treatment plants
  publication-title: Stoch. Environ. Res. Risk Assess.
– volume: 341
  year: 2021
  ident: b0450
  article-title: Prediction of biogas production rate from dry anaerobic digestion of food waste: Process-based approach vs. recurrent neural network black-box model
  publication-title: Bioresour. Technol.
– year: 2018
  ident: b0385
  article-title: Comparative studies on modelling and optimization of hydrodynamic parameters on inverse fluidized bed reactor using ANN-GA and RSM
  publication-title: Alexandria Eng. J.
– volume: 00
  start-page: 1
  year: 2020
  end-page: 17
  ident: b0420
  article-title: Modeling and optimization of biomethane production from solid-state anaerobic co-digestion of organic fraction municipal solid waste and other co-substrates. Energy Sources
  publication-title: Part A Recover. Util. Environ. Eff.
– volume: 225
  start-page: 1
  year: 2013
  end-page: 17
  ident: b0135
  article-title: Using sensitivity analysis and visualization techniques to open black box data mining models
  publication-title: Inf. Sci. (Ny)
– volume: 124
  year: 2020
  ident: b0435
  article-title: Innovative artificial neural network approach for integrated biogas – wastewater treatment system modelling: Effect of plant operating parameters on process intensification
  publication-title: Renew. Sustain. Energy Rev.
– volume: 81
  start-page: 1740
  year: 2020
  end-page: 1748
  ident: b0270
  article-title: Data-driven fault detection methods for detecting small-magnitude faults in anaerobic digestion process
  publication-title: Water Sci. Technol.
– volume: 72
  year: 2021
  ident: b0400
  article-title: ANN based modelling of hydrodynamic cavitation processes: Biomass pre-treatment and wastewater treatment
  publication-title: Ultrason. Sonochem.
– volume: 156
  start-page: 19
  year: 2017
  end-page: 29
  ident: b0145
  article-title: Cleaner energy for cleaner production : Modeling and optimization of biogas generation from Carica papayas (Pawpaw) fruit peels
  publication-title: J. Clean. Prod.
– volume: 271
  start-page: 174
  year: 2019
  end-page: 181
  ident: b0165
  article-title: Optimization of process parameters for anaerobic fermentation of corn stalk based on least squares support vector machine
  publication-title: Bioresour. Technol.
– volume: 9
  start-page: 662
  year: 1993
  end-page: 663
  ident: b0085
  article-title: Biosynthesis of invertase by Saccharomyces cerevisiae with sugarcane molasses as substrate
  publication-title: World J. Microbiol. Biotechnol.
– volume: 150
  year: 2021
  ident: b0330
  article-title: LINDA-BN: An interpretable probabilistic approach for demystifying black-box predictive models
  publication-title: Decis. Support Syst.
– volume: 223
  start-page: 1061
  year: 2018
  end-page: 1067
  ident: b0480
  article-title: Machine learning for energy cost modelling in wastewater treatment plants
  publication-title: J. Environ. Manage.
– volume: 7
  start-page: 1
  year: 2019
  end-page: 12
  ident: b0395
  article-title: Review of anaerobic digestion modeling and optimization using nature-inspired techniques
  publication-title: Processes
– volume: 215
  start-page: 388
  year: 2019
  end-page: 395
  ident: b0125
  article-title: Prediction of bioavailability and toxicity of complex chemical mixtures through machine learning models
  publication-title: Chemosphere
– volume: 61
  year: 2020
  ident: b0245
  article-title: Prediction and optimization of energy consumption in an office building using artificial neural network and a genetic algorithm
  publication-title: Sustain. Cities Soc.
– year: 2015
  ident: b0315
  article-title: Machine Learning: An Algorithmic Perspective
– start-page: 190
  year: 2018
  ident: b0040
  article-title: Modeling of an activated sludge process for effluent prediction — a comparative study using ANFIS and GLM regression
  publication-title: Environ. Monit. Assess.
– volume: 26
  start-page: 116
  year: 2018
  end-page: 124
  ident: b0360
  article-title: Performance evaluation of three different-shaped bio-digesters for biogas production and optimization by artificial neural network integrated with genetic algorithm
  publication-title: Sustain. Energy Technol. Assessments
– volume: 127
  start-page: 925
  year: 2018
  end-page: 935
  ident: b0030
  article-title: Electro- and thermophysical properties of water-based nanofluids containing copper ferrite nanoparticles coated with silica: Experimental data, modeling through enhanced ANN and curve fitting
  publication-title: Int. J. Heat Mass Transf.
– volume: 6
  start-page: 1015
  year: 2015
  end-page: 1027
  ident: b0065
  article-title: An Artificial Neural Network and Genetic Algorithm Optimized Model for Biogas Production from Co-digestion of Seed Cake of Karanja and Cattle Dung
  publication-title: Waste and Biomass Valorization
– volume: 46
  start-page: 757
  year: 2019
  end-page: 762
  ident: b0105
  article-title: A novel process monitoring approach based on Feature Points Distance Dynamic Autoencoder
  publication-title: Comput. Aided Chem. Eng.
– reference: Kennedy, J., 2006. Swarm Intelligence, in: Handbook of Nature-Inspired and Innovative Computing. pp. 187–219.
– volume: 33
  start-page: 5200
  year: 2020
  end-page: 5205
  ident: b0160
  article-title: Application of adaptive neuro-fuzzy inference system (ANFIS) for predicting dielectric characteristics of CNT/PMMA nanocomposites
  publication-title: Mater. Today Proc.
