Hyperspectral technique combined with deep learning algorithm for detection of compound heavy metals in lettuce

•Vis-NIR HSI was used to detect compound heavy metals content in lettuce leaves.•WT-SCAE is proposed to obtain the deep spectral features.•Deep learning has a great potential for the identification of compound heavy metals content. The aim of this research was to develop a deep learning method which...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Food chemistry Ročník 321; s. 126503
Hlavní autori: Zhou, Xin, Sun, Jun, Tian, Yan, Lu, Bing, Hang, Yingying, Chen, Quansheng
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: England Elsevier Ltd 15.08.2020
Predmet:
ISSN:0308-8146, 1873-7072, 1873-7072
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract •Vis-NIR HSI was used to detect compound heavy metals content in lettuce leaves.•WT-SCAE is proposed to obtain the deep spectral features.•Deep learning has a great potential for the identification of compound heavy metals content. The aim of this research was to develop a deep learning method which involved wavelet transform (WT) and stack convolution auto encoder (SCAE) for extracting compound heavy metals detection deep features of lettuce leaves. WT was used to decompose the visible-near infrared (400.68–1001.61 nm) hyperspectral image of lettuce sample in the multi-scale transform to acquire the optimal wavelet decomposition layers of cadmium (Cd) and lead (Pb) content prediction, and then using SCAE to perform deep feature learning on spectral data under optimal wavelet decomposition layer. Support vector machine regression (SVR) models established by the deep features obtained by WT-SCAE achieved reasonable performance with coefficient of determination for prediction (Rp2) of 0.9319, root mean square error for prediction (RMSEP) of 0.04988 mg/kg and the relative percent different (RPD) of 3.187 for Cd content, and with Rp2 of 0.9418, RMSEP of 0.04123 mg/kg and RPD of 3.214 for Pb content. The results of this study confirmed the great potential for detecting compound heavy metals by the combination of hyperspectral technique and deep learning algorithm.
AbstractList The aim of this research was to develop a deep learning method which involved wavelet transform (WT) and stack convolution auto encoder (SCAE) for extracting compound heavy metals detection deep features of lettuce leaves. WT was used to decompose the visible-near infrared (400.68-1001.61 nm) hyperspectral image of lettuce sample in the multi-scale transform to acquire the optimal wavelet decomposition layers of cadmium (Cd) and lead (Pb) content prediction, and then using SCAE to perform deep feature learning on spectral data under optimal wavelet decomposition layer. Support vector machine regression (SVR) models established by the deep features obtained by WT-SCAE achieved reasonable performance with coefficient of determination for prediction (R ) of 0.9319, root mean square error for prediction (RMSEP) of 0.04988 mg/kg and the relative percent different (RPD) of 3.187 for Cd content, and with R of 0.9418, RMSEP of 0.04123 mg/kg and RPD of 3.214 for Pb content. The results of this study confirmed the great potential for detecting compound heavy metals by the combination of hyperspectral technique and deep learning algorithm.
•Vis-NIR HSI was used to detect compound heavy metals content in lettuce leaves.•WT-SCAE is proposed to obtain the deep spectral features.•Deep learning has a great potential for the identification of compound heavy metals content. The aim of this research was to develop a deep learning method which involved wavelet transform (WT) and stack convolution auto encoder (SCAE) for extracting compound heavy metals detection deep features of lettuce leaves. WT was used to decompose the visible-near infrared (400.68–1001.61 nm) hyperspectral image of lettuce sample in the multi-scale transform to acquire the optimal wavelet decomposition layers of cadmium (Cd) and lead (Pb) content prediction, and then using SCAE to perform deep feature learning on spectral data under optimal wavelet decomposition layer. Support vector machine regression (SVR) models established by the deep features obtained by WT-SCAE achieved reasonable performance with coefficient of determination for prediction (Rp2) of 0.9319, root mean square error for prediction (RMSEP) of 0.04988 mg/kg and the relative percent different (RPD) of 3.187 for Cd content, and with Rp2 of 0.9418, RMSEP of 0.04123 mg/kg and RPD of 3.214 for Pb content. The results of this study confirmed the great potential for detecting compound heavy metals by the combination of hyperspectral technique and deep learning algorithm.
The aim of this research was to develop a deep learning method which involved wavelet transform (WT) and stack convolution auto encoder (SCAE) for extracting compound heavy metals detection deep features of lettuce leaves. WT was used to decompose the visible-near infrared (400.68–1001.61 nm) hyperspectral image of lettuce sample in the multi-scale transform to acquire the optimal wavelet decomposition layers of cadmium (Cd) and lead (Pb) content prediction, and then using SCAE to perform deep feature learning on spectral data under optimal wavelet decomposition layer. Support vector machine regression (SVR) models established by the deep features obtained by WT-SCAE achieved reasonable performance with coefficient of determination for prediction (Rₚ²) of 0.9319, root mean square error for prediction (RMSEP) of 0.04988 mg/kg and the relative percent different (RPD) of 3.187 for Cd content, and with Rₚ² of 0.9418, RMSEP of 0.04123 mg/kg and RPD of 3.214 for Pb content. The results of this study confirmed the great potential for detecting compound heavy metals by the combination of hyperspectral technique and deep learning algorithm.
