Hyperspectral technique combined with deep learning algorithm for detection of compound heavy metals in lettuce
•Vis-NIR HSI was used to detect compound heavy metals content in lettuce leaves.•WT-SCAE is proposed to obtain the deep spectral features.•Deep learning has a great potential for the identification of compound heavy metals content. The aim of this research was to develop a deep learning method which...
Uloženo v:
| Vydáno v: | Food chemistry Ročník 321; s. 126503 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
England
Elsevier Ltd
15.08.2020
|
| Témata: | |
| ISSN: | 0308-8146, 1873-7072, 1873-7072 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | •Vis-NIR HSI was used to detect compound heavy metals content in lettuce leaves.•WT-SCAE is proposed to obtain the deep spectral features.•Deep learning has a great potential for the identification of compound heavy metals content.
The aim of this research was to develop a deep learning method which involved wavelet transform (WT) and stack convolution auto encoder (SCAE) for extracting compound heavy metals detection deep features of lettuce leaves. WT was used to decompose the visible-near infrared (400.68–1001.61 nm) hyperspectral image of lettuce sample in the multi-scale transform to acquire the optimal wavelet decomposition layers of cadmium (Cd) and lead (Pb) content prediction, and then using SCAE to perform deep feature learning on spectral data under optimal wavelet decomposition layer. Support vector machine regression (SVR) models established by the deep features obtained by WT-SCAE achieved reasonable performance with coefficient of determination for prediction (Rp2) of 0.9319, root mean square error for prediction (RMSEP) of 0.04988 mg/kg and the relative percent different (RPD) of 3.187 for Cd content, and with Rp2 of 0.9418, RMSEP of 0.04123 mg/kg and RPD of 3.214 for Pb content. The results of this study confirmed the great potential for detecting compound heavy metals by the combination of hyperspectral technique and deep learning algorithm. |
|---|---|
| AbstractList | The aim of this research was to develop a deep learning method which involved wavelet transform (WT) and stack convolution auto encoder (SCAE) for extracting compound heavy metals detection deep features of lettuce leaves. WT was used to decompose the visible-near infrared (400.68-1001.61 nm) hyperspectral image of lettuce sample in the multi-scale transform to acquire the optimal wavelet decomposition layers of cadmium (Cd) and lead (Pb) content prediction, and then using SCAE to perform deep feature learning on spectral data under optimal wavelet decomposition layer. Support vector machine regression (SVR) models established by the deep features obtained by WT-SCAE achieved reasonable performance with coefficient of determination for prediction (R
) of 0.9319, root mean square error for prediction (RMSEP) of 0.04988 mg/kg and the relative percent different (RPD) of 3.187 for Cd content, and with R
of 0.9418, RMSEP of 0.04123 mg/kg and RPD of 3.214 for Pb content. The results of this study confirmed the great potential for detecting compound heavy metals by the combination of hyperspectral technique and deep learning algorithm. •Vis-NIR HSI was used to detect compound heavy metals content in lettuce leaves.•WT-SCAE is proposed to obtain the deep spectral features.•Deep learning has a great potential for the identification of compound heavy metals content. The aim of this research was to develop a deep learning method which involved wavelet transform (WT) and stack convolution auto encoder (SCAE) for extracting compound heavy metals detection deep features of lettuce leaves. WT was used to decompose the visible-near infrared (400.68–1001.61 nm) hyperspectral image of lettuce sample in the multi-scale transform to acquire the optimal wavelet decomposition layers of cadmium (Cd) and lead (Pb) content prediction, and then using SCAE to perform deep feature learning on spectral data under optimal wavelet decomposition layer. Support vector machine regression (SVR) models established by the deep features obtained by WT-SCAE achieved reasonable performance with coefficient of determination for prediction (Rp2) of 0.9319, root mean square error for prediction (RMSEP) of 0.04988 mg/kg and the relative percent different (RPD) of 3.187 for Cd content, and with Rp2 of 0.9418, RMSEP of 0.04123 mg/kg and RPD of 3.214 for Pb content. The results of this study confirmed the great potential for detecting compound heavy metals by the combination of hyperspectral technique and