– volume: 133
  start-page: 169
  year: 2018
  end-page: 178
  ident: b0335
  article-title: Application of ANFIS, ANN, and logistic methods in estimating biogas production from spent mushroom compost (SMC)
  publication-title: Resour. Conserv. Recycl.
– volume: 229
  start-page: 863
  year: 2019
  end-page: 873
  ident: b0015
  article-title: Integrating construction supply chains within a circular: An ANFIS-based waste analytics system (A-WAS)
  publication-title: J. Clean. Prod.
– year: 2020
  ident: b0455
  article-title: Identification of primary effecters of N2O emissions from full-scale biological nitrogen removal systems using random forest approach
  publication-title: Water Research
– volume: 7
  start-page: 543
  year: 2016
  end-page: 550
  ident: b0185
  article-title: Development of Mathematical Models and Application of the Modified Gompertz Model for Designing Batch Biogas Reactors
  publication-title: Waste Biomass Valoriz.
– volume: 8
  year: 2020
  ident: b0275
  article-title: Robust data-driven soft sensors for online monitoring of volatile fatty acids in anaerobic digestion processes
  publication-title: Processes
– volume: 145
  start-page: 39
  year: 2021
  end-page: 51
  ident: b0380
  article-title: Reliability analysis of pumping station for sewage network using hybrid neural networks - genetic algorithm and method of moment
  publication-title: Process Saf. Environ. Prot.
– reference: Guo, H. nan, Wu, S. biao, Tian, Y. jie, Zhang, J., Liu, H. tao, 2021. Application of machine learning methods for the prediction of organic solid waste treatment and recycling processes: A review. Bioresour. Technol. 319, 124114.
– volume: 298
  year: 2020
  ident: b0505
  article-title: Prediction of anaerobic digestion performance and identification of critical operational parameters using machine learning algorithms
  publication-title: Bioresour. Technol.
– reference: Du, K.L., Swamy, M.N.S., 2016. Search and Optimization by Metaheuristics, Techniques and Algorithms Inspired by Nature.
– volume: 712
  year: 2020
  ident: b0155
  article-title: Interpretable machine learning for predicting biomethane production in industrial-scale anaerobic co-digestion
  publication-title: Sci. Total Environ.
– year: 2008
  ident: b0285
  article-title: Anaerobic Biotechnology for Bioenergy Production: Principles and Applications
– volume: 214
  start-page: 386
  year: 2016
  end-page: 395
  ident: b0250
  article-title: Modeling and optimization of anaerobic codigestion of potato waste and aquatic weed by response surface methodology and artificial neural network coupled genetic algorithm
  publication-title: Bioresour. Technol.
– year: 2016
  ident: b0440
  article-title: Comparing Deep Learning And Support Vector Machines for Autonomous Waste Sorting
  publication-title: IEEE Int.
– volume: 218
  start-page: 390
  year: 2019
  end-page: 399
  ident: b0150
  article-title: Machine learning powered software for accurate prediction of biogas production: A case study on industrial-scale Chinese production data
  publication-title: J. Clean. Prod.
– volume: 391
  year: 2020
  ident: b0215
  article-title: Supervisory control of an anaerobic digester subject to drastic substrate changes
  publication-title: Chem. Eng. J.
– volume: 33
  start-page: 921
  year: 2018
  end-page: 928
  ident: b0425
  article-title: Development and Validation of Machine Learning Models for Prediction of 1-Year Mortality Utilizing Electronic Medical Record Data Available at the End of Hospitalization in Multicondition Patients : a Proof-of-Concept Study
  publication-title: J. Gen. Intern. Med.
– volume: 245
  start-page: 332
  year: 2017
  end-page: 341
  ident: b0310
  article-title: In-situ biogas upgrading process: Modeling and simulations aspects
  publication-title: Bioresour. Technol.
– start-page: 190
  year: 2018
  ident: 10.1016/j.biortech.2021.126433_b0040
  article-title: Modeling of an activated sludge process for effluent prediction — a comparative study using ANFIS and GLM regression
  publication-title: Environ. Monit. Assess.
– volume: 341
  year: 2021
  ident: 10.1016/j.biortech.2021.126433_b0450
  article-title: Prediction of biogas production rate from dry anaerobic digestion of food waste: Process-based approach vs. recurrent neural network black-box model
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2021.125829
– volume: 140
  start-page: 85
  year: 2018
  ident: 10.1016/j.biortech.2021.126433_b0510
  article-title: Evaluation of artificial neural network models for online monitoring of alkalinity in anaerobic co-digestion system
  publication-title: Biochem. Eng. J.
  doi: 10.1016/j.bej.2018.09.010
– volume: 121
  start-page: 59
  year: 2021
  ident: 10.1016/j.biortech.2021.126433_b0525
  article-title: Performance prediction of ZVI-based anaerobic digestion reactor using machine learning algorithms
  publication-title: Waste Manag.
  doi: 10.1016/j.wasman.2020.12.003
– volume: 8
  year: 2020
  ident: 10.1016/j.biortech.2021.126433_b0545
  article-title: Comparison of adaptive neuro-fuzzy inference systems (ANFIS) and support vector regression (SVR) for data-driven modelling of aerobic granular sludge reactors
  publication-title: J. Environ. Chem. Eng.