The aim of this research was to develop a deep learning method which involved wavelet transform (WT) and stack convolution auto encoder (SCAE) for extracting compound heavy metals detection deep features of lettuce leaves. WT was used to decompose the visible-near infrared (400.68-1001.61 nm) hyperspectral image of lettuce sample in the multi-scale transform to acquire the optimal wavelet decomposition layers of cadmium (Cd) and lead (Pb) content prediction, and then using SCAE to perform deep feature learning on spectral data under optimal wavelet decomposition layer. Support vector machine regression (SVR) models established by the deep features obtained by WT-SCAE achieved reasonable performance with coefficient of determination for prediction (Rp2) of 0.9319, root mean square error for prediction (RMSEP) of 0.04988 mg/kg and the relative percent different (RPD) of 3.187 for Cd content, and with Rp2 of 0.9418, RMSEP of 0.04123 mg/kg and RPD of 3.214 for Pb content. The results of this study confirmed the great potential for detecting compound heavy metals by the combination of hyperspectral technique and deep learning algorithm.The aim of this research was to develop a deep learning method which involved wavelet transform (WT) and stack convolution auto encoder (SCAE) for extracting compound heavy metals detection deep features of lettuce leaves. WT was used to decompose the visible-near infrared (400.68-1001.61 nm) hyperspectral image of lettuce sample in the multi-scale transform to acquire the optimal wavelet decomposition layers of cadmium (Cd) and lead (Pb) content prediction, and then using SCAE to perform deep feature learning on spectral data under optimal wavelet decomposition layer. Support vector machine regression (SVR) models established by the deep features obtained by WT-SCAE achieved reasonable performance with coefficient of determination for prediction (Rp2) of 0.9319, root mean square error for prediction (RMSEP) of 0.04988 mg/kg and the relative percent different (RPD) of 3.187 for Cd content, and with Rp2 of 0.9418, RMSEP of 0.04123 mg/kg and RPD of 3.214 for Pb content. The results of this study confirmed the great potential for detecting compound heavy metals by the combination of hyperspectral technique and deep learning algorithm.
ArticleNumber 126503
Author Sun, Jun
Zhou, Xin
Hang, Yingying
Tian, Yan
Lu, Bing
Chen, Quansheng
Author_xml – sequence: 1
  givenname: Xin
  surname: Zhou
  fullname: Zhou, Xin
  organization: School of Electrical and Information Engineering of Jiangsu University, Zhenjiang 212013, China
– sequence: 2
  givenname: Jun
  orcidid: 0000-0002-6600-3699
  surname: Sun
  fullname: Sun, Jun
  email: sun2000jun@sina.com
  organization: School of Electrical and Information Engineering of Jiangsu University, Zhenjiang 212013, China
– sequence: 3
  givenname: Yan
  surname: Tian
  fullname: Tian, Yan
  organization: School of Electrical and Information Engineering of Jiangsu University, Zhenjiang 212013, China
– sequence: 4
  givenname: Bing
  surname: Lu
  fullname: Lu, Bing
  organization: School of Electrical and Information Engineering of Jiangsu University, Zhenjiang 212013, China
– sequence: 5
  givenname: Yingying
  surname: Hang
  fullname: Hang, Yingying
  organization: School of Electrical and Information Engineering of Jiangsu University, Zhenjiang 212013, China
– sequence: 6
  givenname: Quansheng
  orcidid: 0000-0003-2498-3278
  surname: Chen
  fullname: Chen, Quansheng
  email: qschen@ujs.edu.cn
  organization: School of Food and Biological Engineering of Jiangsu University, Zhenjiang 212013, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32240914$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1q3DAUhUVJaSZpXyFo2Y2n-rMtQRctoW0KgW6yF7J0ndFgS64kp8zbR8NkNt3MSnB0vnu559ygqxADIHRHyZYS2n3Zb8cYnd3BvGWEVZF1LeHv0IbKnjc96dkV2hBOZCOp6K7RTc57QqqTyg_omjMmiKJig-LDYYGUF7AlmQkXsLvg_66AbZwHH8Dhf77ssANY8AQmBR-esZmeY6ryjMeY6l-lio8Bx_GILXENDu_AvBzwDMVMGftQ4VJWCx_R-7Eq8OntvUVPP3883T80j39-_b7__thYQWhpRAsKrOMjY9IZJhVTtO0UpcYwkIQp1xHuuBuVcaMUvBvaQQ49FaojFgS_RZ9PY5cU6zW56NlnC9NkAsQ163o-EUJy1l-2ctmxvuVMVevdm3UdZnB6SX426aDPcVbD15PBpphzglFbX8wxm5qunzQl-tie3utze_rYnj61V_HuP_y84SL47QRCjfTFQ9LZeggWnE-1G-2ivzTiFWNruMw
CitedBy_id crossref_primary_10_1016_j_chemosphere_2021_130126
crossref_primary_10_1016_j_saa_2024_125182
crossref_primary_10_4081_jae_2025_1776
crossref_primary_10_1016_j_engappai_2025_111276
crossref_primary_10_1016_j_psep_2024_06_081
crossref_primary_10_1021_acssensors_5c00254
crossref_primary_10_3390_su12114441
crossref_primary_10_3390_foods14183261
crossref_primary_10_3390_su151310339
crossref_primary_10_1016_j_ecoenv_2024_116883
crossref_primary_10_3390_en18164408