deep learning algorithm. The aim of this research was to develop a deep learning method which involved wavelet transform (WT) and stack convolution auto encoder (SCAE) for extracting compound heavy metals detection deep features of lettuce leaves. WT was used to decompose the visible-near infrared (400.68–1001.61 nm) hyperspectral image of lettuce sample in the multi-scale transform to acquire the optimal wavelet decomposition layers of cadmium (Cd) and lead (Pb) content prediction, and then using SCAE to perform deep feature learning on spectral data under optimal wavelet decomposition layer. Support vector machine regression (SVR) models established by the deep features obtained by WT-SCAE achieved reasonable performance with coefficient of determination for prediction (Rₚ²) of 0.9319, root mean square error for prediction (RMSEP) of 0.04988 mg/kg and the relative percent different (RPD) of 3.187 for Cd content, and with Rₚ² of 0.9418, RMSEP of 0.04123 mg/kg and RPD of 3.214 for Pb content. The results of this study confirmed the great potential for detecting compound heavy metals by the combination of hyperspectral technique and deep learning algorithm. The aim of this research was to develop a deep learning method which involved wavelet transform (WT) and stack convolution auto encoder (SCAE) for extracting compound heavy metals detection deep features of lettuce leaves. WT was used to decompose the visible-near infrared (400.68-1001.61 nm) hyperspectral image of lettuce sample in the multi-scale transform to acquire the optimal wavelet decomposition layers of cadmium (Cd) and lead (Pb) content prediction, and then using SCAE to perform deep feature learning on spectral data under optimal wavelet decomposition layer. Support vector machine regression (SVR) models established by the deep features obtained by WT-SCAE achieved reasonable performance with coefficient of determination for prediction (Rp2) of 0.9319, root mean square error for prediction (RMSEP) of 0.04988 mg/kg and the relative percent different (RPD) of 3.187 for Cd content, and with Rp2 of 0.9418, RMSEP of 0.04123 mg/kg and RPD of 3.214 for Pb content. The results of this study confirmed the great potential for detecting compound heavy metals by the combination of hyperspectral technique and deep learning algorithm.The aim of this research was to develop a deep learning method which involved wavelet transform (WT) and stack convolution auto encoder (SCAE) for extracting compound heavy metals detection deep features of lettuce leaves. WT was used to decompose the visible-near infrared (400.68-1001.61 nm) hyperspectral image of lettuce sample in the multi-scale transform to acquire the optimal wavelet decomposition layers of cadmium (Cd) and lead (Pb) content prediction, and then using SCAE to perform deep feature learning on spectral data under optimal wavelet decomposition layer. Support vector machine regression (SVR) models established by the deep features obtained by WT-SCAE achieved reasonable performance with coefficient of determination for prediction (Rp2) of 0.9319, root mean square error for prediction (RMSEP) of 0.04988 mg/kg and the relative percent different (RPD) of 3.187 for Cd content, and with Rp2 of 0.9418, RMSEP of 0.04123 mg/kg and RPD of 3.214 for Pb content. The results of this study confirmed the great potential for detecting compound heavy metals by the combination of hyperspectral technique and deep learning algorithm. |
| ArticleNumber | 126503 |
| Author | Sun, Jun Zhou, Xin Hang, Yingying Tian, Yan Lu, Bing Chen, Quansheng |
| Author_xml | – sequence: 1 givenname: Xin surname: Zhou fullname: Zhou, Xin organization: School of Electrical and Information Engineering of Jiangsu University, Zhenjiang 212013, China – sequence: 2 givenname: Jun orcidid: 0000-0002-6600-3699 surname: Sun fullname: Sun, Jun email: sun2000jun@sina.com organization: School of Electrical and Information Engineering of Jiangsu University, Zhenjiang 212013, China – sequence: 3 givenname: Yan surname: Tian fullname: Tian, Yan organization: School of Electrical and Information Engineering of Jiangsu University, Zhenjiang 212013, China – sequence: 4 givenname: Bing surname: Lu fullname: Lu, Bing organization: School of Electrical and Information Engineering of Jiangsu University, Zhenjiang 212013, China – sequence: 5 givenname: Yingying surname: Hang fullname: Hang, Yingying organization: School of Electrical and Information Engineering of Jiangsu University, Zhenjiang 212013, China – sequence: 6 givenname: Quansheng orcidid: 0000-0003-2498-3278 surname: Chen fullname: Chen, Quansheng email: qschen@ujs.edu.cn organization: School of Food and Biological Engineering of Jiangsu University, Zhenjiang 212013, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32240914$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkc1q3DAUhUVJaSZpXyFo2Y2n-rMtQRctoW0KgW6yF7J0ndFgS64kp8zbR8NkNt3MSnB0vnu559ygqxADIHRHyZYS2n3Zb8cYnd3BvGWEVZF1LeHv0IbKnjc96dkV2hBOZCOp6K7RTc57QqqTyg_omjMmiKJig-LDYYGUF7AlmQkXsLvg_66AbZwHH8Dhf77ssANY8AQmBR-esZmeY6ryjMeY6l-lio8Bx_GILXENDu_AvBzwDMVMGftQ4VJWCx_R-7Eq8OntvUVPP3883T80j39-_b7__thYQWhpRAsKrOMjY9IZJhVTtO0UpcYwkIQp1xHuuBuVcaMUvBvaQQ49FaojFgS_RZ9PY5cU6zW56NlnC9NkAsQ163o-EUJy1l-2ctmxvuVMVevdm3UdZnB6SX426aDPcVbD15PBpphzglFbX8wxm5qunzQl-tie3utze_rYnj61V_HuP_y84SL47QRCjfTFQ9LZeggWnE-1G-2ivzTiFWNruMw |
| CitedBy_id | crossref_primary_10_1016_j_chemosphere_2021_130126 crossref_primary_10_1016_j_saa_2024_125182 crossref_primary_10_4081_jae_2025_1776 crossref_primary_10_1016_j_engappai_2025_111276 crossref_primary_10_1016_j_psep_2024_06_081 crossref_primary_10_1021_acssensors_5c00254 crossref_primary_10_3390_su12114441 crossref_primary_10_3390_foods14183261 crossref_primary_10_3390_su151310339 crossref_primary_10_1016_j_ecoenv_2024_116883 crossref_primary_10_3390_en18164408 crossref_primary_10_3390_bios15090629 crossref_primary_10_3390_en18030686 crossref_primary_10_3390_ijms25179584 crossref_primary_10_1002_advs_202501793 crossref_primary_10_1016_j_foodchem_2025_143391 crossref_primary_10_1016_j_saa_2023_122742 crossref_primary_10_1002_jsfa_10836 crossref_primary_10_1039_D5AY00683J crossref_primary_10_1111_jfpe_13718 crossref_primary_10_1016_j_infrared_2022_104414 crossref_primary_10_1016_j_saa_2025_126387 crossref_primary_10_3389_fsufs_2022_1036892 crossref_primary_10_1111_jfpe_13950 crossref_primary_10_1111_jfpe_13797 crossref_primary_10_1111_jfpe_13952 crossref_primary_10_1016_j_foodchem_2021_130634 crossref_primary_10_1111_jfpe_13793 crossref_primary_10_1016_j_tifs_2025_105138 crossref_primary_10_1016_j_envres_2025_121257 crossref_primary_10_1016_j_microc_2023_109306 crossref_primary_10_1007_s11947_025_03822_9 crossref_primary_10_1111_jfpe_14120 crossref_primary_10_3389_fpls_2022_927832 crossref_primary_10_1016_j_compag_2023_107920 crossref_primary_10_1016_j_compag_2021_106046 crossref_primary_10_1016_j_epsr_2022_108066 crossref_primary_10_1016_j_infrared_2022_104286 crossref_primary_10_1109_ACCESS_2025_3587226 crossref_primary_10_1080_10498850_2025_2469831 crossref_primary_10_1016_j_foodchem_2022_135251 crossref_primary_10_3390_agronomy15081954 crossref_primary_10_3390_met15010080 crossref_primary_10_1016_j_infrared_2021_104003 crossref_primary_10_3390_foods11142024 crossref_primary_10_1111_jfpp_15241 crossref_primary_10_1007_s12665_024_11680_5 crossref_primary_10_1016_j_foodchem_2021_129928 crossref_primary_10_3390_pr13092769 crossref_primary_10_3389_fpls_2022_1007991 crossref_primary_10_1016_j_saa_2022_121838 crossref_primary_10_1111_1750_3841_15715 crossref_primary_10_3390_rs15123100 crossref_primary_10_3390_foods14071241 crossref_primary_10_3390_foods14111929 crossref_primary_10_1016_j_saa_2023_122720 crossref_primary_10_1016_j_foodchem_2022_132779 crossref_primary_10_1016_j_ecoenv_2024_116704 crossref_primary_10_1016_j_plaphe_2025_100104 crossref_primary_10_1016_j_infrared_2021_103687 crossref_primary_10_1016_j_foodchem_2023_136235 crossref_primary_10_1111_jfpe_13973 crossref_primary_10_1111_jfpe_14304 crossref_primary_10_3389_fpls_2024_1458589 crossref_primary_10_3390_foods14142488 crossref_primary_10_1016_j_compag_2023_108034 crossref_primary_10_1016_j_snb_2023_133931 crossref_primary_10_1016_j_trac_2021_116459 crossref_primary_10_1016_j_cej_2025_162796 crossref_primary_10_1016_j_chemosphere_2024_141329 crossref_primary_10_1016_j_fbio_2025_106404 crossref_primary_10_1002_slct_202501867 crossref_primary_10_1016_j_crfs_2025_101065 crossref_primary_10_3390_foods14020286 crossref_primary_10_3390_machines13090818 crossref_primary_10_1109_TGRS_2022_3190310 crossref_primary_10_1016_j_compag_2025_110569 crossref_primary_10_1007_s11356_022_23206_2 crossref_primary_10_1016_j_chemolab_2022_104537 crossref_primary_10_1016_j_foodcont_2022_109108 crossref_primary_10_1080_00387010_2024_2447515 crossref_primary_10_1007_s10044_025_01543_5 crossref_primary_10_3390_su132112088 crossref_primary_10_1016_j_jclepro_2022_134878 crossref_primary_10_3390_su17073190 crossref_primary_10_1016_j_jpowsour_2025_238276 crossref_primary_10_3390_s25082611 crossref_primary_10_1109_ACCESS_2025_3591279 crossref_primary_10_1016_j_foodchem_2024_139868 crossref_primary_10_1016_j_saa_2022_122288 