  doi: 10.1016/j.jece.2020.103742
– volume: 223
  start-page: 1061
  year: 2018
  ident: 10.1016/j.biortech.2021.126433_b0480
  article-title: Machine learning for energy cost modelling in wastewater treatment plants
  publication-title: J. Environ. Manage.
  doi: 10.1016/j.jenvman.2018.06.092
– ident: 10.1016/j.biortech.2021.126433_b0175
  doi: 10.1007/978-3-319-41192-7
– volume: 114
  start-page: 423
  year: 2017
  ident: 10.1016/j.biortech.2021.126433_b0550
  article-title: Modeling and optimization of biogas production from cow manure and maize straw using an adaptive neuro-fuzzy inference system
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2017.07.050
– year: 2018
  ident: 10.1016/j.biortech.2021.126433_b0385
  article-title: Comparative studies on modelling and optimization of hydrodynamic parameters on inverse fluidized bed reactor using ANN-GA and RSM
  publication-title: Alexandria Eng. J.
– ident: 10.1016/j.biortech.2021.126433_b0495
  doi: 10.1016/B978-0-12-813526-6.00004-0
– volume: 319
  year: 2021
  ident: 10.1016/j.biortech.2021.126433_b0110
  article-title: Long-term monitoring of a thermal hydrolysis-anaerobic co-digestion plant treating high-strength organic wastes: Process performance and microbial community dynamics
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2020.124138
– volume: 245
  start-page: 332
  year: 2017
  ident: 10.1016/j.biortech.2021.126433_b0310
  article-title: In-situ biogas upgrading process: Modeling and simulations aspects
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2017.08.181
– start-page: 490
  year: 2020
  ident: 10.1016/j.biortech.2021.126433_b0120
  article-title: Determining the number of hidden layers in neural network by using principal component analysis
  doi: 10.1007/978-3-030-29513-4_36
– volume: 74
  start-page: 3
  year: 2018
  ident: 10.1016/j.biortech.2021.126433_b0255
  article-title: Modeling and prediction of regional municipal solid waste generation and diversion in Canada using machine learning approaches
  publication-title: Waste Manage.
  doi: 10.1016/j.wasman.2017.11.057
– volume: 5
  start-page: 2142
  year: 2017
  ident: 10.1016/j.biortech.2021.126433_b0240
  article-title: Modeling of expanded granular sludge bed reactor using artificial neural network
  publication-title: J. Environ. Chem. Eng.
  doi: 10.1016/j.jece.2017.04.007
– volume: 25
  start-page: 21149
  year: 2018
  ident: 10.1016/j.biortech.2021.126433_b0025
  article-title: Effluent composition prediction of a two-stage anaerobic digestion process: machine learning and stoichiometry techniques
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-018-2224-7
– volume: 46
  start-page: 757
  year: 2019
  ident: 10.1016/j.biortech.2021.126433_b0105
  article-title: A novel process monitoring approach based on Feature Points Distance Dynamic Autoencoder
  publication-title: Comput. Aided Chem. Eng.
  doi: 10.1016/B978-0-12-818634-3.50127-2
– start-page: 8
  year: 2020
  ident: 10.1016/j.biortech.2021.126433_b0465
  article-title: Impact of differences in speciation of organic compounds in wastewater from large WWTPs on technological parameters, economic efficiency and modelling of chemically assisted primary sedimentation process
  publication-title: J. Environ. Chem. Eng.
– volume: 408
  start-page: 189
  year: 2020
  ident: 10.1016/j.biortech.2021.126433_b0100
  article-title: A comprehensive survey on support vector machine classification: Applications, challenges and trends
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.10.118
– volume: 103
  start-page: 22
  year: 2015
  ident: 10.1016/j.biortech.2021.126433_b0055
  article-title: Modeling of enhanced VFAs production from waste activated sludge by modified ADM1 with improved particle swarm optimization for parameters estimation
  publication-title: Biochem. Eng. J.
  doi: 10.1016/j.bej.2015.06.015
– volume: 100
  start-page: 110
  year: 2019
  ident: 10.1016/j.biortech.2021.126433_b0555
  article-title: Bioinformatics analysis of metagenomics data of biogas-producing microbial communities in anaerobic digesters: A review
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2018.10.021
– volume: 144
  year: 2021
  ident: 10.1016/j.biortech.2021.126433_b0095
  article-title: Control and soft sensing strategies for a wastewater treatment plant using a neuro-genetic approach
  publication-title: Comput. Chem. Eng.
– volume: 72
  start-page: 313
  year: 2018
  ident: 10.1016/j.biortech.2021.126433_b0290
  article-title: Estimation of fugitive landfill methane emissions using surface emission monitoring and Genetic Algorithms optimization
  publication-title: Waste Manag.
  doi: 10.1016/j.wasman.2016.11.024
– volume: 26
  start-page: 12828
  year: 2019
  ident: 10.1016/j.biortech.2021.126433_b0300
  article-title: Online prediction of effluent COD in the anaerobic wastewater treatment system based on PCA-LSSVM algorithm
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-019-04671-8
– volume: 9
  start-page: 662
  year: 1993
  ident: 10.1016/j.biortech.2021.126433_b0085
  article-title: Biosynthesis of invertase by Saccharomyces cerevisiae with sugarcane molasses as substrate
  publication-title: World J. Microbiol. Biotechnol.