crossref_primary_10_3390_bios15090629
crossref_primary_10_3390_en18030686
crossref_primary_10_3390_ijms25179584
crossref_primary_10_1002_advs_202501793
crossref_primary_10_1016_j_foodchem_2025_143391
crossref_primary_10_1016_j_saa_2023_122742
crossref_primary_10_1002_jsfa_10836
crossref_primary_10_1039_D5AY00683J
crossref_primary_10_1111_jfpe_13718
crossref_primary_10_1016_j_infrared_2022_104414
crossref_primary_10_1016_j_saa_2025_126387
crossref_primary_10_3389_fsufs_2022_1036892
crossref_primary_10_1111_jfpe_13950
crossref_primary_10_1111_jfpe_13797
crossref_primary_10_1111_jfpe_13952
crossref_primary_10_1016_j_foodchem_2021_130634
crossref_primary_10_1111_jfpe_13793
crossref_primary_10_1016_j_tifs_2025_105138
crossref_primary_10_1016_j_envres_2025_121257
crossref_primary_10_1016_j_microc_2023_109306
crossref_primary_10_1007_s11947_025_03822_9
crossref_primary_10_1111_jfpe_14120
crossref_primary_10_3389_fpls_2022_927832
crossref_primary_10_1016_j_compag_2023_107920
crossref_primary_10_1016_j_compag_2021_106046
crossref_primary_10_1016_j_epsr_2022_108066
crossref_primary_10_1016_j_infrared_2022_104286
crossref_primary_10_1109_ACCESS_2025_3587226
crossref_primary_10_1080_10498850_2025_2469831
crossref_primary_10_1016_j_foodchem_2022_135251
crossref_primary_10_3390_agronomy15081954
crossref_primary_10_3390_met15010080
crossref_primary_10_1016_j_infrared_2021_104003
crossref_primary_10_3390_foods11142024
crossref_primary_10_1111_jfpp_15241
crossref_primary_10_1007_s12665_024_11680_5
crossref_primary_10_1016_j_foodchem_2021_129928
crossref_primary_10_3390_pr13092769
crossref_primary_10_3389_fpls_2022_1007991
crossref_primary_10_1016_j_saa_2022_121838
crossref_primary_10_1111_1750_3841_15715
crossref_primary_10_3390_rs15123100
crossref_primary_10_3390_foods14071241
crossref_primary_10_3390_foods14111929
crossref_primary_10_1016_j_saa_2023_122720
crossref_primary_10_1016_j_foodchem_2022_132779
crossref_primary_10_1016_j_ecoenv_2024_116704
crossref_primary_10_1016_j_plaphe_2025_100104
crossref_primary_10_1016_j_infrared_2021_103687
crossref_primary_10_1016_j_foodchem_2023_136235
crossref_primary_10_1111_jfpe_13973
crossref_primary_10_1111_jfpe_14304
crossref_primary_10_3389_fpls_2024_1458589
crossref_primary_10_3390_foods14142488
crossref_primary_10_1016_j_compag_2023_108034
crossref_primary_10_1016_j_snb_2023_133931
crossref_primary_10_1016_j_trac_2021_116459
crossref_primary_10_1016_j_cej_2025_162796
crossref_primary_10_1016_j_chemosphere_2024_141329
crossref_primary_10_1016_j_fbio_2025_106404
crossref_primary_10_1002_slct_202501867
crossref_primary_10_1016_j_crfs_2025_101065
crossref_primary_10_3390_foods14020286
crossref_primary_10_3390_machines13090818
crossref_primary_10_1109_TGRS_2022_3190310
crossref_primary_10_1016_j_compag_2025_110569
crossref_primary_10_1007_s11356_022_23206_2
crossref_primary_10_1016_j_chemolab_2022_104537
crossref_primary_10_1016_j_foodcont_2022_109108
crossref_primary_10_1080_00387010_2024_2447515
crossref_primary_10_1007_s10044_025_01543_5
crossref_primary_10_3390_su132112088
crossref_primary_10_1016_j_jclepro_2022_134878
crossref_primary_10_3390_su17073190
crossref_primary_10_1016_j_jpowsour_2025_238276
crossref_primary_10_3390_s25082611
crossref_primary_10_1109_ACCESS_2025_3591279
crossref_primary_10_1016_j_foodchem_2024_139868
crossref_primary_10_1016_j_saa_2022_122288
crossref_primary_10_3390_foods11233881
crossref_primary_10_3390_land12091789
crossref_primary_10_1016_j_infrared_2021_103936
crossref_primary_10_1007_s11694_022_01552_6
crossref_primary_10_1016_j_jenvman_2025_125158
crossref_primary_10_1002_ceat_70054
crossref_primary_10_1021_acssensors_5c01499
crossref_primary_10_1007_s12161_024_02686_7
crossref_primary_10_34133_plantphenomics_0124
crossref_primary_10_1016_j_scienta_2024_113739
crossref_primary_10_3390_s25123668
crossref_primary_10_3390_s25154783
crossref_primary_10_1016_j_geodrs_2022_e00540
crossref_primary_10_1111_jfpe_14040
crossref_primary_10_1016_j_ecoenv_2025_118317
crossref_primary_10_3390_agronomy14102290
crossref_primary_10_1016_j_mtcomm_2021_102817
crossref_primary_10_1007_s42405_025_00954_2
crossref_primary_10_1016_j_ecoenv_2024_117548
crossref_primary_10_1016_j_tifs_2021_04_008
crossref_primary_10_1016_j_ecoinf_2024_102792
crossref_primary_10_1016_j_saa_2022_121641
crossref_primary_10_1111_jfs_12866
crossref_primary_10_3390_agriculture12111796
crossref_primary_10_3390_agriculture15161775
crossref_primary_10_3390_app15158438
crossref_primary_10_3390_foods12152957
crossref_primary_10_3390_computers14080309
crossref_primary_10_1016_j_foodchem_2025_143799
crossref_primary_10_1016_j_saa_2022_121479
crossref_primary_10_1016_j_scitotenv_2022_160652