crossref_primary_10_3390_foods11233881 crossref_primary_10_3390_land12091789 crossref_primary_10_1016_j_infrared_2021_103936 crossref_primary_10_1007_s11694_022_01552_6 crossref_primary_10_1016_j_jenvman_2025_125158 crossref_primary_10_1002_ceat_70054 crossref_primary_10_1021_acssensors_5c01499 crossref_primary_10_1007_s12161_024_02686_7 crossref_primary_10_34133_plantphenomics_0124 crossref_primary_10_1016_j_scienta_2024_113739 crossref_primary_10_3390_s25123668 crossref_primary_10_3390_s25154783 crossref_primary_10_1016_j_geodrs_2022_e00540 crossref_primary_10_1111_jfpe_14040 crossref_primary_10_1016_j_ecoenv_2025_118317 crossref_primary_10_3390_agronomy14102290 crossref_primary_10_1016_j_mtcomm_2021_102817 crossref_primary_10_1007_s42405_025_00954_2 crossref_primary_10_1016_j_ecoenv_2024_117548 crossref_primary_10_1016_j_tifs_2021_04_008 crossref_primary_10_1016_j_ecoinf_2024_102792 crossref_primary_10_1016_j_saa_2022_121641 crossref_primary_10_1111_jfs_12866 crossref_primary_10_3390_agriculture12111796 crossref_primary_10_3390_agriculture15161775 crossref_primary_10_3390_app15158438 crossref_primary_10_3390_foods12152957 crossref_primary_10_3390_computers14080309 crossref_primary_10_1016_j_foodchem_2025_143799 crossref_primary_10_1016_j_saa_2022_121479 crossref_primary_10_1016_j_scitotenv_2022_160652 crossref_primary_10_3390_biomimetics10090572 crossref_primary_10_1016_j_tifs_2025_105204 crossref_primary_10_1016_j_csite_2025_106717 crossref_primary_10_3390_agriculture15131351 crossref_primary_10_3390_fi17070308 crossref_primary_10_1039_D5AY00647C crossref_primary_10_3389_fnut_2022_993737 crossref_primary_10_1080_10408398_2022_2131725 crossref_primary_10_3390_agriculture15080847 crossref_primary_10_1016_j_tifs_2024_104396 crossref_primary_10_3390_machines13090793 crossref_primary_10_1016_j_meatsci_2023_109170 crossref_primary_10_1007_s11694_020_00627_6 crossref_primary_10_1016_j_trac_2024_117794 crossref_primary_10_3390_en18112702 crossref_primary_10_1016_j_meatsci_2022_108975 crossref_primary_10_1016_j_saa_2024_123991 crossref_primary_10_1016_j_jfca_2021_103970 crossref_primary_10_1016_j_compag_2025_110519 crossref_primary_10_3390_molecules25204696 crossref_primary_10_3390_pr13061682 crossref_primary_10_1016_j_scitotenv_2021_149623 crossref_primary_10_1016_j_envpol_2025_127135 crossref_primary_10_1111_jfpe_13897 crossref_primary_10_3390_rs13112160 crossref_primary_10_3390_agronomy15061471 crossref_primary_10_1002_wcms_1516 crossref_primary_10_1080_10408398_2022_2139217 crossref_primary_10_1016_j_foodchem_2021_129954 crossref_primary_10_1007_s11760_025_04447_3 crossref_primary_10_3390_agronomy15071549 crossref_primary_10_1016_j_jpowsour_2025_236508 |
| Cites_doi | 10.1016/S0169-7439(01)00119-8 10.1093/mnras/stx3298 10.1039/C4AN02123A 10.1016/j.biosystemseng.2017.03.006 10.1109/83.136597 10.1016/j.aqpro.2015.02.203 10.1016/j.geoderma.2018.12.049 10.1039/C4AN00730A 10.1016/j.jag.2018.12.011 10.1016/j.chemolab.2017.12.010 10.1016/j.saa.2018.12.051 10.1016/0169-7439(93)E0066-D 10.1016/j.chemosphere.2018.07.168 10.1002/app.11595 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier Ltd Copyright © 2020 Elsevier Ltd. All rights reserved. |
| Copyright_xml | – notice: 2020 Elsevier Ltd – notice: Copyright © 2020 Elsevier Ltd. All rights reserved. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
| DOI | 10.1016/j.foodchem.2020.126503 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | MEDLINE AGRICOLA MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics Chemistry Diet & Clinical Nutrition |
| EISSN | 1873-7072 |
| ExternalDocumentID | 32240914 10_1016_j_foodchem_2020_126503 S0308814620303654 |
| Genre | Journal Article |
| GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AARLI AATLK AAXUO ABFNM ABFRF ABGRD ABGSF ABJNI ABMAC ABUDA ABYKQ ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADECG ADEZE ADQTV ADUVX AEBSH AEFWE AEHWI AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AFZHZ AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CBWCG CS3 DOVZS DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W K-O KOM KZ1 LW9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SAB SCC SDF SDG SDP SES SPC SPCBC SSA SSK SSU SSZ T5K WH7 ~G- ~KM 29H 53G 9DU AAHBH AALCJ AAQXK AATTM AAXKI AAYJJ AAYWO AAYXX ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGHFR AGQPQ AGRDE AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HLV HVGLF HZ~ R2- SCB SEW VH1 WUQ Y6R ~HD BNPGV CGR CUY CVF ECM EIF NPM SSH 7X8 7S9 L.6 |
| ID | FETCH-LOGICAL-c401t-45e9ecd3f228da28929156911aa2e8029d603d3df9adf8436b5b8b714960ce43 |