  doi: 10.1007/BF00369576
– volume: 150
  year: 2021
  ident: 10.1016/j.biortech.2021.126433_b0330
  article-title: LINDA-BN: An interpretable probabilistic approach for demystifying black-box predictive models
  publication-title: Decis. Support Syst.
  doi: 10.1016/j.dss.2021.113561
– year: 2015
  ident: 10.1016/j.biortech.2021.126433_b0315
– volume: 145
  start-page: 39
  year: 2021
  ident: 10.1016/j.biortech.2021.126433_b0380
  article-title: Reliability analysis of pumping station for sewage network using hybrid neural networks - genetic algorithm and method of moment
  publication-title: Process Saf. Environ. Prot.
  doi: 10.1016/j.psep.2020.07.045
– volume: 215
  start-page: 388
  year: 2019
  ident: 10.1016/j.biortech.2021.126433_b0125
  article-title: Prediction of bioavailability and toxicity of complex chemical mixtures through machine learning models
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2018.10.056
– start-page: 13
  year: 2021
  ident: 10.1016/j.biortech.2021.126433_b0375
  article-title: A random forest model for the prediction of fog content in inlet wastewater from urban wwtps
  publication-title: Water (Switzerland)
– start-page: 490
  year: 2019
  ident: 10.1016/j.biortech.2021.126433_b0520
  article-title: Dynamic soft sensing of organic pollutants in effluent from, UMIC anaerobic reactor for industrial papermaking wastewater
  publication-title: IOP Conf. Ser. Mater. Sci. Eng.
– volume: 7
  start-page: 1
  year: 2019
  ident: 10.1016/j.biortech.2021.126433_b0395
  article-title: Review of anaerobic digestion modeling and optimization using nature-inspired techniques
  publication-title: Processes
  doi: 10.3390/pr7120953
– volume: 7
  start-page: 953
  year: 2015
  ident: 10.1016/j.biortech.2021.126433_b0370
  article-title: Artificial neural networks for small dataset analysis
  publication-title: J. Thorac. Dis.
– volume: 476–477
  start-page: 189
  year: 2014
  ident: 10.1016/j.biortech.2021.126433_b0415
  article-title: Predictive modeling of groundwater nitrate pollution using Random Forest and multisource variables related to intrinsic and specific vulnerability : A case study in an agricultural setting (Southern Spain)
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2014.01.001
– volume: 127
  start-page: 925
  year: 2018
  ident: 10.1016/j.biortech.2021.126433_b0030
  article-title: Electro- and thermophysical properties of water-based nanofluids containing copper ferrite nanoparticles coated with silica: Experimental data, modeling through enhanced ANN and curve fitting
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2018.07.123
– volume: 22
  start-page: 713
  year: 2020
  ident: 10.1016/j.biortech.2021.126433_b0490
  article-title: Prediction of biogas production rate from anaerobic hybrid reactor by artificial neural network and nonlinear regressions models
  publication-title: Clean Technol. Environ. Policy
  doi: 10.1007/s10098-020-01816-z
– volume: 57
  start-page: 638
  year: 2009
  ident: 10.1016/j.biortech.2021.126433_b0515
  article-title: Biogas Plant Control and Optimization Using Computational Intelligence Methods
  publication-title: Automatisierungstechnik
  doi: 10.1524/auto.2009.0809
– ident: 10.1016/j.biortech.2021.126433_b0205
– volume: 133
  start-page: 169
  year: 2018
  ident: 10.1016/j.biortech.2021.126433_b0335
  article-title: Application of ANFIS, ANN, and logistic methods in estimating biogas production from spent mushroom compost (SMC)
  publication-title: Resour. Conserv. Recycl.
  doi: 10.1016/j.resconrec.2018.02.025
– volume: 33
  start-page: 5200
  year: 2020
  ident: 10.1016/j.biortech.2021.126433_b0160
  article-title: Application of adaptive neuro-fuzzy inference system (ANFIS) for predicting dielectric characteristics of CNT/PMMA nanocomposites
  publication-title: Mater. Today Proc.
  doi: 10.1016/j.matpr.2020.02.882
– start-page: 273
  year: 1995
  ident: 10.1016/j.biortech.2021.126433_b0130
– start-page: 133
  year: 2015
  ident: 10.1016/j.biortech.2021.126433_b0390
  article-title: Artificial Neural Networks for Thermochemical Conversion of Biomass
  publication-title: Recent Adv. Thermochem. Convers. Biomass
  doi: 10.1016/B978-0-444-63289-0.00005-3
– volume: 215
  year: 2021
  ident: 10.1016/j.biortech.2021.126433_b0445
  article-title: Methane yield prediction of ultrasonic pretreated sewage sludge by means of an artificial neural network
  publication-title: Energy
  doi: 10.1016/j.energy.2020.119173
– volume: 198
  start-page: 797
  year: 2018
  ident: 10.1016/j.biortech.2021.126433_b0475
  article-title: Resolving stability issue of thermophilic high-rate anaerobic palm oil mill effluent treatment via adaptive neuro-fuzzy inference system predictive model
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2018.07.027
– volume: 72
  year: 2021
  ident: 10.1016/j.biortech.2021.126433_b0400
  article-title: ANN based modelling of hydrodynamic cavitation processes: Biomass pre-treatment and wastewater treatment
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2020.105428
– volume: 33
  start-page: 1781
  year: 2019
  ident: 10.1016/j.biortech.2021.126433_b0560
  article-title: A random forest model for inflow prediction at wastewater treatment plants
  publication-title: Stoch. Environ. Res. Risk Assess.