crossref_primary_10_3390_biomimetics10090572
crossref_primary_10_1016_j_tifs_2025_105204
crossref_primary_10_1016_j_csite_2025_106717
crossref_primary_10_3390_agriculture15131351
crossref_primary_10_3390_fi17070308
crossref_primary_10_1039_D5AY00647C
crossref_primary_10_3389_fnut_2022_993737
crossref_primary_10_1080_10408398_2022_2131725
crossref_primary_10_3390_agriculture15080847
crossref_primary_10_1016_j_tifs_2024_104396
crossref_primary_10_3390_machines13090793
crossref_primary_10_1016_j_meatsci_2023_109170
crossref_primary_10_1007_s11694_020_00627_6
crossref_primary_10_1016_j_trac_2024_117794
crossref_primary_10_3390_en18112702
crossref_primary_10_1016_j_meatsci_2022_108975
crossref_primary_10_1016_j_saa_2024_123991
crossref_primary_10_1016_j_jfca_2021_103970
crossref_primary_10_1016_j_compag_2025_110519
crossref_primary_10_3390_molecules25204696
crossref_primary_10_3390_pr13061682
crossref_primary_10_1016_j_scitotenv_2021_149623
crossref_primary_10_1016_j_envpol_2025_127135
crossref_primary_10_1111_jfpe_13897
crossref_primary_10_3390_rs13112160
crossref_primary_10_3390_agronomy15061471
crossref_primary_10_1002_wcms_1516
crossref_primary_10_1080_10408398_2022_2139217
crossref_primary_10_1016_j_foodchem_2021_129954
crossref_primary_10_1007_s11760_025_04447_3
crossref_primary_10_3390_agronomy15071549
crossref_primary_10_1016_j_jpowsour_2025_236508
Cites_doi 10.1016/S0169-7439(01)00119-8
10.1093/mnras/stx3298
10.1039/C4AN02123A
10.1016/j.biosystemseng.2017.03.006
10.1109/83.136597
10.1016/j.aqpro.2015.02.203
10.1016/j.geoderma.2018.12.049
10.1039/C4AN00730A
10.1016/j.jag.2018.12.011
10.1016/j.chemolab.2017.12.010
10.1016/j.saa.2018.12.051
10.1016/0169-7439(93)E0066-D
10.1016/j.chemosphere.2018.07.168
10.1002/app.11595
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright © 2020 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright © 2020 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.foodchem.2020.126503
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE

AGRICOLA
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Chemistry
Diet & Clinical Nutrition
EISSN 1873-7072
ExternalDocumentID 32240914
10_1016_j_foodchem_2020_126503
S0308814620303654
Genre Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARLI
AATLK
AAXUO
ABFNM
ABFRF
ABGRD
ABGSF
ABJNI
ABMAC
ABUDA
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADECG
ADEZE
ADQTV
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AFZHZ
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CBWCG
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KOM
KZ1
LW9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SAB
SCC
SDF
SDG
SDP
SES
SPC
SPCBC
SSA
SSK
SSU
SSZ
T5K
WH7
~G-
~KM
29H
53G
9DU
AAHBH
AALCJ
AAQXK
AATTM
AAXKI
AAYJJ
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGHFR
AGQPQ
AGRDE
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HLV
HVGLF
HZ~
R2-
SCB
SEW
VH1
WUQ
Y6R
~HD
BNPGV
CGR
CUY
CVF
ECM
EIF
NPM
SSH
7X8
7S9
L.6
ID FETCH-LOGICAL-c401t-45e9ecd3f228da28929156911aa2e8029d603d3df9adf8436b5b8b714960ce43
ISICitedReferencesCount 179
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000526394400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0308-8146
1873-7072
IngestDate Mon Sep 29 05:36:43 EDT 2025
Sat Sep 27 20:12:12 EDT 2025
Thu Apr 03 07:05:41 EDT 2025
Sat Nov 29 07:23:00 EST 2025
Tue Nov 18 22:30:37 EST 2025
Fri Feb 23 02:50:12 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Lettuce
Wavelet transform
Compound heavy metals
Nondestructive testing
Stack convolution auto encoder
Language English
License Copyright © 2020 Elsevier Ltd. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c401t-45e9ecd3f228da28929156911aa2e8029d603d3df9adf8436b5b8b714960ce43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-6600-3699
0000-0003-2498-3278
PMID 32240914
PQID 2386275329
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2400448327
proquest_miscellaneous_2386275329
pubmed_primary_32240914
crossref_citationtrail_10_1016_j_foodchem_2020_126503
crossref_primary_10_1016_j_foodchem_2020_126503
elsevier_sciencedirect_doi_10_1016_j_foodchem_2020_126503
PublicationCentury 2000
PublicationDate 2020-08-15
PublicationDateYYYYMMDD 2020-08-15
PublicationDate_xml – month: 08
  year: 2020
  text: 2020-08-15
  day: 15
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Food chemistry
PublicationTitleAlternate Food Chem
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Malmir, Tahmasbian, Xu, Farrar, Bai (b0080) 2019; 340
Cao, Y., Huang, R., Li, J., Zhao, T., Guo, W., & Wang, G.. (2006). Cadmium absorption characteristics of Zea mays under combined stress of lead and cadmium. Chinese Journal of Ecology, 25, 1425-1427. doi: 0.1016/S1872-2032(06)60050-4.