| ISICitedReferencesCount | 179 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000526394400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0308-8146 1873-7072 |
| IngestDate | Mon Sep 29 05:36:43 EDT 2025 Sat Sep 27 20:12:12 EDT 2025 Thu Apr 03 07:05:41 EDT 2025 Sat Nov 29 07:23:00 EST 2025 Tue Nov 18 22:30:37 EST 2025 Fri Feb 23 02:50:12 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Deep learning Lettuce Wavelet transform Compound heavy metals Nondestructive testing Stack convolution auto encoder |
| Language | English |
| License | Copyright © 2020 Elsevier Ltd. All rights reserved. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c401t-45e9ecd3f228da28929156911aa2e8029d603d3df9adf8436b5b8b714960ce43 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-6600-3699 0000-0003-2498-3278 |
| PMID | 32240914 |
| PQID | 2386275329 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2400448327 proquest_miscellaneous_2386275329 pubmed_primary_32240914 crossref_citationtrail_10_1016_j_foodchem_2020_126503 crossref_primary_10_1016_j_foodchem_2020_126503 elsevier_sciencedirect_doi_10_1016_j_foodchem_2020_126503 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-08-15 |
| PublicationDateYYYYMMDD | 2020-08-15 |
| PublicationDate_xml | – month: 08 year: 2020 text: 2020-08-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Food chemistry |
| PublicationTitleAlternate | Food Chem |
| PublicationYear | 2020 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Malmir, Tahmasbian, Xu, Farrar, Bai (b0080) 2019; 340 Cao, Y., Huang, R., Li, J., Zhao, T., Guo, W., & Wang, G.. (2006). Cadmium absorption characteristics of Zea mays under combined stress of lead and cadmium. Chinese Journal of Ecology, 25, 1425-1427. doi: 0.1016/S1872-2032(06)60050-4. Araújo, Saldanha, Galvão, Yoneyama, Visani (b0010) 2001; 57 Cong, Sun, Mao, Wu, Wang, Zhang (b0030) 2017; 98 Camacho, Vallés-Lluch, Ribes-Greus, Karlsson (b0020) 2003; 87 Song, Liu, Chen, Ma, Zhang, Shen (b0090) 2015; 3 Sun, Zhou, Mao, Wu, Yang, Zhang (b0115) 2016; 32 Bos, Vrielink (b0015) 1994; 23 Vincent, Larochelle, Lajoie, Bengio, Manzagol (b0120) 2010; 11 Antonini, Barlaud, Mathieu, Daubechies (b0005) 1992; 1 Sun, Zhou, Wu, Zhang, Yang (b0095) 2019; 212 Corti, Marino Gallina, Cavalli, Cabassi (b0035) 2017; 158 Yu, Lu, Liu (b0130) 2018; 172 Li, Li, Liu (b0075) 2019; 78 Deng, Yun, Ma, Lin, Ren, Liang (b0045) 2015; 140 Saqib, Qaiser, Muhammad, Hongqing (b0085) 2018; 211 Fabbro, Venn, O“Briain, Bialek, Kielty, Jahandar (b0050) 2018; 475 Liu, Zheng, Zhang, Li, Fang, Liu (b0070) 2019; 11 Sun, Tan, Mao, Wu, Chen, Wang (b0110) 2017; 33 Zhou, Sun, Tian, Wu, Dai, Li (b0140) 2019; e13085 Deng, Yun, Liang, Yi (b0040) 2014; 139 Zhang, Wang, Ouyang, Fei (b0135) 2018; 46 Bos (10.1016/j.foodchem.2020.126503_b0015) 1994; 23 Araújo (10.1016/j.foodchem.2020.126503_b0010) 2001; 57 Sun (10.1016/j.foodchem.2020.126503_b0115) 2016; 32 10.1016/j.foodchem.2020.126503_b0025 Deng (10.1016/j.foodchem.2020.126503_b0040) 2014; 139 Zhang (10.1016/j.foodchem.2020.126503_b0135) 2018; 46 Deng (10.1016/j.foodchem.2020.126503_b0045) 2015; 140 Saqib (10.1016/j.foodchem.2020.126503_b0085) 2018; 211 Sun (10.1016/j.foodchem.2020.126503_b0110) 2017; 33 Fabbro (10.1016/j.foodchem.2020.126503_b0050) 2018; 475 Zhou (10.1016/j.foodchem.2020.126503_b0140) 2019; e13085 Li (10.1016/j.foodchem.2020.126503_b0075) 2019; 78 Sun (10.1016/j.foodchem.2020.126503_b0095) 2019; 212 Vincent (10.1016/j.foodchem.2020.126503_b0120) 2010; 11 Song (10.1016/j.foodchem.2020.126503_b0090) 2015; 3 Malmir (10.1016/j.foodchem.2020.126503_b0080) 2019; 340 Cong (10.1016/j.foodchem.2020.126503_b0030) 2017; 98 Antonini (10.1016/j.foodchem.2020.126503_b0005) 1992; 1 Liu (10.1016/j.foodchem.2020.126503_b0070) 2019; 11 Yu (10.1016/j.foodchem.2020.126503_b0130) 2018; 172 Camacho (10.1016/j.foodchem.2020.126503_b0020) 2003; 87 Corti (10.1016/j.foodchem.2020.126503_b0035) 2017; 158 |