  doi: 10.1007/s00477-019-01732-9
– volume: 61
  year: 2020
  ident: 10.1016/j.biortech.2021.126433_b0245
  article-title: Prediction and optimization of energy consumption in an office building using artificial neural network and a genetic algorithm
  publication-title: Sustain. Cities Soc.
  doi: 10.1016/j.scs.2020.102325
– volume: 54
  start-page: 359
  year: 2010
  ident: 10.1016/j.biortech.2021.126433_b0005
  article-title: Modeling and optimization of biogas production from a waste digester using artificial neural network and genetic algorithm
  publication-title: Resour. Conserv. Recycl.
  doi: 10.1016/j.resconrec.2009.08.012
– volume: 44
  start-page: 33
  year: 2018
  ident: 10.1016/j.biortech.2021.126433_b0295
  article-title: An accurate ecological footprint analysis and prediction for Beijing based on SVM model
  publication-title: Ecol. Inform.
  doi: 10.1016/j.ecoinf.2018.01.003
– volume: 280
  start-page: 269
  year: 2019
  ident: 10.1016/j.biortech.2021.126433_b0340
  article-title: Thermophilic anaerobic digestion of model organic wastes: Evaluation of biomethane production and multiple kinetic models analysis
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2019.02.033
– volume: 33
  start-page: 921
  year: 2018
  ident: 10.1016/j.biortech.2021.126433_b0425
  article-title: Development and Validation of Machine Learning Models for Prediction of 1-Year Mortality Utilizing Electronic Medical Record Data Available at the End of Hospitalization in Multicondition Patients : a Proof-of-Concept Study
  publication-title: J. Gen. Intern. Med.
  doi: 10.1007/s11606-018-4316-y
– volume: 68
  start-page: 186
  year: 2017
  ident: 10.1016/j.biortech.2021.126433_b0535
  article-title: Comparison of ANN (MLP), ANFIS, SVM, and RF models for the online classification of heating value of burning municipal solid waste in circulating fluidized bed incinerators
  publication-title: Waste Manag.
  doi: 10.1016/j.wasman.2017.03.044
– volume: 229
  start-page: 863
  year: 2019
  ident: 10.1016/j.biortech.2021.126433_b0015
  article-title: Integrating construction supply chains within a circular: An ANFIS-based waste analytics system (A-WAS)
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2019.04.232
– volume: 271
  start-page: 174
  year: 2019
  ident: 10.1016/j.biortech.2021.126433_b0165
  article-title: Optimization of process parameters for anaerobic fermentation of corn stalk based on least squares support vector machine
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2018.09.085
– volume: 293
  year: 2021
  ident: 10.1016/j.biortech.2021.126433_b0045
  article-title: Biogas maximization using data-driven modelling with uncertainty analysis and genetic algorithm for municipal wastewater anaerobic digestion
  publication-title: J. Environ. Manage.
  doi: 10.1016/j.jenvman.2021.112875
– volume: 36
  start-page: 705
  year: 2018
  ident: 10.1016/j.biortech.2021.126433_b0230
  article-title: Applications of Particle Swarm Optimization in Geotechnical Engineering: A Comprehensive Review
  publication-title: Geotech. Geol. Eng.
  doi: 10.1007/s10706-017-0356-z
– year: 2016
  ident: 10.1016/j.biortech.2021.126433_b0440
  article-title: Comparing Deep Learning And Support Vector Machines for Autonomous Waste Sorting
  publication-title: IEEE Int.
– volume: 8
  year: 2020
  ident: 10.1016/j.biortech.2021.126433_b0275
  article-title: Robust data-driven soft sensors for online monitoring of volatile fatty acids in anaerobic digestion processes
  publication-title: Processes
  doi: 10.3390/pr8010067
– volume: 146
  start-page: 905
  year: 2021
  ident: 10.1016/j.biortech.2021.126433_b0265
  article-title: Data-driven techniques for fault detection in anaerobic digestion process
  publication-title: Process Saf. Environ. Prot.
  doi: 10.1016/j.psep.2020.12.016
– volume: 44
  start-page: 9598
  year: 2020
  ident: 10.1016/j.biortech.2021.126433_b0350
  article-title: Application of artificial intelligence to maximize methane production from waste paper
  publication-title: Int. J. Energy Res.
  doi: 10.1002/er.5446
– volume: 52
  start-page: 78
  year: 2015
  ident: 10.1016/j.biortech.2021.126433_b0115
  article-title: Review and application of Artificial Neural Networks models in reliability analysis of steel structures
  publication-title: Struct. Saf.
  doi: 10.1016/j.strusafe.2014.09.002
– volume: 4
  year: 2021
  ident: 10.1016/j.biortech.2021.126433_b0140
  article-title: Valorization of cassava residues for biogas production in Brazil based on the circular economy : An updated and comprehensive review
  publication-title: Clean. Eng. Technol.