Araújo, Saldanha, Galvão, Yoneyama, Visani (b0010) 2001; 57
Cong, Sun, Mao, Wu, Wang, Zhang (b0030) 2017; 98
Camacho, Vallés-Lluch, Ribes-Greus, Karlsson (b0020) 2003; 87
Song, Liu, Chen, Ma, Zhang, Shen (b0090) 2015; 3
Sun, Zhou, Mao, Wu, Yang, Zhang (b0115) 2016; 32
Bos, Vrielink (b0015) 1994; 23
Vincent, Larochelle, Lajoie, Bengio, Manzagol (b0120) 2010; 11
Antonini, Barlaud, Mathieu, Daubechies (b0005) 1992; 1
Sun, Zhou, Wu, Zhang, Yang (b0095) 2019; 212
Corti, Marino Gallina, Cavalli, Cabassi (b0035) 2017; 158
Yu, Lu, Liu (b0130) 2018; 172
Li, Li, Liu (b0075) 2019; 78
Deng, Yun, Ma, Lin, Ren, Liang (b0045) 2015; 140
Saqib, Qaiser, Muhammad, Hongqing (b0085) 2018; 211
Fabbro, Venn, O“Briain, Bialek, Kielty, Jahandar (b0050) 2018; 475
Liu, Zheng, Zhang, Li, Fang, Liu (b0070) 2019; 11
Sun, Tan, Mao, Wu, Chen, Wang (b0110) 2017; 33
Zhou, Sun, Tian, Wu, Dai, Li (b0140) 2019; e13085
Deng, Yun, Liang, Yi (b0040) 2014; 139
Zhang, Wang, Ouyang, Fei (b0135) 2018; 46
Bos (10.1016/j.foodchem.2020.126503_b0015) 1994; 23
Araújo (10.1016/j.foodchem.2020.126503_b0010) 2001; 57
Sun (10.1016/j.foodchem.2020.126503_b0115) 2016; 32
10.1016/j.foodchem.2020.126503_b0025
Deng (10.1016/j.foodchem.2020.126503_b0040) 2014; 139
Zhang (10.1016/j.foodchem.2020.126503_b0135) 2018; 46
Deng (10.1016/j.foodchem.2020.126503_b0045) 2015; 140
Saqib (10.1016/j.foodchem.2020.126503_b0085) 2018; 211
Sun (10.1016/j.foodchem.2020.126503_b0110) 2017; 33
Fabbro (10.1016/j.foodchem.2020.126503_b0050) 2018; 475
Zhou (10.1016/j.foodchem.2020.126503_b0140) 2019; e13085
Li (10.1016/j.foodchem.2020.126503_b0075) 2019; 78
Sun (10.1016/j.foodchem.2020.126503_b0095) 2019; 212
Vincent (10.1016/j.foodchem.2020.126503_b0120) 2010; 11
Song (10.1016/j.foodchem.2020.126503_b0090) 2015; 3
Malmir (10.1016/j.foodchem.2020.126503_b0080) 2019; 340
Cong (10.1016/j.foodchem.2020.126503_b0030) 2017; 98
Antonini (10.1016/j.foodchem.2020.126503_b0005) 1992; 1
Liu (10.1016/j.foodchem.2020.126503_b0070) 2019; 11
Yu (10.1016/j.foodchem.2020.126503_b0130) 2018; 172
Camacho (10.1016/j.foodchem.2020.126503_b0020) 2003; 87
Corti (10.1016/j.foodchem.2020.126503_b0035) 2017; 158
References_xml – volume: 57
  start-page: 65
  year: 2001
  end-page: 73
  ident: b0010
  article-title: The successive projections algorithm for variable selection in spectroscopic multicomponent analysis
  publication-title: Chemometrics & Intelligent Laboratory Systems
– volume: 98
  start-page: 29
  year: 2017
  end-page: 35
  ident: b0030
  article-title: Non-destructive detection for mold colonies in rice based on hyperspectra and GWO-SVR
  publication-title: Journal of the Science of Food & Agriculture
– volume: 340
  start-page: 70
  year: 2019
  end-page: 80
  ident: b0080
  article-title: Prediction of soil macro- and micro-elements in sieved and ground air-dried soils using laboratory-based hyperspectral imaging technique
  publication-title: Geoderma
– volume: 32
  start-page: 302
  year: 2016
  end-page: 307
  ident: b0115
  article-title: Detection of pesticide residues in lettuce based on fluorescence spectra
  publication-title: Transactions of the Chinese Society of Agricultural Engineering
– volume: 46
  start-page: 5
  year: 2018
  end-page: 9
  ident: b0135
  article-title: Diagnosis of Heavy Metal Stress in Leaf of Rice in Greenhouse Based on Hyperspectral Image
  publication-title: Journal of Anhui Agricultural Sciences
– volume: 172
  start-page: 188
  year: 2018
  end-page: 193
  ident: b0130
  article-title: Deep-learning-based regression model and hyperspectral imaging for rapid detection of nitrogen concentration in oilseed rape (brassica napus l.) leaf
  publication-title: Chemometrics and Intelligent Laboratory Systems
– volume: 158
  start-page: 38
  year: 2017
  end-page: 50
  ident: b0035
  article-title: Hyperspectral imaging of spinach canopy under combined water and nitrogen stress to estimate biomass, water, and nitrogen content
  publication-title: Biosystems Engineering
– volume: 33
  start-page: 209
  year: 2017
  end-page: 215
  ident: b0110
  article-title: Recognition of multiple plant leaf diseases based on improved convolutional neural network
  publication-title: Transactions of the Chinese Society of Agricultural Engineering
– volume: 139
  start-page: 4836
  year: 2014
  ident: b0040
  article-title: A novel variable selection approach that iteratively optimizes variable space using weighted binary matrix sampling
  publication-title: The Analyst
– volume: 78
  start-page: 39
  year: 2019
  end-page: 52
  ident: b0075
  article-title: Collaborative inversion heavy metal stress in rice by using two-dimensional spectral feature space based on HJ-1 A HSI and radarsat-2 SAR remote sensing data
  publication-title: International Journal of Applied Earth Observation and Geoinformation