| References_xml | – volume: 57 start-page: 65 year: 2001 end-page: 73 ident: b0010 article-title: The successive projections algorithm for variable selection in spectroscopic multicomponent analysis publication-title: Chemometrics & Intelligent Laboratory Systems – volume: 98 start-page: 29 year: 2017 end-page: 35 ident: b0030 article-title: Non-destructive detection for mold colonies in rice based on hyperspectra and GWO-SVR publication-title: Journal of the Science of Food & Agriculture – volume: 340 start-page: 70 year: 2019 end-page: 80 ident: b0080 article-title: Prediction of soil macro- and micro-elements in sieved and ground air-dried soils using laboratory-based hyperspectral imaging technique publication-title: Geoderma – volume: 32 start-page: 302 year: 2016 end-page: 307 ident: b0115 article-title: Detection of pesticide residues in lettuce based on fluorescence spectra publication-title: Transactions of the Chinese Society of Agricultural Engineering – volume: 46 start-page: 5 year: 2018 end-page: 9 ident: b0135 article-title: Diagnosis of Heavy Metal Stress in Leaf of Rice in Greenhouse Based on Hyperspectral Image publication-title: Journal of Anhui Agricultural Sciences – volume: 172 start-page: 188 year: 2018 end-page: 193 ident: b0130 article-title: Deep-learning-based regression model and hyperspectral imaging for rapid detection of nitrogen concentration in oilseed rape (brassica napus l.) leaf publication-title: Chemometrics and Intelligent Laboratory Systems – volume: 158 start-page: 38 year: 2017 end-page: 50 ident: b0035 article-title: Hyperspectral imaging of spinach canopy under combined water and nitrogen stress to estimate biomass, water, and nitrogen content publication-title: Biosystems Engineering – volume: 33 start-page: 209 year: 2017 end-page: 215 ident: b0110 article-title: Recognition of multiple plant leaf diseases based on improved convolutional neural network publication-title: Transactions of the Chinese Society of Agricultural Engineering – volume: 139 start-page: 4836 year: 2014 ident: b0040 article-title: A novel variable selection approach that iteratively optimizes variable space using weighted binary matrix sampling publication-title: The Analyst – volume: 78 start-page: 39 year: 2019 end-page: 52 ident: b0075 article-title: Collaborative inversion heavy metal stress in rice by using two-dimensional spectral feature space based on HJ-1 A HSI and radarsat-2 SAR remote sensing data publication-title: International Journal of Applied Earth Observation and Geoinformation – volume: 212 start-page: 215 year: 2019 end-page: 221 ident: b0095 article-title: Research and Analysis of Cadmium Residue in Tomato Leaves Based on WT-LSSVR and VIS-NIR Hyperspectral Imaging publication-title: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy – volume: 23 start-page: 115 year: 1994 end-page: 122 ident: b0015 article-title: The wavelet transform for pre-processing ir spectra in the identification of mono- and di-substituted benzenes publication-title: Chemometrics & Intelligent Laboratory Systems – volume: 11 start-page: 1 year: 2019 end-page: 14 ident: b0070 article-title: Dissolved gases forecasting based on wavelet least squares support vector regression and imperialist competition algorithm for assessing incipient faults of transformer polymer insulation publication-title: Polymers – reference: Cao, Y., Huang, R., Li, J., Zhao, T., Guo, W., & Wang, G.. (2006). Cadmium absorption characteristics of Zea mays under combined stress of lead and cadmium. Chinese Journal of Ecology, 25, 1425-1427. doi: 0.1016/S1872-2032(06)60050-4. – volume: e13085 year: 2019 ident: b0140 article-title: Spectral classification of lettuce cadmium stress based on information fusion and VISSA-GOA-SVM algorithm publication-title: Journal of Food Process Engineering – volume: 211 start-page: 632 year: 2018 end-page: 639 ident: b0085 article-title: Efficiency and surface characterization of different plant derived biochar for cadmium (cd) mobility, bioaccessibility and bioavailability to chinese cabbage in highly contaminated soil publication-title: Chemosphere – volume: 87 start-page: 2165 year: 2003 end-page: 2170 ident: b0020 article-title: Determination of moisture content in nylon 6,6 by near-infrared spectroscopy and chemometrics publication-title: Journal of Applied Polymer Science – volume: 475 start-page: 2978 year: 2018 end-page: 2993 ident: b0050 article-title: An application of deep learning in the analysis of stellar spectra publication-title: Monthly Notices of the Royal Astronomical Society – volume: 3 start-page: 133 year: 2015 end-page: 143 ident: b0090 article-title: Classification of the different thickness of the oil film based on wavelet transform spectrum information publication-title: Aquatic Procedia – volume: 11 start-page: 3371 year: 2010 end-page: 3408 ident: b0120 article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion publication-title: Journal of Machine Learning Research – volume: 140 start-page: 1876 year: 2015 end-page: 1885 ident: b0045 article-title: A new method for wavelength interval selection that intelligently optimizes the locations, widths and combinations of the intervals