– volume: 218
  start-page: 390
  year: 2019
  ident: 10.1016/j.biortech.2021.126433_b0150
  article-title: Machine learning powered software for accurate prediction of biogas production: A case study on industrial-scale Chinese production data
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2019.01.031
– volume: 124
  year: 2020
  ident: 10.1016/j.biortech.2021.126433_b0435
  article-title: Innovative artificial neural network approach for integrated biogas – wastewater treatment system modelling: Effect of plant operating parameters on process intensification
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2020.109784
– volume: 391
  year: 2020
  ident: 10.1016/j.biortech.2021.126433_b0215
  article-title: Supervisory control of an anaerobic digester subject to drastic substrate changes
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.123502
– ident: 10.1016/j.biortech.2021.126433_b0235
– volume: 41
  year: 2021
  ident: 10.1016/j.biortech.2021.126433_b0050
  article-title: Comparative study on total nitrogen prediction in wastewater treatment plant and effect of various feature selection methods on machine learning algorithms performance
  publication-title: J. Water Process Eng.
  doi: 10.1016/j.jwpe.2021.102033
– volume: 74
  start-page: 25
  year: 2019
  ident: 10.1016/j.biortech.2021.126433_b0405
  article-title: Artificial neural network modelling for biogas production in biodigesters
  publication-title: Chem. Eng. Trans.
– volume: 20
  start-page: 803
  year: 2005
  ident: 10.1016/j.biortech.2021.126433_b0460
  article-title: Prediction of trace compounds in biogas from anaerobic digestion using the MATLAB Neural Network Toolbox
  publication-title: Environ. Model. Softw.
  doi: 10.1016/j.envsoft.2004.09.006
– ident: 10.1016/j.biortech.2021.126433_b0225
  doi: 10.1016/j.biortech.2020.124114
– volume: 265
  year: 2020
  ident: 10.1016/j.biortech.2021.126433_b0345
  article-title: A novel effluent quality predicting model based on genetic-deep belief network algorithm for cleaner production in a full-scale paper-making wastewater treatment
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2020.121787
– volume: 10
  start-page: 2901
  year: 2019
  ident: 10.1016/j.biortech.2021.126433_b0195
  article-title: Automatic selection of hidden neurons and weights in neural networks using grey wolf optimizer based on a hybrid encoding scheme
  publication-title: Int. J. Mach. Learn. Cybern.
  doi: 10.1007/s13042-018-00913-2
– volume: 760–764
  year: 2015
  ident: 10.1016/j.biortech.2021.126433_b0485
  article-title: Transfer forest based on covariate shift
  publication-title: Proc. - 3rd IAPR Asian Conf. Pattern Recognit.
– volume: 45
  start-page: 5347
  year: 2011
  ident: 10.1016/j.biortech.2021.126433_b0170
  article-title: Model selection, identification and validation in anaerobic digestion: A review
  publication-title: Water Res.
  doi: 10.1016/j.watres.2011.08.059
– volume: 6
  start-page: 1015
  year: 2015
  ident: 10.1016/j.biortech.2021.126433_b0065
  article-title: An Artificial Neural Network and Genetic Algorithm Optimized Model for Biogas Production from Co-digestion of Seed Cake of Karanja and Cattle Dung
  publication-title: Waste and Biomass Valorization
  doi: 10.1007/s12649-015-9392-1
– volume: 290
  year: 2021
  ident: 10.1016/j.biortech.2021.126433_b0180
  article-title: Higher energy conversion efficiency in anaerobic degradation of bioplastic by response surface methodology
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2021.125840
– ident: 10.1016/j.biortech.2021.126433_b0280
  doi: 10.1007/0-387-27705-6_6
– volume: 117
  start-page: 92
  year: 2018
  ident: 10.1016/j.biortech.2021.126433_b0470
  article-title: Adaptive neural-fuzzy inference system vs. anaerobic digestion model No.1 for performance prediction of thermophilic anaerobic digestion of palm oil mill effluent
  publication-title: Process Saf. Environ. Prot.
  doi: 10.1016/j.psep.2018.04.013
– volume: 139
  year: 2020
  ident: 10.1016/j.biortech.2021.126433_b0200
  article-title: Calibration of the Anaerobic Digestion Model No. 1 for anaerobic digestion of organic fraction of municipal solid waste under mesophilic condition
  publication-title: Biomass Bioenergy
  doi: 10.1016/j.biombioe.2020.105661
– volume: 00
  start-page: 1
  year: 2020
  ident: 10.1016/j.biortech.2021.126433_b0420
  article-title: Modeling and optimization of biomethane production from solid-state anaerobic co-digestion of organic fraction municipal solid waste and other co-substrates. Energy Sources
  publication-title: Part A Recover. Util. Environ. Eff.
– volume: 196
  start-page: 566
  year: 2015
  ident: 10.1016/j.biortech.2021.126433_b0010
  article-title: An integrated prediction and optimization model of biogas production system at a wastewater treatment facility
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2015.08.017
– volume: 124
  start-page: 7117
  year: 2020
  ident: 10.1016/j.biortech.2021.126433_b0190
  article-title: A Generic Machine Learning Algorithm for the Prediction of Gas Adsorption in Nanoporous Materials
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.9b10766
– volume: 232
  start-page: 178
  year: 2018
  ident: 10.1016/j.biortech.2021.126433_b0210
  article-title: Artificial neural network model to predict behavior of biogas production curve from mixed lignocellulosic co-substrates
  publication-title: Fuel
  doi: 10.1016/j.fuel.2018.05.051
– volume: 319
  year: 2021
  ident: 10.1016/j.biortech.2021.126433_b0540
  article-title: Effect of proton pump inhibitor on microbial community, function, and kinetics in anaerobic digestion with ammonia stress
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2020.124118
– volume: 14
  start-page: 595
  year: 2015
  ident: 10.1016/j.biortech.2021.126433_b0070
  article-title: Mathematical modelling of anaerobic digestion processes: applications and future needs
  publication-title: Rev. Environ. Sci. Biotechnol.