– volume: 212
  start-page: 215
  year: 2019
  end-page: 221
  ident: b0095
  article-title: Research and Analysis of Cadmium Residue in Tomato Leaves Based on WT-LSSVR and VIS-NIR Hyperspectral Imaging
  publication-title: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy
– volume: 23
  start-page: 115
  year: 1994
  end-page: 122
  ident: b0015
  article-title: The wavelet transform for pre-processing ir spectra in the identification of mono- and di-substituted benzenes
  publication-title: Chemometrics & Intelligent Laboratory Systems
– volume: 11
  start-page: 1
  year: 2019
  end-page: 14
  ident: b0070
  article-title: Dissolved gases forecasting based on wavelet least squares support vector regression and imperialist competition algorithm for assessing incipient faults of transformer polymer insulation
  publication-title: Polymers
– reference: Cao, Y., Huang, R., Li, J., Zhao, T., Guo, W., & Wang, G.. (2006). Cadmium absorption characteristics of Zea mays under combined stress of lead and cadmium. Chinese Journal of Ecology, 25, 1425-1427. doi: 0.1016/S1872-2032(06)60050-4.
– volume: e13085
  year: 2019
  ident: b0140
  article-title: Spectral classification of lettuce cadmium stress based on information fusion and VISSA-GOA-SVM algorithm
  publication-title: Journal of Food Process Engineering
– volume: 211
  start-page: 632
  year: 2018
  end-page: 639
  ident: b0085
  article-title: Efficiency and surface characterization of different plant derived biochar for cadmium (cd) mobility, bioaccessibility and bioavailability to chinese cabbage in highly contaminated soil
  publication-title: Chemosphere
– volume: 87
  start-page: 2165
  year: 2003
  end-page: 2170
  ident: b0020
  article-title: Determination of moisture content in nylon 6,6 by near-infrared spectroscopy and chemometrics
  publication-title: Journal of Applied Polymer Science
– volume: 475
  start-page: 2978
  year: 2018
  end-page: 2993
  ident: b0050
  article-title: An application of deep learning in the analysis of stellar spectra
  publication-title: Monthly Notices of the Royal Astronomical Society
– volume: 3
  start-page: 133
  year: 2015
  end-page: 143
  ident: b0090
  article-title: Classification of the different thickness of the oil film based on wavelet transform spectrum information
  publication-title: Aquatic Procedia
– volume: 11
  start-page: 3371
  year: 2010
  end-page: 3408
  ident: b0120
  article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
  publication-title: Journal of Machine Learning Research
– volume: 140
  start-page: 1876
  year: 2015
  end-page: 1885
  ident: b0045
  article-title: A new method for wavelength interval selection that intelligently optimizes the locations, widths and combinations of the intervals
  publication-title: The Analyst
– volume: 1
  start-page: 205
  year: 1992
  end-page: 220
  ident: b0005
  article-title: Image coding using wavelet transform
  publication-title: IEEE Transactions on Image Processing
– volume: 57
  start-page: 65
  year: 2001
  ident: 10.1016/j.foodchem.2020.126503_b0010
  article-title: The successive projections algorithm for variable selection in spectroscopic multicomponent analysis
  publication-title: Chemometrics & Intelligent Laboratory Systems
  doi: 10.1016/S0169-7439(01)00119-8
– volume: 475
  start-page: 2978
  issue: 3
  year: 2018
  ident: 10.1016/j.foodchem.2020.126503_b0050
  article-title: An application of deep learning in the analysis of stellar spectra
  publication-title: Monthly Notices of the Royal Astronomical Society
  doi: 10.1093/mnras/stx3298
– volume: 140
  start-page: 1876
  issue: 6
  year: 2015
  ident: 10.1016/j.foodchem.2020.126503_b0045
  article-title: A new method for wavelength interval selection that intelligently optimizes the locations, widths and combinations of the intervals
  publication-title: The Analyst
  doi: 10.1039/C4AN02123A
– volume: 98
  start-page: 29
  year: 2017
  ident: 10.1016/j.foodchem.2020.126503_b0030
  article-title: Non-destructive detection for mold colonies in rice based on hyperspectra and GWO-SVR
  publication-title: Journal of the Science of Food & Agriculture
– volume: 158
  start-page: 38
  year: 2017
  ident: 10.1016/j.foodchem.2020.126503_b0035
  article-title: Hyperspectral imaging of spinach canopy under combined water and nitrogen stress to estimate biomass, water, and nitrogen content
  publication-title: Biosystems Engineering
  doi: 10.1016/j.biosystemseng.2017.03.006
– volume: 1
  start-page: 205
  issue: 2
  year: 1992
  ident: 10.1016/j.foodchem.2020.126503_b0005
  article-title: Image coding using wavelet transform
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/83.136597
– volume: 3
  start-page: 133