publication-title: The Analyst – volume: 1 start-page: 205 year: 1992 end-page: 220 ident: b0005 article-title: Image coding using wavelet transform publication-title: IEEE Transactions on Image Processing – volume: 57 start-page: 65 year: 2001 ident: 10.1016/j.foodchem.2020.126503_b0010 article-title: The successive projections algorithm for variable selection in spectroscopic multicomponent analysis publication-title: Chemometrics & Intelligent Laboratory Systems doi: 10.1016/S0169-7439(01)00119-8 – volume: 475 start-page: 2978 issue: 3 year: 2018 ident: 10.1016/j.foodchem.2020.126503_b0050 article-title: An application of deep learning in the analysis of stellar spectra publication-title: Monthly Notices of the Royal Astronomical Society doi: 10.1093/mnras/stx3298 – volume: 140 start-page: 1876 issue: 6 year: 2015 ident: 10.1016/j.foodchem.2020.126503_b0045 article-title: A new method for wavelength interval selection that intelligently optimizes the locations, widths and combinations of the intervals publication-title: The Analyst doi: 10.1039/C4AN02123A – volume: 98 start-page: 29 year: 2017 ident: 10.1016/j.foodchem.2020.126503_b0030 article-title: Non-destructive detection for mold colonies in rice based on hyperspectra and GWO-SVR publication-title: Journal of the Science of Food & Agriculture – volume: 158 start-page: 38 year: 2017 ident: 10.1016/j.foodchem.2020.126503_b0035 article-title: Hyperspectral imaging of spinach canopy under combined water and nitrogen stress to estimate biomass, water, and nitrogen content publication-title: Biosystems Engineering doi: 10.1016/j.biosystemseng.2017.03.006 – volume: 1 start-page: 205 issue: 2 year: 1992 ident: 10.1016/j.foodchem.2020.126503_b0005 article-title: Image coding using wavelet transform publication-title: IEEE Transactions on Image Processing doi: 10.1109/83.136597 – volume: 3 start-page: 133 year: 2015 ident: 10.1016/j.foodchem.2020.126503_b0090 article-title: Classification of the different thickness of the oil film based on wavelet transform spectrum information publication-title: Aquatic Procedia doi: 10.1016/j.aqpro.2015.02.203 – ident: 10.1016/j.foodchem.2020.126503_b0025 – volume: 340 start-page: 70 year: 2019 ident: 10.1016/j.foodchem.2020.126503_b0080 article-title: Prediction of soil macro- and micro-elements in sieved and ground air-dried soils using laboratory-based hyperspectral imaging technique publication-title: Geoderma doi: 10.1016/j.geoderma.2018.12.049 – volume: 139 start-page: 4836 issue: 19 year: 2014 ident: 10.1016/j.foodchem.2020.126503_b0040 article-title: A novel variable selection approach that iteratively optimizes variable space using weighted binary matrix sampling publication-title: The Analyst doi: 10.1039/C4AN00730A – volume: 78 start-page: 39 year: 2019 ident: 10.1016/j.foodchem.2020.126503_b0075 article-title: Collaborative inversion heavy metal stress in rice by using two-dimensional spectral feature space based on HJ-1 A HSI and radarsat-2 SAR remote sensing data publication-title: International Journal of Applied Earth Observation and Geoinformation doi: 10.1016/j.jag.2018.12.011 – volume: 172 start-page: 188 year: 2018 ident: 10.1016/j.foodchem.2020.126503_b0130 article-title: Deep-learning-based regression model and hyperspectral imaging for rapid detection of nitrogen concentration in oilseed rape (brassica napus l.) leaf publication-title: Chemometrics and Intelligent Laboratory Systems doi: 10.1016/j.chemolab.2017.12.010 – volume: 212 start-page: 215 year: 2019 ident: 10.1016/j.foodchem.2020.126503_b0095 article-title: Research and Analysis of Cadmium Residue in Tomato Leaves Based on WT-LSSVR and VIS-NIR Hyperspectral Imaging publication-title: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy doi: 10.1016/j.saa.2018.12.051 – volume: e13085 year: 2019 ident: 10.1016/j.foodchem.2020.126503_b0140 article-title: Spectral classification of lettuce cadmium stress based on information fusion and VISSA-GOA-SVM algorithm publication-title: Journal of Food Process Engineering – volume: 33 start-page: 209 year: 2017 ident: 10.1016/j.foodchem.2020.126503_b0110 article-title: Recognition of multiple plant leaf diseases based on improved convolutional neural network publication-title: Transactions of the Chinese Society of Agricultural Engineering – volume: 23 start-page: 115 issue: 1 year: 1994 ident: 10.1016/j.foodchem.2020.126503_b0015 article-title: The wavelet transform for pre-processing ir spectra in the identification of mono- and di-substituted benzenes publication-title: Chemometrics & Intelligent Laboratory