  doi: 10.1007/s11157-015-9376-4
– volume: 52
  start-page: 58
  year: 2017
  ident: 10.1016/j.biortech.2021.126433_b0060
  article-title: Modified ADM1 for modeling free ammonia inhibition in anaerobic acidogenic fermentation with high-solid sludge
  publication-title: J. Environ. Sci. (China)
  doi: 10.1016/j.jes.2016.03.004
– ident: 10.1016/j.biortech.2021.126433_b0410
– volume: 24
  start-page: 1047
  year: 2014
  ident: 10.1016/j.biortech.2021.126433_b0365
  article-title: A comparative review of approaches to prevent premature convergence in GA
  publication-title: Appl. Soft Comput. J.
  doi: 10.1016/j.asoc.2014.08.025
– volume: 99
  start-page: 6565
  year: 2008
  ident: 10.1016/j.biortech.2021.126433_b0090
  article-title: Modelling of the mesophilic anaerobic co-digestion of olive mill wastewater with olive mill solid waste using anaerobic digestion model No. 1 (ADM1)
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2007.11.035
– volume: 225
  start-page: 1
  year: 2013
  ident: 10.1016/j.biortech.2021.126433_b0135
  article-title: Using sensitivity analysis and visualization techniques to open black box data mining models
  publication-title: Inf. Sci. (Ny)
  doi: 10.1016/j.ins.2012.10.039
– volume: 46
  start-page: 276
  year: 2012
  ident: 10.1016/j.biortech.2021.126433_b0220
  article-title: Modeling and optimization of biogas production on saw dust and other co-substrates using Artificial Neural network and Genetic Algorithm
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2012.03.027
– volume: 330
  year: 2021
  ident: 10.1016/j.biortech.2021.126433_b0260
  article-title: Anaerobic co-digestion: Current status and perspectives
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2021.125001
– volume: 117182
  year: 2021
  ident: 10.1016/j.biortech.2021.126433_b0305
  article-title: Predicting the Performance of Anaerobic Digestion Using Machine Learning Algorithms and Genomic Data
  publication-title: Water Res.
– volume: 177
  start-page: 274
  year: 2016
  ident: 10.1016/j.biortech.2021.126433_b0320
  article-title: Estimation of coal gross calorific value based on various analyses by random forest method
  publication-title: Fuel
  doi: 10.1016/j.fuel.2016.03.031
– year: 2008
  ident: 10.1016/j.biortech.2021.126433_b0285
– volume: 12
  start-page: 397
  year: 2019
  ident: 10.1016/j.biortech.2021.126433_b0075
  article-title: Evaluation of the linear and non-linear prediction models optimized with metaheuristics: Application to anaerobic digestion processes
  publication-title: Eng. Agric. Environ. Food
– start-page: 1
  year: 2021
  ident: 10.1016/j.biortech.2021.126433_b0325
  article-title: Prediction of methane emission from landfills using machine learning models
  publication-title: Environ. Prog. Sustain. Energy
– volume: 81
  start-page: 1740
  year: 2020
  ident: 10.1016/j.biortech.2021.126433_b0270
  article-title: Data-driven fault detection methods for detecting small-magnitude faults in anaerobic digestion process
  publication-title: Water Sci. Technol.
  doi: 10.2166/wst.2020.026
– volume: 6
  start-page: 349
  year: 2019
  ident: 10.1016/j.biortech.2021.126433_b0080
  article-title: Prediction of the biogas production using GA and ACO input features selection method for ANN model
  publication-title: Inf. Process. Agric.
– volume: 8
  start-page: 351
  year: 2016
  ident: 10.1016/j.biortech.2021.126433_b0020
  article-title: Application of Hybrid Neural Fuzzy System (ANFIS) in Food Processing and Technology
  publication-title: Food Eng. Rev.
  doi: 10.1007/s12393-016-9141-7
– volume: 156
  start-page: 19
  year: 2017
  ident: 10.1016/j.biortech.2021.126433_b0145
  article-title: Cleaner energy for cleaner production : Modeling and optimization of biogas generation from Carica papayas (Pawpaw) fruit peels
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2017.04.042
– volume: 298
  year: 2020
  ident: 10.1016/j.biortech.2021.126433_b0505
  article-title: Prediction of anaerobic digestion performance and identification of critical operational parameters using machine learning algorithms
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2019.122495
– volume: 214
  start-page: 386
  year: 2016
  ident: 10.1016/j.biortech.2021.126433_b0250
  article-title: Modeling and optimization of anaerobic codigestion of potato waste and aquatic weed by response surface methodology and artificial neural network coupled genetic algorithm
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2016.04.068
– volume: 26
  start-page: 116
  year: 2018
  ident: 10.1016/j.biortech.2021.126433_b0360
  article-title: Performance evaluation of three different-shaped bio-digesters for biogas production and optimization by artificial neural network integrated with genetic algorithm
  publication-title: Sustain. Energy Technol. Assessments
  doi: 10.1016/j.seta.2017.10.006
– year: 2020
  ident: 10.1016/j.biortech.2021.126433_b0455
  article-title: Identification of primary effecters of N2O emissions from full-scale biological nitrogen removal systems using random forest approach
– volume: 742
  year: 2020
  ident: 10.1016/j.biortech.2021.126433_b0500
  article-title: Microbial communities network analysis of anaerobic reactors fed with bovine and swine slurry
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.140314
– volume: 5
  start-page: 5978
  year: 2014
  ident: 10.1016/j.biortech.2021.126433_b0430
  article-title: A Novel Approach Towards K-Mean Clustering Algorithm with PSO
  publication-title: Int. J. Comput. Sci. Inf. Technol.