  year: 2015
  ident: 10.1016/j.foodchem.2020.126503_b0090
  article-title: Classification of the different thickness of the oil film based on wavelet transform spectrum information
  publication-title: Aquatic Procedia
  doi: 10.1016/j.aqpro.2015.02.203
– ident: 10.1016/j.foodchem.2020.126503_b0025
– volume: 340
  start-page: 70
  year: 2019
  ident: 10.1016/j.foodchem.2020.126503_b0080
  article-title: Prediction of soil macro- and micro-elements in sieved and ground air-dried soils using laboratory-based hyperspectral imaging technique
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2018.12.049
– volume: 139
  start-page: 4836
  issue: 19
  year: 2014
  ident: 10.1016/j.foodchem.2020.126503_b0040
  article-title: A novel variable selection approach that iteratively optimizes variable space using weighted binary matrix sampling
  publication-title: The Analyst
  doi: 10.1039/C4AN00730A
– volume: 78
  start-page: 39
  year: 2019
  ident: 10.1016/j.foodchem.2020.126503_b0075
  article-title: Collaborative inversion heavy metal stress in rice by using two-dimensional spectral feature space based on HJ-1 A HSI and radarsat-2 SAR remote sensing data
  publication-title: International Journal of Applied Earth Observation and Geoinformation
  doi: 10.1016/j.jag.2018.12.011
– volume: 172
  start-page: 188
  year: 2018
  ident: 10.1016/j.foodchem.2020.126503_b0130
  article-title: Deep-learning-based regression model and hyperspectral imaging for rapid detection of nitrogen concentration in oilseed rape (brassica napus l.) leaf
  publication-title: Chemometrics and Intelligent Laboratory Systems
  doi: 10.1016/j.chemolab.2017.12.010
– volume: 212
  start-page: 215
  year: 2019
  ident: 10.1016/j.foodchem.2020.126503_b0095
  article-title: Research and Analysis of Cadmium Residue in Tomato Leaves Based on WT-LSSVR and VIS-NIR Hyperspectral Imaging
  publication-title: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy
  doi: 10.1016/j.saa.2018.12.051
– volume: e13085
  year: 2019
  ident: 10.1016/j.foodchem.2020.126503_b0140
  article-title: Spectral classification of lettuce cadmium stress based on information fusion and VISSA-GOA-SVM algorithm
  publication-title: Journal of Food Process Engineering
– volume: 33
  start-page: 209
  year: 2017
  ident: 10.1016/j.foodchem.2020.126503_b0110
  article-title: Recognition of multiple plant leaf diseases based on improved convolutional neural network
  publication-title: Transactions of the Chinese Society of Agricultural Engineering
– volume: 23
  start-page: 115
  issue: 1
  year: 1994
  ident: 10.1016/j.foodchem.2020.126503_b0015
  article-title: The wavelet transform for pre-processing ir spectra in the identification of mono- and di-substituted benzenes
  publication-title: Chemometrics & Intelligent Laboratory Systems
  doi: 10.1016/0169-7439(93)E0066-D
– volume: 11
  start-page: 1
  year: 2019
  ident: 10.1016/j.foodchem.2020.126503_b0070
  article-title: Dissolved gases forecasting based on wavelet least squares support vector regression and imperialist competition algorithm for assessing incipient faults of transformer polymer insulation
  publication-title: Polymers
– volume: 46
  start-page: 5
  year: 2018
  ident: 10.1016/j.foodchem.2020.126503_b0135
  article-title: Diagnosis of Heavy Metal Stress in Leaf of Rice in Greenhouse Based on Hyperspectral Image
  publication-title: Journal of Anhui Agricultural Sciences
– volume: 211
  start-page: 632
  year: 2018
  ident: 10.1016/j.foodchem.2020.126503_b0085
  article-title: Efficiency and surface characterization of different plant derived biochar for cadmium (cd) mobility, bioaccessibility and bioavailability to chinese cabbage in highly contaminated soil
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2018.07.168
– volume: 32
  start-page: 302
  year: 2016
  ident: 10.1016/j.foodchem.2020.126503_b0115
  article-title: Detection of pesticide residues in lettuce based on fluorescence spectra
  publication-title: Transactions of the Chinese Society of Agricultural Engineering
– volume: 11
  start-page: 3371
  issue: 12
  year: 2010
  ident: 10.1016/j.foodchem.2020.126503_b0120
  article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
  publication-title: Journal of Machine Learning Research
– volume: 87
  start-page: 2165
  issue: 13
  year: 2003
  ident: 10.1016/j.foodchem.2020.126503_b0020
  article-title: Determination of moisture content in nylon 6,6 by near-infrared spectroscopy and chemometrics
  publication-title: Journal of Applied Polymer Science
  doi: 10.1002/app.11595
SSID ssj0002018
Score 2.6569872
Snippet •Vis-NIR HSI was used to detect compound heavy metals content in lettuce leaves.•WT-SCAE is proposed to obtain the deep spectral features.•Deep learning has a...