Systems doi: 10.1016/0169-7439(93)E0066-D – volume: 11 start-page: 1 year: 2019 ident: 10.1016/j.foodchem.2020.126503_b0070 article-title: Dissolved gases forecasting based on wavelet least squares support vector regression and imperialist competition algorithm for assessing incipient faults of transformer polymer insulation publication-title: Polymers – volume: 46 start-page: 5 year: 2018 ident: 10.1016/j.foodchem.2020.126503_b0135 article-title: Diagnosis of Heavy Metal Stress in Leaf of Rice in Greenhouse Based on Hyperspectral Image publication-title: Journal of Anhui Agricultural Sciences – volume: 211 start-page: 632 year: 2018 ident: 10.1016/j.foodchem.2020.126503_b0085 article-title: Efficiency and surface characterization of different plant derived biochar for cadmium (cd) mobility, bioaccessibility and bioavailability to chinese cabbage in highly contaminated soil publication-title: Chemosphere doi: 10.1016/j.chemosphere.2018.07.168 – volume: 32 start-page: 302 year: 2016 ident: 10.1016/j.foodchem.2020.126503_b0115 article-title: Detection of pesticide residues in lettuce based on fluorescence spectra publication-title: Transactions of the Chinese Society of Agricultural Engineering – volume: 11 start-page: 3371 issue: 12 year: 2010 ident: 10.1016/j.foodchem.2020.126503_b0120 article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion publication-title: Journal of Machine Learning Research – volume: 87 start-page: 2165 issue: 13 year: 2003 ident: 10.1016/j.foodchem.2020.126503_b0020 article-title: Determination of moisture content in nylon 6,6 by near-infrared spectroscopy and chemometrics publication-title: Journal of Applied Polymer Science doi: 10.1002/app.11595 |
| SSID | ssj0002018 |
| Score | 2.6569872 |
| Snippet | •Vis-NIR HSI was used to detect compound heavy metals content in lettuce leaves.•WT-SCAE is proposed to obtain the deep spectral features.•Deep learning has a... The aim of this research was to develop a deep learning method which involved wavelet transform (WT) and stack convolution auto encoder (SCAE) for extracting... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 126503 |
| SubjectTerms | cadmium Cadmium - analysis Compound heavy metals Deep learning heavy metals hyperspectral imagery Lactuca - chemistry Lactuca sativa lead Lead - analysis Least-Squares Analysis leaves Lettuce Nondestructive testing Plant Leaves - chemistry prediction Stack convolution auto encoder Support Vector Machine support vector machines wavelet Wavelet Analysis Wavelet transform |
| Title | Hyperspectral technique combined with deep learning algorithm for detection of compound heavy metals in lettuce |
| URI | https://dx.doi.org/10.1016/j.foodchem.2020.126503 https://www.ncbi.nlm.nih.gov/pubmed/32240914 https://www.proquest.com/docview/2386275329 https://www.proquest.com/docview/2400448327 |
| Volume | 321 |
| WOSCitedRecordID | wos000526394400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-7072 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002018 issn: 0308-8146 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF7RFkEvCMorPKpFQlwqp4nX9u4eSykqHHIhh3Cy7H1UrlI7Spyq_fed9XqcFBoKBy5WZHu8K39fZmfW8yDko7VGsgTIm3MbBVHEQQ9KLYJYxywHF0PYoWqaTfDRSEwmEr_oLpp2ArwsxdWVnP1XqOEcgO1SZ_8B7u6hcAJ-A-hwBNjh-FfAn4Jn6RMoXe79qkYrjAVeMEaba2Nm2DLi7CCbnlVzOH3RRB1qUxuFlqSLOXetl5xJeXntOk67gstFCcJ1jbzo-nxW-kBhC7nVnnS1dEhOio6IP5ZtSshaGLDfif25FiPUSH3GtbXdmgibwDifnNk3Xp0KzgI-4Lf0LfMp0a3GHIZgI7I7lbnfVzjvW5i8m3vfjdH_XQDe_-yiQZM5A0X6rNRfymjjpS2yE_JYgg7fOfp2MvneLdtgCYm1FPK7h90lj_BBmwyZTY5KY7CMn5InradBjzxDnpEHptwjj48RnT3S-1KYmn6ibWnYKR1hZwa4DxPWF89JdYtRtGMURUZRxyjqGEWRUbRjFAVG0Y5RtLIUGUUbRlHPKFqUtGXUCzL-ejI-Pg3aPh2BAu-8DqLYSKM0s2EodAYefCiHcQKraJaFRgxCqZMB00xbmWkrIpbkcS5yDr55MlAmYi_JdlmV5jWh0ohoaMGHkcMsUrkWeawYWOXGJkpqm_RIjO88VW0Ne9dKZZpisOJ5irClDrbUw9Yjh53czFdxuVdCIqRpa4t6GzMFdt4r-wE5kAKk7gtcVppquUjBPnZVwVko_3CPW1UjWGh5j7zyBOrmjNx7s_HKW7K7-ie-I9v1fGnek4fqsi4W832yxSdiv2X-DSKdyMA |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hyperspectral+technique+combined+with+deep+learning+algorithm+for+detection+of+compound+heavy+metals+in+lettuce&rft.jtitle=Food+chemistry&rft.au=Zhou%2C+Xin&rft.au=Sun%2C+Jun&rft.au=Tian%2C+Yan&rft.au=Lu%2C+Bing&rft.date=2020-08-15&rft.eissn=1873-7072&rft.volume=321&rft.spage=126503&rft_id=info:doi/10.1016%2Fj.foodchem.2020.126503&rft_id=info%3Apmid%2F32240914&rft.externalDocID=32240914 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0308-8146&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0308-8146&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0308-8146&client=summon |