– volume: 1142
  year: 2018
  ident: 10.1016/j.biortech.2021.126433_b0035
  article-title: Machine Learning from Theory to Algorithms : An Overview Machine Learning from Theory to Algorithms : An Overview
  publication-title: J. Phys.
– volume: 154
  start-page: 135
  year: 2002
  ident: 10.1016/j.biortech.2021.126433_b0355
  article-title: Illuminating the “black box”: Understanding variable contributions in artificial neural networks
  publication-title: Ecol. Modell.
  doi: 10.1016/S0304-3800(02)00064-9
– volume: 712
  year: 2020
  ident: 10.1016/j.biortech.2021.126433_b0155
  article-title: Interpretable machine learning for predicting biomethane production in industrial-scale anaerobic co-digestion
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.134574
– volume: 7
  start-page: 543
  year: 2016
  ident: 10.1016/j.biortech.2021.126433_b0185
  article-title: Development of Mathematical Models and Application of the Modified Gompertz Model for Designing Batch Biogas Reactors
  publication-title: Waste Biomass Valoriz.
  doi: 10.1007/s12649-016-9482-8
– volume: 2
  start-page: 644
  year: 2007
  ident: 10.1016/j.biortech.2021.126433_b0530
  article-title: SVM versus Least Squares SVM
  publication-title: J. Mach. Learn. Res.
SSID ssj0003172
Score 2.6929538
SecondaryResourceType review_article
Snippet [Display omitted] •Machine learning assisted decision-making is an emerging approach.•Various machine learning models have been applied for prediction and...
Anaerobic digestion (AD) is widely adopted for remediating diverse organic wastes with simultaneous production of renewable energy and nutrient-rich digestate....
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 126433
SubjectTerms Anaerobic digestion
Anaerobiosis
Biofuels
Bioreactors
gas production (biological)
Machine Learning
Methane
Modeling
prediction
Process instability
Process optimization
renewable energy sources
Title Application of machine learning in anaerobic digestion: Perspectives and challenges
URI https://dx.doi.org/10.1016/j.biortech.2021.126433
https://www.ncbi.nlm.nih.gov/pubmed/34848330
https://www.proquest.com/docview/2605231805
https://www.proquest.com/docview/2636449080
Volume 345
WOSCitedRecordID wos000733151000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-2976
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003172
  issn: 0960-8524
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZgQwIeEIzLymUyEm9VShrHScxbFW1iaJombYi-RY7tbJlQOqXttJ_P8S3JGGMgxEtUJbFr9ftqn_tB6AMc0lFaJnEA0q7SCooImJQkUArOWlUxFVYG6YP08DCbz9mRc7QvTTuBtGmyqyt28V-hhnsAtk6d_Qu4u0nhBnwG0OEKsMP1j4Cf9S5p4zw30ZLKt4cwCSy84UrXXxJjafxLLr7jqE-8tJWbhe-0srzm-60XrTP6j1c3LPM6QpJLNc7btbFN7_Om6R7mZzpu-4zbPKFvemlwVvaRAAcuQHhP1b23SkfttjZzbZJPhmYK0HDDayEfXf5MH6xkjJBJGGTUZlH7_ZjY-pI39nZrZjiflLUOQzaepGg6mYJEZ0tp_FQ3-1hPrueO9K6TUjinN6OUMtj6Nmf7u_Mv3YENIpRxNvnFDBLJf_1tt8kwt-koRlY5eYqeOCUDzyw5nqF7qtlCj2enrSu0orbQw9x3-oMng6KUz9HxgEB4UWFHIOwJhOsGdwTCHYE-4SF94A2Je_q8QF_3dk_yz4FrvREIULhXQVzRUgpWTqUqk0jECU-zUjClM_RkQnkoEl6SCpRdRYmghEs4NCWhErTZhNGQvEQbwB61jTCLJI9pVemyRSB7h2UccU6mhLJQxlzQEaL-xyyEq0uv26N8L3wA4nnhQSg0CIUFYYQ-duMubGWWO0cwj1Xh5EsrNxZAsTvHvvfgFoCO9qrxRi3Wy0IbBEBJykL6u3cI6B0MtLMRemWZ0a2ZxFmcERK-_ofVvUGP-v_cW7SxatfqHXogLlf1st1B99N5tuNY_wOshcVz
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+machine+learning+in+anaerobic+digestion%3A+Perspectives+and+challenges&rft.jtitle=Bioresource+technology&rft.au=Andrade+Cruz%2C+Ianny&rft.au=Chuenchart%2C+Wachiranon&rft.au=Long%2C+Fei&rft.au=Surendra%2C+K.C.&rft.date=2022-02-01&rft.pub=Elsevier+Ltd&rft.issn=0960-8524&rft.volume=345&rft_id=info:doi/10.1016%2Fj.biortech.2021.126433&rft.externalDocID=S0960852421017752
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-8524&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-8524&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-8524&client=summon