The aim of this research was to develop a deep learning method which involved wavelet transform (WT) and stack convolution auto encoder (SCAE) for extracting...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 126503
SubjectTerms cadmium
Cadmium - analysis
Compound heavy metals
Deep learning
heavy metals
hyperspectral imagery
Lactuca - chemistry
Lactuca sativa
lead
Lead - analysis
Least-Squares Analysis
leaves
Lettuce
Nondestructive testing
Plant Leaves - chemistry
prediction
Stack convolution auto encoder
Support Vector Machine
support vector machines
wavelet
Wavelet Analysis
Wavelet transform
Title Hyperspectral technique combined with deep learning algorithm for detection of compound heavy metals in lettuce
URI https://dx.doi.org/10.1016/j.foodchem.2020.126503
https://www.ncbi.nlm.nih.gov/pubmed/32240914
https://www.proquest.com/docview/2386275329
https://www.proquest.com/docview/2400448327
Volume 321
WOSCitedRecordID wos000526394400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-7072
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002018
  issn: 0308-8146
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZYhwQvCMatXCYjob1UKWmci_04RqeBpoJEkcKTlcTO1KkkpU2n8e85J7bTIm1sPPASVVZOYvX7nHOOfS6EvIXFl_tFHHhZlGNR7ZHyMl-HXgHaNOahZrko22YTyWTC01R8sUHsq7adQFJV_PJSLP4r1DAGYGPq7D_A3T0UBuA3gA5XgB2utwL-BDxLk0CJufebGq3wLvCCXbS50nrhWkacDbL5Wb2E4R9t1KHSjS6cJYkx59h6CU3Ki1_YcRoLLs8qEG4ax4uuz2etBoVrIbfZk67XiGQ664j4dW1TQrbCgM1O7PetGKFW6r3TrXZrImgD40xypkvJgoFuj9F-blkwGiyGwITIZ96VH3Gzn3A-LGHSOOchPttKbNSWO6qffJbH305P5XScTg8WPz1sKIYH77a7yg7ZDZJI8B7ZPfw4Tj91ahosH26OmMwct9LHr371dZbLdZ5Ja6FMH5IH1rWgh4YSj8gdXe2Re0cOjj3S_zDTDT2gthbsnE5cKwa4z2Worx6T-g8K0Y5C1FGIIoUoUog6CtGOQhQoRDsK0bqkjkK0pRA1FKKziloKPSHT4_H06MSzjTm8AtzxBpa0FrpQrAwCrjJw2QMximJQm1kWaO4HQsU-U0yVIlMlD1mcRznPE3DGY7_QIXtKelVd6eeElnHg55wxBZZviEnYQmPFSJZoVSQ8y_skcv-5LGzReuydMpcuOvFcOqwkYiUNVn3yrpNbmLItN0oIB6m0xqcxKiXQ8kbZN44DEiDFI7es0vV6JcEgxjLgLBB_uQfVaAiaNemTZ4ZA3ZwZWtxiFL64hfRLcn-zCF-RXrNc69fkbnHRzFbLfbKTpHzfLoLfWNjI1Q
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hyperspectral+technique+combined+with+deep+learning+algorithm+for+detection+of+compound+heavy+metals+in+lettuce&rft.jtitle=Food+chemistry&rft.au=Zhou%2C+Xin&rft.au=Sun%2C+Jun&rft.au=Tian%2C+Yan&rft.au=Lu%2C+Bing&rft.date=2020-08-15&rft.issn=0308-8146&rft.volume=321+p.126503-&rft_id=info:doi/10.1016%2Fj.foodchem.2020.126503&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0308-8146&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0308-8146&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0308-8146&client=summon